Большие уличные часы на atmega8. «Тикающие» часы с будильником на микроконтроллере Atmega48. Видео работы устройства на Ютуб-канале

24Ќар

На этой неделе аэрокосмическое агентство NASA опубликовало результаты работы демонстратора технологии космической лазерной связи (LLCD), установленного на «Исследователе лунной атмосферы и пылевого окружения» (или LADEE), запущенного в сентябре этого года и в настоящий момент кружащего вокруг нашего естественного спутника. Со слов космического агентства, система LLCD показала очень высокую эффективность передачи данных на расстоянии около 400 тысяч километров и уже сейчас способна работать не хуже, а возможно даже и лучше обычных радиопередатчиков.

Для тех, кто не знает, миссия LLCD направлена на демонстрацию возможности практического использования лазеров для передачи сообщений между объектами на очень удаленном расстоянии друг от друга и намного более высокой скоростью по сравнению с той, что могут предложить стандартные радиопередатчики. Продемонстрировав способность передавать данные на Землю со скоростью 622 Мб/с и получать со скоростью 20 Мб/с, LLCD установила 20 октября рекорд скорости передачи данных с лунной орбиты. Данные, переданные лазерным лучом, были получены основной наземной LLCD-станцией, расположенной в Нью-Мексико. В мире находятся три подобные станции. Оставшиеся две расположены в Испании и США.

Важнейшие преимущества лазеров над радиопередатчиками заключаются в том, что они предлагают намного более высокую пропускную способность и, кроме того, возможность передавать информацию кратковременными лазерными пучками, что в перспективе позволит снизить общие затраты потребления питания при передаче информации на сверхудаленные дистанции.

В NASA отмечают, что система LLCD работает в течение 30-дневного тестового режима даже лучше, чем того от нее ожидали. Лазер без проблем передавал сообщения на наземные станции при дневном свете и даже тогда, когда угол отклонения Луны по отношению к Солнцу составлял четыре градуса. Система также работала без каких-либо ошибок, когда Луна находилась очень низко к горизонту, тем самым заставляя лазер проходить через более плотные слои атмосферы и при некотором воздействии эффектов турбулентности. Астрономы также были удивлены узнав, что легкие перистые облака не оказались для лазера проблемой.

Помимо проверки на ошибки, LLCD показала возможность переключения от одной наземной станции к другой, продемонстрировав способность фиксироваться на определенной станции без необходимости использования радиосигнала.

«Мы запрограммировали LADEE таким образом, чтобы она в автоматическом режиме активировала и направляла систему LLCD в нужную точку для передачи лазерного сигнала на Землю, без какой-либо необходимости в предварительно отправленных на зонд радиосигналов с командой», - говорит Дон Корнуэлл, менеджер проекта LLCD из Центра космических полетов имени Годдарда.
«Успех этой миссии позволяет с оптимизмом смотреть на возможность использования подобных систем в качестве основных систем коммуникаций при будущих миссиях NASA».
В NASA отмечают не только успешность передачи сигнала, но и высокую скорость передачи информации с зонда на Землю. Все собранные за это время данные (а это, на минуточку, гигабайты информации), были переданы на Землю менее чем за пять минут. Обычно для передачи данных такого объема требуется несколько дней.

Агентство сообщает, что LLCD миссия завершена и следующей фазой тестирования станет проверка системы спутника Laser Communications Relay Demonstration (LRCD), запуск которого намечен на 2017 год. По своей сути система станет усовершенствованной версией LLCD, способной на передачу данных со скоростью до 2880 Гб/с с геостационарной орбиты и станет частью пятилетней программы тестирования систем коммуникаций нового поколения.

Категории: / / от

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется связь

Лазерная связь позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство LOO OmniBeam 2000 OmniBeam 4000
Ethernet (10 Мбит/с) + + -
Token Ring (416 Мбит/с) + + -
E1 (2 Мбит/с) + + -
Видеоизображение - + -
Комбинация данных и речи - + -
Высокоскоростная передача данных (34-155 Мбит/с) - - +
Возможность модернизации - + +

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1.
Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2.
Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3.
Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4.
Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5.
Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость Медный кабель Оптоволокно Радиоканал Лазерный канал
от 3 до 7 тыс. дол. за 1 км до 10 тыс. дол. за 1 км от 7 до 100 тыс. дол. за комплект 12-22 тыс. дол. за комплект
Время на подготовку и выполнение монтажа Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов Подготовка работ и прокладка 1-2 месяца Подготовка работ 2-3 месяца, установка - несколько часов Подготовка работ 1-2 недели, установка - несколько часов
Максимальная пропускная способность До 2 Мбит/с при использованием HDSL До 155 Мбит/с До 155 Мбит/с До 155 Мбит/с
Максимальная дальность связи без повторителей До 20 км при использовании HDSL Не менее 50-70 км До 80 км (зависит от мощности сигнала) До 1,2 км
BER >1E-7 1E-10 1E-10...1E-9

Начнем со всем известного обычного медного кабеля. Некоторые его характеристики позволяют практически точно рассчитать параметры создаваемого канала связи. Для такого канала неважно, каково направление передачи и нахоятся ли объекты в прямой видимости, не нужно думать о влиянии осадков и многих других факторов. Однако качество и скорость передачи, обеспечиваемые этим кабелем, оставляют желать лучшего. Частота появления ошибочных битов (BER) составляет величину порядка 1Е-7 и выше, что значительно больше величины этого показателя у оптоволокна или беспроводной связи. Медные кабели относятся к низкоскоростным каналам связи, поэтому прежде чем прокладывать новые кабели, подумайте о том, стоит ли их использовать. Если кабель уже имеется, то вам стоит задуматься о том, как повысить его пропускную способность на основе технологии HDSL. Однако следует учитывать, что она может не обеспечить требуемого качества связи из-за неудовлетворительного состояния кабельных линий.

Оптоволоконные кабели имеют значительные преимущества перед медными. Высокие пропускная способность и качество передачи (BER

Сейчас широкое применение находит радиосвязь, особенно радиорелейные линии и радиомодемы. Им также присущ свой набор преимуществ и недостатков. Существующие технологии радиосвязи при создании канала для передачи данных обеспечат вам более высокие качество (BER

Лазерная связь - быстро и качественно, надежно и эффективно решает проблему ближней связи между двумя зданиями, находящимися на расстоянии до 1200 м и в прямой видимости. Без выполнения этих условий лазерная связь невозможна. Ее несомненными преимуществами являются:

  • "прозрачность" для большинства сетевых протоколов (Ethernet, Token Ring, Sonet/OC, ATM, FDDI и др.);
  • высокая скорость передачи данных (до 155 Мбит/с сегодня, до 1 Гбит/с у анонсированного производителями оборудования);
  • высокое качество связи с BER=1Е-10...1Е-9;
  • подведение сетевого трафика к лазерному приемопередатчику при помощи кабельных и/или оптоволоконных устройств сопряжения;
  • отсутствие необходимости получения разрешений на использование;
  • относительно низкая стоимость лазерного оборудования, по сравнению с радиосистемами.

Лазерные приемопередатчики, из-за низкой мощности их излучения, не представляют опасности для здоровья. Следует отметить, что хотя луч безопасен, птицы его видят и стараются уклониться, что существенно уменьшает вероятность сбоев. Если передаваемая информация доставляется к лазерному приемопередатчику и от него по стандартному многомодовому оптоволоконному кабелю, то гарантируется передача данных без радиоволнового и электромагнитного излучения. Это не только обеспечивает отсутствие воздействия на работающее рядом оборудование, но и делает невозможным несанкционированный доступ к информации (получить его можно, только подобравшись непосредственно к приемопередатчику).

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется связь

Лазерная связь позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство LOO OmniBeam 2000 OmniBeam 4000
Ethernet (10 Мбит/с) + + -
Token Ring (416 Мбит/с) + + -
E1 (2 Мбит/с) + + -
Видеоизображение - + -
Комбинация данных и речи - + -
Высокоскоростная передача данных (34-155 Мбит/с) - - +
Возможность модернизации - + +

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1.
Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2.
Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3.
Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4.
Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5.
Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость Медный кабель Оптоволокно Радиоканал Лазерный канал
от 3 до 7 тыс. дол. за 1 км до 10 тыс. дол. за 1 км от 7 до 100 тыс. дол. за комплект 12-22 тыс. дол. за комплект
Время на подготовку и выполнение монтажа Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов Подготовка работ и прокладка 1-2 месяца Подготовка работ 2-3 месяца, установка - несколько часов Подготовка работ 1-2 недели, установка - несколько часов
Максимальная пропускная способность До 2 Мбит/с при использованием HDSL До 155 Мбит/с До 155 Мбит/с До 155 Мбит/с
Максимальная дальность связи без повторителей До 20 км при использовании HDSL Не менее 50-70 км До 80 км (зависит от мощности сигнала) До 1,2 км
BER >1E-7 1E-10 1E-10...1E-9

Начнем со всем известного обычного медного кабеля. Некоторые его характеристики позволяют практически точно рассчитать параметры создаваемого канала связи. Для такого канала неважно, каково направление передачи и нахоятся ли объекты в прямой видимости, не нужно думать о влиянии осадков и многих других факторов. Однако качество и скорость передачи, обеспечиваемые этим кабелем, оставляют желать лучшего. Частота появления ошибочных битов (BER) составляет величину порядка 1Е-7 и выше, что значительно больше величины этого показателя у оптоволокна или беспроводной связи. Медные кабели относятся к низкоскоростным каналам связи, поэтому прежде чем прокладывать новые кабели, подумайте о том, стоит ли их использовать. Если кабель уже имеется, то вам стоит задуматься о том, как повысить его пропускную способность на основе технологии HDSL. Однако следует учитывать, что она может не обеспечить требуемого качества связи из-за неудовлетворительного состояния кабельных линий.

Оптоволоконные кабели имеют значительные преимущества перед медными. Высокие пропускная способность и качество передачи (BER

Сейчас широкое применение находит радиосвязь, особенно радиорелейные линии и радиомодемы. Им также присущ свой набор преимуществ и недостатков. Существующие технологии радиосвязи при создании канала для передачи данных обеспечат вам более высокие качество (BER

Лазерная связь - быстро и качественно, надежно и эффективно решает проблему ближней связи между двумя зданиями, находящимися на расстоянии до 1200 м и в прямой видимости. Без выполнения этих условий лазерная связь невозможна. Ее несомненными преимуществами являются:

  • "прозрачность" для большинства сетевых протоколов (Ethernet, Token Ring, Sonet/OC, ATM, FDDI и др.);
  • высокая скорость передачи данных (до 155 Мбит/с сегодня, до 1 Гбит/с у анонсированного производителями оборудования);
  • высокое качество связи с BER=1Е-10...1Е-9;
  • подведение сетевого трафика к лазерному приемопередатчику при помощи кабельных и/или оптоволоконных устройств сопряжения;
  • отсутствие необходимости получения разрешений на использование;
  • относительно низкая стоимость лазерного оборудования, по сравнению с радиосистемами.

Лазерные приемопередатчики, из-за низкой мощности их излучения, не представляют опасности для здоровья. Следует отметить, что хотя луч безопасен, птицы его видят и стараются уклониться, что существенно уменьшает вероятность сбоев. Если передаваемая информация доставляется к лазерному приемопередатчику и от него по стандартному многомодовому оптоволоконному кабелю, то гарантируется передача данных без радиоволнового и электромагнитного излучения. Это не только обеспечивает отсутствие воздействия на работающее рядом оборудование, но и делает невозможным несанкционированный доступ к информации (получить его можно, только подобравшись непосредственно к приемопередатчику).

Цифровая часть приемопередатчика

После долгих экспериментов я пришел к выводу, что простой и надежный приемник для RS232 сделать трудно. Для RS232 надо мастерить что-то вроде схемы "привязки к уровню черного (или белого?)" - как в телевидении. Простыми средствами мне это сделать не удалось. Поэтому было принято решение перейти к импульсно-кодовому представлению сигналов RS232 и передаче информации импульсами. Такая система давно разработана и называется IRDA. Однако по условию задачи связь должна быть через ком-порт. Где-то в и-нете я видел микросхемы (буржуйские, разумеется) которые подключаются прямо к ком-порту, а на выходе у них импульсная последовательность или даже просто оптический сигнал. И приемник встроен в ту же микросхему. Мне эта штука не понравилась по двум причинам: относительная дороговизна и жесткая привязка к фиксированной скорости ком-порта. Т.е. если вы (или какая-то умная программа) решили перенастроить порт на другую скорость - вам надо менять тактовую частоту на входе микросхемы. По всем эти причинам я решил смастерить что-то похожее на IRDA, но более простое и независимое от скорости работы порта. Вот что получилось.

Стандарт FIRDA

Каждый фронт в сигнале RS232 кодируется коротким однополярным импульсом, который передается по оптическому каналу. Hа приемнике эти импульсы поступают на вход триггера, работающего в счетном режиме. Hа выходе триггера получаем (в идеале) сигнал RS232. В принципе, это все. У это чудесного по своей простоте алгоритма есть только один существенный недостаток, который заключается в том, что при пропуске хотя бы одного импульса, на выходе триггера начинает появляться инверсия сигнала RS232. Конечно, можно сказать, что при потере стартового фронта в RS232 (или первого импульса в пачке IRDA) тоже произойдет сбой синхронизации, который при плотном потоке информации может быть ликвидирован не скоро. Однако, в предлагаемой системе потеря любого (а не только первого) импульса приводит к неприятностям. Грубо говоря, помехоустойчивость FIRDA раз в 8-10 хуже IRDA или RS232. В принципе, это было бы не так страшно (считаем, что ошибки появляются достаточно редко), если бы с течением времени FIRDA выходил на нормальный режим работы, как это происходит с его именитыми прототипами. Однако, если не предусмотреть специальных мер, FIRDA так и будет гнать инвертированный поток, пока не произойдет еще одного сбоя;)) Именно длительная инверсная работа мне казалась главным недостатком FIRDA и я дополнил его маленькой добавкой, которая в последствии меня самого удивила своей эффективностью и практически решила все проблемы. Добавка очень простая: если в течении некоторого времени (ну например 0.1 сек) на выходе триггера присутствует "1", то следует принудительно перевести его в нулевое состояние (считаем, что в паузах передачи на выходе RS232 - ноль). Теперь для полного счастья надо дергать готовность ком-порта передатчика один раз в 10 сек, прерывая передачу на 0.1 сек, с тем чтобы триггер приемника установился в исходное состояние. Очевидно, в данном примере потери в скорости передачи - 1процент. Вот теперь, действительно все. Как показала практика, дергать готовность ком-порта передатчика не надо. Многочисленные эксперименты показали, что при реальной работе через ком возникает множество естественных пауз различной длительности. (были проверены несколько сетевых игрушек, сеть между двумя Вин98, терминалки с разными протоколами. Действительно плотный поток оказался только у терминалок, работающих через Z-модем). В моей версии линка время принудительной установки триггера выбрано около 5 миллисекунд. Такие паузы встречаются очень часто. Правда, это ограничивает снизу используемые скорости передачи (в моем случае - не меньше 2400). Зато никаких проблем ни с каким софтом я не имел во всем диапазоне скоростей 2400..115200.

Описание принципиальной схемы

Сигнал Тх с выхода ком-порта через ограничивающий резистор R1 поступает на схему выделения фронтов, собранную на элементах DD1.1, DD1.2. Hа выводе 4 элемента DD1.2 присутствуют импульсы длительностью около 1 микросекунды. Временные параметры этих импульсов не достаточно стабильны, поэтому в схему включен генератор нормированных по длительности импульсов, собранный на триггере Т2. Он формирует импульсы длительностью около 3-4 микросекунд. При необходимости длительность подстраивается резистором R3. Для тех, кому важна стабильность/надежность/дальность работы линка и допустима максимальная скорость работы 57600, я бы посоветовал удвоить номинал С2 и тем самым увеличить длительность нормированного импульса до 8 миллисекунд. Можно использовать специальный переключатель максимальных скоростей 115200-57600. подключающий дополнительную емкость С2. (длина проводников до переключателя должна быть минимальна.) Схема цифровой части приемника содержит триггер Т1 с элементами R4,R5,C3,V2, задающими максимальную длительность единицы на выходе триггера. При указанных на схеме номиналах, она равна примерно 5 миллисекундам. Если кто-то собирается работать только с большими скоростями, имеет смысл уменьшить это время путем уменьшения С3. Hа элементах DD1.3, DD1.4 собран выходной усилитель, сигнал с которого поступает на вход Rx ком-порта. Это на всякий случай. У меня все прекрасно работало на перепутанном мотке проводов длинной 20 метров, когда я брал неусиленный сигнал (через резистор 1К) прямо с вывода 1 триггера Т1.

Теперь несколько слов о настройке схемы. К счастью, цифровая часть приемопередатчика является совершенно самостоятельной и самодостаточной схемой, допускающей полную настройку и отладку без всяких лазеров и аналоговой части. Порядок настройки. Создайте файл килобайт на 300, содержащий один символ (мне понравился Y). Создайте батник, который засылает этот файл в ком-порт, а потом вызывает сам себя;-) Запустите его. Проконтролируйте длительности и формы импульсов в передатчике.(лучше это делать на максимальной скорости, поскольку импульсы короткие). Закройте батник. Замкните выход передачика на вход приемника, а выход приемника подайте на вход Rx того же самого ком-порта. Войдите в любую терминальную программу (я пользовался DN-ской терминалкой) Попробуйте понажимать на клавиши. Вы должны увидеть нажимаемые символы на экране. Если этого не происходит, попробуйте просто замкнуть Rx и Tx и добиться описанного эффекта настройкой терминальной программы, после чего снова попытайтесь сделать то же самое через приемопередатчик. И наконец, последнее, самое важное испытание. Тут потребуется уже два компьютера. Соедините их ком-порты тремя проводами по классической схеме. Запустите какой-нибудь софт,использующий этот линк. Убедитесь, что все работает. Теперь попробуйте в разрыв одного сигнального провода вставить цифровой приемопередатчик. Попробуйте поработать с этим же софтом через эту железку и убедитесь, что FIRDA вас вполне устраивает, поимитируйте помехи в передаче доступными вам способами. После этого можно переходить к постройке аналоговой части линка.

Передатчик

Особых пояснений, как мне кажется, он не требует. Лазерный диод является коллекторной нагрузкой первого транзистора. Резистор в его эмиттерной цепи ограничивает ток через этот транзистор и создает условия для работы второго транзистора, который является фактически (совместно с R1) управляемым делителем входного напряжения. Второй транзистор управляется фототоком диода, встроенного в лазер для организации схемы ограничения температурного дрейфа его параметров. С увеличением светового потока увеличивается базовый ток второго транзистора, и он шунтирует входной сигнал на уровне, безопасном для лазера. Подстроечный резистор R3 предназначен для регулировки допустимого уровня излучения лазера. Номиналы схемы подобраны так, что при комнатной температуре можно уменьшить его сопротивление до нуля и это не приводит к фатальным последствиям для лазерного диода (по крайней мере у меня проблем не было). Настройка передатчика сводится к измерению амплитуды сигнала на резисторе R2 (при подключенной и работающей цифровой части) и установление подстроечным резистором амплитуды импульсов, соответствующей импульсному току 30-35 ма (при комнатной температуре).(Речь идет о 5-и милливаттных указках). Для надежности можно уточнить эти цифры для конкретной указки путем измерения тока через нее при свежезаряженных аккумуляторах (до разборки). Эту величину можно в дальнейшем принять за номинальный импульсный ток через указку. Если в схеме используется R4 (у меня его нет), и часть тока всегда течет через этот резистор, на соответствующую величину надо уменьшить выставляемый ток через R2, так что бы суммарный импульсный ток оказался в указанных выше пределах. При изменении температуры параметры излучения, конечно, будут плавать, но разброс значений будет существенно снижен за счет отрицательной обратной связи по световому потоку через фотодиод и второй транзистор. Резистором R4 можно выставить начальный уровень тока через лазер в отсутствие сигнала. Считается, что это повышает живучесть лазерного диода. С1 с этой же целью сглаживает переходные процессы при включении/выключении лазера. К питанию особых требований нет, можно взять +5В из компьютера. В заключение пару слов о разборке указки и ее цоколевке. Могу рассказать только о своей паре указок. Насколько это типично - не знаю. Сначала я делал надпил корпуса надфилем по периметру указки на уровне кнопки включения указки. Часть с батарейками отламывается. Становится видна маленькая печатная платка, на которой крепится кнопка. Платка припаяна прямо к выводам лазерного диода. Иголкой измерил глубину до втулки, в которую запрессован собственно лазер. Сделал второй надрез, стараясь попасть на уровень втулки, в результате чего получил обрубок указки с полностью сохраненной оптической частью, а с другой (обрубленной)стороны торчали три вывода с платкой, которую я отпаял. Итак, остались три вывода, торчащие из обрезанной части указки. Они расположены треугольником. Один из них соединен с корпусом лазерного диода. Это общий вывод лазерного диода и фотодиода. Предположим, что этот вывод соответствует верхнему углу треугольника. Тогда справа внизу будет расположен вывод фотодиода, а слева внизу - вывод лазерного диода. Перед разборкой полезно провести исследование расходимости луча лазера без оптической системы. Это вам понадобится при оценке чувствительности вашего приемника и дальности работы вашего линка. Для этого надо осторожно вывернуть оптическую систему из передней части указки и замерить диаметр пятна, который получается на расстоянии от указки в интервале 5-25 см. Теперь можно переходить к построению самой важной части линка - аналоговой части приемника.

Приемник. Аналоговая часть

Этот блок требует наибольшей аккуратности и, я бы сказал схемотехнической культуры при построении и наладке. Питание лучше брать не из компьютера, а от отдельного стабилизированного блока питания. Длина проводников должна быть минимальна. Фильтрующие питание конденсаторы C1,C2.C4,C5 д.б. расположены максимально близко к выводам операционного усилителя. Особенно важно близкое расположение к ОУ элементов входной цепи С3,VD1,R4. Желательно компактное расположение и экранирование всей конструкции. При грамотной схемотехнике у вас не должно быть никаких проблем с настройкой. У меня на столе не было выполнено ни одно из перечисленных выше требований и тем не менее все успешно работает. Так что есть надежда, что если сделать все правильно,то у вас тоже будет работать

Пару слов о самой схеме. Она предельно проста. Соблюдайте полярность фотодиода! Резистор R4 влияет на амплитуду сигнала с фотодиода и на его форму/частотные характеристики. Чем меньше номинал резистора, тем меньше сигнал с фотодиода и тем лучше его форма. У меня получались вполне приличные результаты при увеличении резистора до 4.7 К. Однако спешить с его увеличением я бы не советовал. И вообще, первое, что вы должны добиться - это работа приемника на какой-нибудь умеренной скорости, ну например 57600. Это лучше делать в следующем порядке. Итак, после десятой проверки монтажа выводим сопротивление подстроечника R1 в ноль и включаем питание. Подключаем к ком-порту собранный передатчик (цифровую и аналоговую части), запускаем батник (предварительно установив скорость работы порта 57600), позволяющий наблюдать непрерывную картинку передачи одного байта (о нем шла речь в первой части трилогии), располагаем лазер со снятой оптической системой в двух-трех сантиметрах от фотодиода, подключаем осциллограф к выходу приемника и начинаем медленно увеличивать сопротивление R1. Через некоторое время транзистор Т1 начнет приоткрываться, и на выходе приемника появится гребенка импульсов. Оптимальное значение сопротивления R1 определяется в ходе экспериментов визуально по форме и амплитуде импульсов на выходе приемника. При выключении передатчика амплитуда шумов на выходе приемника не должна превышать 1-2 вольта. Транзистор Т1 должен быть лишь слегка приоткрыт. Типичное значение напряжения на его коллекторной нагрузке- 1-2 вольта. После достижения успеха на этом первом этапе можно двигаться дальше - постепенно раздвигать приемник и передатчик, находить их наилучшее взаимное положение и, подстраивая R1, получать гребенку импульсов амплитудой почти равной амплитуде питания +12В. Форма у них может быть не совсем прямоугольной, но амплитуда должна быть хорошей. При максимально возможной раздвижке передатчика и приемника надо определить диаметр расфокусированного пятна лазера. Этот диаметр даст вам представление о максимальной дальности, на которой будет работать ваш линк. У меня этот диаметр равнялся примерно 20 см, что примерно соответствует динамическому диапазону в 33 дБ. Как мне кажется, этого вполне должно хватить для уверенной связи на расстоянии 100 метров без применения входных линз или на расстоянии 200 метров, если использовать светодиод типа ФД320 в виде красной пластмассовой линзочки диаметром около сантиметра на прямоугольном основании. А при наличии входной оптики... Впрочем, при больших дальностях уже другие проблемы... Вернемся к настройке приемника. Теперь полезно попробовать настройку для разных скоростей ком-порта. И, наконец, можно подключить цифровую часть приемника и повторить опыты, описанные в первой части данной трилогии. Я специально ничего не говорил о конструктивном оформлении приемника. Да, наверно полезно иметь какие-нибудь бленды на входных светодиодах. Вообще-то приемник весьма устойчив к засветкам разного рода. Обычная засветка лампочкой 60 ватт с расстояния 70 см под углом в 30 градусов никак не влияла на работу схемы. Конденсатор C3 очень хорошо "режет" все низкочастотные помехи.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то