Чем отличается пускатель от контактора. Выбор пускателя (контактора)

Контактор - это двухпозиционный аппарат, предназначенный для частых коммутаций токов, которые не превышают токи перегрузки соответствующих электрических силовых цепей. Замыкание или размыкание контактов контактора может осуществляться двигательным (электромагнитным, пневматическим или гидравлическим) приводом.
Наибольшее распространение получили электромагнитные контакторы.
Контакторы постоянного тока коммутируют цепь постоянного тока и имеют, как правило, электромагнит постоянного тока. Контакторы переменного тока коммутируют цепь переменного тока. Электромагнит этих контакторов может быть выполнен для работы либо на переменном, либо на постоянном токе.
При каждом включении и отключении происходит износ контактов, особенно заметный при большом числе включений (что характерно для современных электроприводов). Поэтому принимают меры к сокращению длительности горения дуги при отключении и устранению вибраций при включении. Большая частота операций требует высокой механической стойкости электромагнитного механизма контактора. Способность аппарата работать при большом числе операций характеризуется износостойкостью. Различают механическую и коммутационную износостойкость.
Механическая износостойкость определяется числом включений- отключений контактора без ремонта и замены его узлов и деталей. Ток в цепи при этом равен нулю. К механической износостойкости современных контакторов предъявляются очень высокие требования. Она должна составлять (10... 20) * 10+6 операций.
Коммутационная износостойкость определяется числом включений-отключений цепи с током, после которого требуется замена износившихся контактов. Современные контакторы должны иметь коммутационную износостойкость около (2... 3) 10+6 операций.
Наряду с высокой механической и коммутационной износостойкостью контакторы должны иметь малую массу и размеры. Зона выхлопа раскаленных газов дуги должна быть как можно меньшей, что позволяет сократить размеры всей установки в целом. Детали, наиболее быстро подвергающиеся износу, должны быть легко доступны для замены.
Основными узлами контактора являются: контактная система, дугогасящая система, электромагнитный механизм, система блокировочных контактов (блок-контактов).
При подаче напряжения на обмотку электромагнита якорь притягивается. Подвижный контакт, связанный с якорем, производит замыкание или размыкание главной цепи. Дугогасящая система обеспечивает быстрое гашение дуги, что снижает износ контактов. Кроме главных контактов контактор имеет несколько вспомогательных слаботочных контактов (блок-контактов), используемых для согласования работы контактора с другими аппаратами или включаемых в цепь управления самого контактора.
Основными параметрами контакторов и пускателей являются: номинальный ток главных контактов, предельный отключаемый ток, номинальное напряжение, механическая износостойкость, электрическая износостойкость, допустимое число включений в час, собственное время включения.

Контакторы с управлением от сети постоянного тока

Контакты контакторов подвержены наиболее сильному электрическому и механическому износу из-за большого числа операций в час и тяжелых условий работы. Для уменьшения износа преимущественное распространение получили линейные перекатывающиеся контакты.
Для предотвращения вибраций контактов контактная пружина создает предварительное нажатие, равное примерно половине конечной силы нажатия. Большое влияние на вибрацию оказывает жесткость крепления неподвижного контакта в целом. В этом отношении очень удачна конструкция контактора серии КПВ-600 (рис. 1). Неподвижный контакт 4 жестко прикреплен к скобе 2. Один конец дугогасительной катушки 1 присоединен к этой же скобе, второй конец вместе с выводом 16 надежно прикреплен к изоляционному пластмассовому основанию 17. Последнее крепится к прочной стальной скобе 15, которая является основанием аппарата. Подвижный контакт 6 выполнен в виде толстой пластины. Нижний конец пластины имеет возможность поворачиваться относительно точки опоры, благодаря чему пластина способна перекатываться по сухарю неподвижного контакта 4.
Вывод 13 соединяется с подвижным контактом 6 с помощью гибкого проводника (связи) 14. Контактное нажатие создается пружиной 9.

Рис. 1. Контактор постоянного тока серии КПВ-600:
1 - дугогасящая катушка; 2, 15 - скобы; 3 - пластина магнитного дутья; 4 - неподвижный контакт; 5 - дуга; 6 - подвижный контакт; 7 - опора; 8 - контакт- рог; 9, 10, 12 - пружины; 11 - обмотка; 13, 16 - выводы; 14 - гибкий проводник; 17 - основание
При износе контактов сухарь контакта 4 заменяют новым, а пластину подвижного контакта 7 поворачивают на 180° и ее неповрежденная сторона используется в дальнейшей работе.
Для уменьшения оплавления основных контактов дугой при токах более 50 А контактор имеет дугогасящий контакт-рог 8. Роль другого контакт-рога выполняет скоба 2. Под действием поля дугогасящего устройства опорные точки дуги быстро перемещаются на скобу 2, соединенную с неподвижным контактом 4, и на защитный контакт-рог 8 подвижного контакта 6. Возврат якоря в начальное положение (после отключения магнита) производится пружиной 10.
Основным параметром контактора является номинальный ток, который определяет размеры контактора. Например, контактор II условной размерной группы имеет ток 100 А; III - 150 А.
Характерной особенностью контакторов серии КПВ-600 и многих других типов является электрическое соединение вывода подвижного контакта с корпусом контактора. При включенном положении контактора магнитопровод находится под напряжением. Даже при отключенном положении напряжение может оставаться на магнитопроводе и других деталях, поэтому соприкосновение с магнитопроводом опасно для жизни.
Контакторы серии КПВ могут иметь исполнение с размыкающими главными контактами. Замыкание производится под действием пружины, а размыкание - за счет силы, развиваемой электромагнитом.
Номинальным током контактора называется ток прерывисто- продолжительного режима работы. При этом режиме работы контактор находится во включенном состоянии не более 8 ч. По истечении указанного времени аппарат должен быть несколько раз включен и отключен (для зачистки контактов от оксида меди), после чего может снова вводиться в работу. Если контактор располагается в шкафу, то номинальный ток понижается примерно на 10 % из-за ухудшающихся условий охлаждения.
При продолжительном режиме работы, когда длительность непрерывного включения превышает 8 ч, допустимый ток контактора снижается примерно на 20 %. В таком режиме из-за окисления медных контактов растет переходное сопротивление, в результате чего температура контактов и контактора в целом может превысить допустимое значение. Если контактор работает с небольшим числом включений или вообще предназначен для длительного включения, то на рабочую поверхность контактов напаивают серебряную пластину. Серебряная облицовка позволяет сохранить допустимый ток контактора, равный номинальному, и в режиме продолжительного включения. Если контактор наряду с режимом продолжительного включения используется в режиме повторно-кратковременного включения, применение серебряных накладок становится нецелесообразным, так как из-за малой механической прочности серебра происходит быстрый износ контактов.
В повторно-кратковременном режиме при продолжительности включения ПВ = 40 % допустимый ток, как правило, составляет примерно 120 % номинального значения. Согласно рекомендациям завода-изготовителя допустимый ток повторно-кратковременного режима для контактора серии КПВ-600 определяется по формуле

где η - число включений в час.
Если при повторно-кратковременном режиме длительно горит дуга (так бывает при отключении большой индуктивной нагрузки), то температура контактов может резко увеличиться за счет нагрева их дугой. В таких случаях нагрев контактов при продолжительном режиме может быть меньше, чем при повторно-кратковременном.
Как правило, контактная система контакторов постоянного тока имеет один полюс. Для реверсирования асинхронных двигателей при большой частоте включений в час (до 1200) применяют сдвоенную контактную систему. В контакторах серии КТПВ-500, имеющих электромагнит постоянного тока, подвижные контакты изолированы от корпуса, что делает более безопасным обслуживание аппарата. По сравнению со схемой, в которой применяются однополюсные контакторы, схема с двухполюсными контакторами имеет большое преимущество. При неполадках и отказе одного контактора напряжение подается только на один зажим двигателя. В схеме с однополюсными контакторами отказ одного контактора ведет к возникновению тяжелого режима двухфазного питания двигателя.
В контакторах постоянного тока наибольшее распространение получили устройства с магнитным дутьем.
В зависимости от способа создания магнитного поля различают системы с последовательным включением катушки магнитного дутья (катушка тока), с параллельным включением катушки (катушка напряжения) и с постоянным магнитом.
В случае применения катушки тока по ней протекает ток, проходящий в отключаемой цепи. При этом можно считать, что индукция пропорциональна отключаемому току, а сила, действующая на единицу длины дуги, пропорциональна квадрату тока. Так как наиболее важно иметь необходимую величину магнитного поля для дутья в области малых токов, система с катушкой тока, не создающая в области малых токов необходимой индукции магнитного поля, малоэффективна. Несмотря на этот недостаток, благодаря высокой надежности при гашении номинальных и больших токов система с катушкой тока получила преимущественное распространение.
В системе с параллельным включением катушка магнитного дутья подключается к независимому источнику питания. Магнитная индукция, создаваемая системой, постоянна и не зависит от отключаемого тока. Поскольку в области малых токов катушка напряжения действует более эффективно, чем катушка тока, при одной и той же длительности горения дуги требуется меньшая МДС, что дает экономию энергии. Однако катушка напряжения имеет и ряд существенных недостатков.
Во-первых, направление электродинамической силы, действующей на дугу, зависит от полярности тока. При изменении полярности тока дуга меняет направление своего движения, следовательно, контактор не может работать при перемене полярности тока.
Во-вторых, поскольку к катушке прикладывается напряжение источника питания, изоляция должна быть рассчитана на это напряжение. Катушка выполняется из тонкого провода. Близость дуги к такой катушке делает работу последней ненадежной (расплавленный металл контактов может попадать на катушку).
В-третьих, при коротких замыканиях возможно снижение напряжения на источнике, питающем катушку. В результате процесс гашения дуги будет протекать неэффективно.
В связи с указанными недостатками системы с катушкой напряжения применяются только в тех случаях, когда необходимо отключать небольшие токи - от 5 до 10 А.
Система с постоянным магнитом по существу мало отличается от системы с катушкой напряжения, но имеет следующие преимущества:
нет затрат электроэнергии на создание магнитного поля;
резко сокращается расход меди на контактор;
отсутствует подогрев контактов от катушки, как это имеет место в системах с катушкой тока;
по сравнению с системой с катушкой напряжения система с постоянным магнитом обладает высокой надежностью и хорошо работает при любых токах.
Магнитное поле, действующее на дугу, создает силу, которая перемещает дугу в дугогасящую камеру. Назначение камеры состоит в том, чтобы локализовать область, занятую раскаленными газами дуги, препятствовать перекрытию между соседними полюсами. При соприкосновении дуги со стенками камеры происходит интенсивное охлаждение дуги, что приводит к подъему ее вольт-амперной характеристики и, как следствие, к успешному гашению. В контакторах с приводом на постоянном токе преимущественное распространение получили электромагниты клапанного типа.
В целях повышения механической износостойкости в современных контакторах применяется вращение якоря на призме. Так, у контакторов серии КПВ-600 компоновка электромагнита и контактной системы (см. рис. 1), применение специальной пружины 12, прижимающей якорь к призме, позволяют повысить износостойкость узла вращения до 20 10+6 операций. По мере износа призменного узла зазор между скобой якоря и опорной призмой автоматически выбирается. В случае же применения подшипникового соединения якоря и магнитопровода при износе подшипника возникают люфты, нарушающие нормальную работу аппарата.
Для получения необходимой вибро- и ударостойкости подвижная система контактора должна быть уравновешена относительно оси вращения. Типичным примером хорошо уравновешенной системы является электромагнит контактора серии КПВ-600. Якорь магнита уравновешивается хвостом, на котором укрепляется подвижный контакт. Возвратная пружина 10 также действует на хвост якоря. Катушка электромагнита наматывается на тонкостенную изолированную стальную гильзу, что обеспечивает хорошую прочность и улучшает тепловой контакт катушки с сердечником. Последнее способствует снижению температуры катушки и уменьшению габаритных размеров контактора.
При включении электромагнит преодолевает действие силы возвратной 10 и контактной 9 пружин. Тяговая характеристика электромагнита должна во всех точках идти выше характеристики противодействующих пружин при минимальном допустимом напряжении на катушке 0,85Uном и нагретой катушке. Включение должно происходить с постоянно нарастающей скоростью перемещения подвижного контакта. Не должно быть замедления в момент замыкания главных контактов.
Характеристика противодействующих сил, приведенных к якорю электромагнита контактора серии КПВ-600, показана на рис. 2. Наиболее тяжелым моментом при включении является преодоление противодействия в момент соприкосновения главных контактов, так как электромагнит должен развивать значительное усилие при большом рабочем зазоре.
Важным параметром механизма является коэффициент возврата Кя = UBK]1/Ucp. Для контактора постоянного тока Кв, как правило, мал (0,2... 0,3), что не позволяет использовать такой контактор для защиты двигателя от снижения напряжения.
Наибольшее напряжение на катушке не должно превышать 1,1 Uном, так как при большем напряжении увеличивается механический износ деталей из-за усиления ударов якоря, а температура обмотки может превысить допустимое значение.
В контакторах типа КТПВ, имеющих сдвоенную контактную систему, при номинальном токе 600 А устанавливаются два параллельно работающих электромагнита, чтобы развить необходимую силу.
В целях уменьшения МДС обмотки, а следовательно, и потребляемой ею мощности рабочий ход якоря делают небольшим (8... 10 мм). В связи с тем что для надежного гашения дуги при малых токах требуется раствор контактов 17... 20 мм, расстояние от точки касания подвижного контакта до оси вращения подвижной системы выбирают в 1,5 - 2 раза большим, чем расстояние от оси полюса до оси вращения.

Рис. 2. Противодействующая характеристика для контактора серии КПВ-600:
Ρ - сила тяжести; FB п - сила возвратной пружины; FK tl - сила контактной пружины; φ - угол поворота якоря
Собственное время включения представляет собой сумму времени нарастания потока до значения потока трогания и времени движения якоря. Большая часть собственного времени тратится на нарастание потока. У контакторов, рассчитанных на ток 100 А, собственное время составляет 0,14 с, а у контакторов на 630 А оно увеличивается до 0,37 с.
Собственное время отключения - это время с момента обесточивания электромагнита до момента размыкания контактов. Оно определяется временем спада потока от установившегося значения до значения потока отпускания. Временем движения, т.е. временем от момента начала движения якоря до момента размыкания контактов, можно пренебречь. Переходный процесс в обмотке мало сказывается на спаде потока, так как цепь обмотки быстро разрывается отключающим аппаратом. Указанный процесс в основном определяется токами, циркулирующими в массивных элементах магнитной цепи (преимущественно токами в цилиндрическом сердечнике, на котором сидит катушка). Ввиду большого удельного электрического сопротивления стали эти токи создают наибольшее замедление в спадании потока. У контакторов, рассчитанных на ток 100 А, собственное время отключения составляет 0,07 с, а у контакторов на 630 А - 0,23 с.
В связи с особыми требованиями, предъявляемыми к контакторам серии КМВ, которые предназначены для включения и отключения электромагнитов приводов масляных выключателей, электромагнитный механизм указанных контакторов допускает регулировку напряжений срабатывания и отпускания за счет изменения сил затяжки возвратной и специальной отрывной пружин. Контакторы серии КМВ должны работать при существенном снижении напряжения. Поэтому минимальное напряжение срабатывания у этих контакторов может понижаться до 0,65Uном. Такое низкое напряжение срабатывания приводит к тому, что при номинальном напряжении через обмотку протекает ток, вызывающий ее повышенный нагрев. В связи с этим обмотка может включаться на номинальное напряжение только кратковременно (время включения не должно превышать 15 с).

Контакторы переменного тока

Контакторы переменного тока выпускаются на токи от 100 до 630 А. Число главных контактов колеблется от одного до пяти. Это отражается на конструкции всего аппарата в целом. Наиболее широко распространены контакторы трехполюсного исполнения. Наличие большого числа контактов приводит к увеличению усилия и момента, необходимых для включения аппарата.
На рис. 3, а представлен разрез контактора серии КТ-6000 по магнитной системе, а на рис. 3, б - по контактной и дугогасящей системам одного полюса. Подвижный контакт 4 с пружиной 5 укреплен на изоляционном рычаге 6, связанном с валом контактора. Вследствие более легкого гашения дуги переменного тока раствор контактов может быть небольшим. Уменьшение раствора дает возможность приблизить контакт к оси вращения.


Рис. 3. Контактор переменного тока серии КТ-6000:
а - разрез по магнитной системе; б - разрез по контактной и дугогасящей системам: 1 - якорь; 2 - рейка; 3 - обмотка дугогашения; 4 - подвижный контакт;
5 - пружина; 6 - рычаг
Уменьшение расстояния от точки касания контактов до оси вращения позволяет снизить силу электромагнита, необходимую для включения контактора, что, в свою очередь, дает возможность уменьшить габаритные размеры и потребляемую контактором мощность.
Подвижный контакт 4 и якорь 1 электромагнита связаны между собой через вал контактора. В отличие от контакторов постоянного тока подвижный контакт в контакторе серии КТ-6000 не имеет перекатывания. Отключение аппарата происходит под действием пружин и сил тяжести подвижных частей.
Для удобства эксплуатации подвижный и неподвижный контакты сделаны легко сменяемыми. Контактная пружина 5, как и в контакторах постоянного тока, имеет предварительную затяжку, сила которой составляет примерно половину силы конечного нажатия.
Магнитная и контактная системы контактора серии КТ-6000 укреплены на изоляционной рейке 2, что позволяет использовать контактор в комплексных станциях управления реечной конструкции.
Широкое распространение получила мостиковая контактная система с двумя разрывами на каждый полюс. Такая конструкция распространена в пускателях. Ее большим преимуществом является быстрое гашение дуги, отсутствие гибкой связи.
В контакторах переменного тока применяются как прямоходовая контактная система, так и с вращением якоря. В первом случае якорь
движется поступательно. Подвижные контакты связаны с якорем и совершают тот же путь, что и он. При передаче усилия контактных пружин якорю из-за отсутствия рычажной системы нет выигрыша в силе. Электромагнит должен развивать большее усилие, чем сумма сил контактных пружин и силы тяжести якоря (в контакторах с вертикальной установкой).
В большинстве контакторов, выполненных по прямоходовой схеме, наблюдается медленное нарастание силы контактного нажатия, из-за чего имеет место длительная вибрация контактов. В результате происходит сильный износ контактов при включении. Поэтому такая конструкция применяется только при небольших номинальных токах.
Более совершенным является контактор, который имеет мостиковую систему с рычажной передачей усилий от контактов к якорю электромагнита.
Если контактор имеет один разрыв на полюс и не снабжен никаким дугогасящим устройством, то в случае активной нагрузки (cosφ = = 1) гашение дуги происходит при растворе контактов примерно 0,5 мм для любого тока и напряжения до 500 В. В случае индуктивной нагрузки (cosφ = 0,2 ...0,5) гашение с таким же раствором контактов имеет место при напряжении до 220 В, поскольку оно происходит за счет мгновенного восстановления электрической прочности в околокатодной области.
При напряжении источника питания, не превышающем 220 В, для гашения дуги необходим всего один разрыв на полюс. Никаких дугогасящих устройств не требуется.
Если в цепи полюса аппарата создаются два разрыва, например путем применения мостикового контакта, то дуга надежно гасится за счет околоэлектродной электрической прочности при напряжении сети 380 В. Поэтому в настоящее время широко применяются контакторы с двукратным разрывом цепи в одном полюсе. При индуктивной нагрузке и напряжении источника 380 В значение восстановившегося напряжения становится больше околокатодной прочности. Гашение дуги в этом случае зависит от процессов в столбе дуги и нагрева электродов током.
Для эффективного гашения дуги, уменьшения износа контактов могут быть использованы следующие системы магнитного дутья:
катушка тока и дугогасящая камера с продольной или лабиринтной щелью;
дугогасящая камера с деионной решеткой из стальных пластин.
В системе магнитного дутья с катушкой тока сила, действующая
на дугу, пропорциональна квадрату тока. Поэтому и при переменном токе на дугу действует сила, неизменная по направлению. Она пульсирует с двойной частотой (как и электродинамическая сила, действующая на проводник). Средняя сила получается такой же, как и при постоянном токе, если тот равен действующему значению переменного тока. Указанные соотношения справедливы, когда потери в магнитной системе катушки дутья отсутствуют и поток по фазе совпадает с током. Несмотря на эффективность данного устройства, в настоящее время оно применяется только в контакторах, работающих в тяжелом режиме (число включений в час более 600). Недостатками этого метода гашения являются: увеличение потерь в контакторе из-за потерь в стали магнитной системы дугогашения, что ведет к повышению температуры контактов, расположенных вблизи дугогасящего устройства, а также возможность возникновения больших перенапряжений из-за принудительного обрыва тока (до естественного нуля).
Применение для гашения дуги катушки напряжения на переменном токе исключается из-за того, что сила, действующая на дугу, меняет свой знак, так как поток, создаваемый магнитной системой дугогашения, сдвинут по фазе относительно отключаемого тока. Если ток и поток имеют разные знаки, то сила отрицательна.

Довольно широкое распространение получила дугогасительная камера с деионной решеткой из стальных пластин. Идея использования околоэлектродного падения напряжения для гашения дуги принадлежит русскому ученому М. О.Доливо-Добровольскому. Принципиальная схема дугогасительного устройства дана на рис. 4, а. Дуга 1, возникающая после расхождения контактов, втягивается в клиновидный паз параллельно расположенных стальных пластин 2. В верхней части дуга пересекается пластинами и разбивается на ряд коротких дуг 3. При вхождении дуги в решетку возникают силы, тормозящие движение дуги. Для уменьшения этих сил пластины выполнены так, что дуга, смещенная относительно середины решетки, сначала пересекает пластины с нечетными номерами, а потом

Рис. 4. Схема и график, поясняющие процесс гашения дуги в деионной решетке:
а - схема дугогасящего устройства; б - график изменения тока и напряжения дуги от времени; 1 - дуга; 2 - стальные пластины; 3 - короткие дуги; 4 - подвижный контакт
уже с четными. После того как дуга втягивается в решетку и разбивается на ряд коротких дуг, в цепи возникает дополнительное падение напряжения А на каждой паре электродов, составляющее 20... 30 В. Из-за наличия этого падения напряжения ток в цепи проходит через нуль (сплошная кривая на рис. 4, б) раньше наступления его естественного нулевого значения (штриховая кривая). При этом уменьшается восстанавливающееся напряжение промышленной частоты, а следовательно, и пик Umax этого напряжения.
Гашение дуги происходит в том случае, если Сп > Umax, где С - околокатодная электрическая прочность. При надлежащем выборе числа пластин п гашение дуги происходит при первом прохождении тока через нуль. При малых токах околокатодная прочность составляет примерно 300 В, при больших - падает до 70 В.
Для того чтобы пластины решетки не подвергались коррозии, их покрывают тонким слоем меди или цинка. Несмотря на быстрое гашение дуги при частых включениях и отключениях происходит нагрев пластин до очень высокой температуры, возможно даже их прогорание. В связи с этим число включении и отключении в час у контакторов с деионной решеткой не превышает 600.
В контакторах пускателей серии ПА применяется двукратный разрыв на каждый полюс. Для того чтобы уменьшить оплавление контактов, они охвачены стальной скобой. При образовании дуги на нее действуют электродинамические силы, возникающие из-за взаимодействия дуги с током в подводящих проводниках и арматуре контактов. Как и в деионной решетке, для гашения дуги используется околокатодная электрическая прочность, возникающая после прохода тока через нуль. Два разрыва и магнитное дутье за счет стальной скобы и поля подводящих проводников обеспечивают надежную работу контактора при напряжении до 500 В. Контактор, рассчитанный на номинальный ток 60 А, отключает десятикратный ток короткого замыкания при напряжении 450 В и cos φ = 0,3.
Для привода контактов широко используются электромагниты с Ш-образным или П-образным сердечником. Магнитопровод такого электромагнита состоит из двух одинаковых частей, одна из которых укреплена неподвижно, а другая связана через рычаги с контактной системой. В первых конструкциях электромагнитов для устранения залипания якоря между средними полюсами Ш-образной системы делался зазор. При включении удар приходился на крайние полюсы, что приводило к их заметному расклепыванию. В случае перекоса якоря на рычаге возникала опасность разрушения поверхности полюса сердечника острыми кромками якоря. В современных контакторах для устранения залипания в цепь введена немагнитная прокладка. Во включенном положении все три зазора равны нулю. Это уменьшает износ полюсов, так как удар приходится на все три полюса.
Для устранения вибрации якоря во включенном положении на полюса магнитной системы устанавливают короткозамкнутые витки. Поскольку действие короткозамкнутого витка наиболее эффективно при малом воздушном зазоре, для плотного прилегания полюсов их поверхность должна шлифоваться. Хорошие результаты по уменьшению вибрации электромагнита достигнуты в контакторе типа ПА. В нем благодаря эластичному креплению сердечника возможна самоустановка якоря относительно сердечника, при которой воздушный зазор получается минимальным.
Как известно, из-за изменения индуктивного сопротивления катушки ток в ней при притянутом состоянии якоря значительно меньше, чем при отпущенном. В среднем можно считать, что пусковой ток равен 10-кратному току при притянутом состоянии. Для больших контакторов он может достигать 15-кратного значения тока при притянутом состоянии якоря. В связи с большим пусковым током ни в коем случае нельзя подавать напряжение на катушку, если якорь, находящийся в отпущенном состоянии, по каким-либо причинам не может из него выйти (чем-то удерживается). Катушки большинства контакторов рассчитаны таким образом, что допускают до 600 включений в час при ПВ = 40 %.
Электромагниты контакторов переменного тока могут также питаться от сети постоянного тока. В этом случае на контакторах устанавливают специальную катушку, которая работает совместно с форсировочным резистором. Последний шунтируется размыкающими блок-контактами контактора или более мощными контактами другого аппарата.
При уменьшении зазора тяговая характеристика электромагнита переменного тока поднимается менее круто, чем у электромагнита постоянного тока. Благодаря этому она более приближена к противодействующей характеристике. В результате напряжение срабатывания близко к напряжению отпускания.
Электромагниты контакторов обеспечивают надежную работу в диапазоне питающего напряжения от 0,85 Uном до 1,1 Uном. Поскольку катушка контактора получает питание через замыкающие блок- контакты, то включение контактора не происходит самостоятельно после подъема напряжения до номинального значения. Срабатывание электромагнита переменного тока происходит значительно быстрее, чем электромагнита постоянного тока. Собственное время срабатывания контакторов составляет 0,03... 0,05 с, а время отпускания - 0,02 с. Как и в контакторах постоянного тока, блок-контакты контакторов переменного тока приводятся в действием тем же электромагнитом, что и главные контакты.

Магнитные пускатели

Магнитным пускателем называется контактор, предназначенный для пуска короткозамкнутых асинхронных двигателей.
Как правило, пускатель помимо контактора содержит тепловые реле для защиты двигателя от перегрузок и «потери фазы». Бесперебойная работа асинхронных двигателей в значительной степени зависит от надежности пускателей. Поэтому к ним предъявляются высокие требования в отношении износостойкости, коммутационной способности, четкости срабатывания, надежности защиты двигателя от перегрузок, минимального потребления мощности.
Особенности условий работы пускателя состоят в следующем. При включении асинхронного двигателя пусковой ток достигает 6 - 7-кратного значения номинального тока. Даже незначительная вибрация контактов при таком токе быстро выводит их из строя. Это выдвигает на первый план вопросы устранения вибрации контактов и снижения их износа. Для уменьшения времени вибрации контакты и подвижные части делают как можно легче, снижают их скорость, увеличивают силу нажатия. Указанные мероприятия позволили, например, создать пускатель типа ПА с электрической износостойкостью до 2-Ю6 операций.
Исследования показали, что при токах до 100 А целесообразно применять серебряные накладки на контактах. При токах выше 100 А хорошие результаты дает композиция серебра и оксида кадмия.
При отключении восстанавливающееся напряжение на контактах равно разности напряжения сети и ЭДС двигателя. Оно составляет всего 15... 20 % С/ном, т. е. имеют место облегченные условия отключения.
Нередки случаи, когда электродвигатель отключается от сети сразу же после пуска. Пускателю приходится тогда отключать ток, равный семикратному номинальному току при очень низком коэффициенте мощности (cos

Если необходимо повысить срок службы пускателя, то целесообразно выбирать его с запасом по мощности. При уменьшении мощности двигателя возрастает и допустимое число включений в час. Дело в том, что двигатель меньшей мощности быстрее достигает номинальной частоты вращения. Поэтому при отключении пускатель разрывает установившийся номинальный ток двигателя, что облегчает работу пускателя.
С учетом широкого распространения пускателей большое значение приобретает снижение потребляемой ими мощности. У пускателя примерно 60 % мощности расходуется в электромагните, а остальные 40 % - в тепловых реле. Для снижения потерь в электромагните применяется холоднокатаная сталь.
Схема магнитного пускателя типа ПА приведена на рис. 5. Пускатель собран на металлическом основании 1. Контактная система мостикового типа с неподвижными 12 и подвижными 8 контактами размещена в дугогасящей камере 6. Контактное нажатие обеспечивается пружиной 9. Подвижные контакты 8 соединены с траверсой 10, которая может поворачиваться относительно точки О.

Рис. 5. Магнитный пускатель типа ПА:
1 - основание; 2, 7,9 - пружины; 3 - магнитопровод; 4 - обмотка; 5 - якорь; 6 - дугогасящая камера; 8, 12 - контакты; 10 - траверса; 11 - защитное реле

На противоположном конце траверсы 10 укреплен якорь 5, который притягивается электромагнитом, состоящим из магнитопровода 3 и обмотки 4. Под магнитопроводом имеется пружина сжатия 2, которая обеспечивает более плотное прилегание якоря и магнитопровода при срабатывании электромагнита и смягчает возникающий при этом удар. Последовательно с коммутируемой цепью включено тепловое защитное реле 11. При токах перегрузки тепловое реле срабатывает и своими контактами (на рис. 5 не показаны) разрывает цепь питания обмотки 4. Траверса 10 под действием возвратной пружины 7 отходит вправо, контакты 8 и 12 размыкаются, и происходит отключение главной цепи.

Контакторы и магнитные пускатели – это устройства, являющиеся весьма важными элементами электросети. Несмотря на их основное назначение – коммутацию силовых и управленческих сетей, а также некоторую схожесть, эти приборы совершенно разные. Каждый из них имеет свои особенности и функции. Что между ними общего, а что отличается – попробуем выяснить.

Стандартный электромагнитный пускатель

Электромагнитный пускатель – это некий коммутационный прибор асинхронного двигателя. Ярким его примером, можно считать пускозащитное реле холодильного аппарата.

Пускатель предназначен для управления асинхронных двигателей, а также защиты их от перегрузки. Иногда эти устройства применяют для включения и отключения электрических установок с дистанционным управлением (например, внутреннее и внешнее освещение).

Разновидностей пускателей много, поэтому можно просто выделить основные группы из них:

  • По номинальному напряжению;
  • По мощности оказываемой нагрузки;
  • По исполняемым функциям: нереверсивные и реверсивные;
  • В зависимости от вида корпуса: закрытые и открытые (бескорпусные);
  • По количеству контактов, полюсов и различных дополнительных блок-контактов.

Магнитный пускатель должен обязательно соответствовать двигателю, с которым он работает.

Принцип работы механизма заключается в следующем:

  • Во время попадания тока на катушку возникает магнитный разряд;
  • Затем он замыкается через имеющиеся внутри сердечники и воздух между ними;
  • Далее элементы притягиваются и замыкают необходимые контакты.

Что такое магнитный контактор и его предназначение

Магнитный контактор – это электрический дистанционный аппарат, размыкающий и замыкающий силовые цепи, посредством действия электромагнита.

Кстати, контакторы не обеспечивают защиту электрических сетей от перегрева, так как у них нет защитных элементов.


Контактор состоит из:

  • Контактов силовой цепи;
  • Электромагнитной системы;
  • Дугогасительного аппарата;
  • Блок-контактов.

Особенность электромагнитных контакторов заключается в их способности разрывать цепь одновременно в нескольких местах.

В зависимости от вида тока контакторы могут быть переменными и постоянными. Последние нужны для управления приемников электросети, в устройстве высоковольтных выключателей, в автоматических механизмах повторного включения.

Контакторы, взаимодействующие с переменным током, используются в асинхронных двигателях, для работы нагревающих элементов и других электрических устройств.

Электромагнитные пускатели, контакторы-автоматы

Автоматические выключатели (автоматы) предназначены для надежной и быстрой защиты сетевых проводов от перегрузки и короткого замыкания. Кроме этого, их используют для управления редких отключений или включений.

Необходимость применения автоматов:

  • Обычно от перегрузок электродвигатель защищает тепловое реле , но на этом его защитная функция заканчивается, так как от замыканий такое устройство все равно не спасет;
  • Контакторы тоже не обеспечивают надлежащую защиту, так как не имеют в своей конструкции соответствующих элементов.

Поэтому используя магнитные пускатели вместе с тепловыми реле, необходимо дополнительно ставить предохранители или автоматы для защиты от замыканий.

Чем отличается контактор от магнитного пускателя: особенности механизмов

Контакторы и электромагнитные пускатели довольно похожие друг на друга механизмы, но со своими особенностями и различиями.

Итак, в чем же разница между этим приборами:

  1. Внешний вид – контактор гораздо больше и имеет немалый вес. Пускатель же довольно миниатюрен и весит совсем немного.
  2. Конструкция – контакторы не имеют корпуса, а только дугогасительные решетки. Соответственно, они больше подвержены влиянию окружающей среды. Что касается пускателя, то этот прибор защищен корпусом из пластика, но не имеет дугогасительного механизма. А при наличии дополнительного кожуха, прибор можно устанавливать практически везде, в отличие от контактора.
  3. Назначение – пускатели помогают работать асинхронным двигателям и другому оборудованию, а контакторы коммутируют силовые цепи.

Разобравшись в чем же отличие между этими механизмами, можно более точно подобрать прибор, исходя из заявленных потребностей.

Самостоятельный ремонт контакторов и магнитных пускателей

При активной работе пускателя, на его контактах может появляться металлический нагар, окись и копоть, которые существенно будут сказываться на функционировании механизма.

Если такое произошло, контакты нужно почистить:

  • Сделать это можно тонким напильником или надфилем;
  • Затем контакты протираются салфеткой, смоченной в уайт-спирте.

Но такую процедуру «чистки» нужно проводить лишь в засоренных приборах, не трогая исправные механизмы, так как такая профилактика может стирать токопроводящий слой на контактах, делая их боле тонкими и уязвимыми.

Места соприкосновения сердечника и якоря можно также почистить ветошью, предварительно смоченную в спирте.

Если при работе устройства слышен гул, на это могут быть такие причины:

  • Трещины на катушке;
  • Перекос катушки или выход ее из строя;
  • Не хватает напряжения в сети;
  • Слишком большая отдача возвратной пружины.

Если возникли проблемы с изоляцией катушки, ремонт состоит в следующем: нужно снять слой ее обмотки и допаять, изолировав потом паечное место. Впрочем, если повреждения слишком большие – элемент проще заменить на новый.

Иногда случается разнобой при замыкании пластин. Этот момент можно исправить затяжкой хомутика, который держит основные валовые контакты.

Но если аппарат все еще неисправен, лучше обратиться за помощью к специалистам, которые проведут техническое обследование прибора, выяснят причину неполадки и постараются ее устранить. Все неисправные детали не подлежащие ремонту, будут заменены.

Что такое контакторы и магнитные пускатели (видео)

5.1 Общие сведения

Контактор – аппарат для коммутации силовых эл.цепей. Они широко используются в системах дистанционного управления эл.приводами, автоматики. Категории применения контакторов характеризуются параметрами коммутируемых ими цепей в зависимости от характера нагрузки.

а) контакторы переменного тока: АС-1, АС-2, АС-3, АС-4, АС-11, АС-22.

б) контакторы постоянного тока: ДС-1, ДС-2, ДС-3, ДС-4, ДС-5, ДС-11, ДС-12.

Номинальный ток контактора I ном представляет собой ток, который можно пропускать по замкнутым главным контактам в течение 8 часов без коммутации, причем превышение температуры частей контактора не должна быть больше допустимой.

Номинальным напряжением U H называется наибольшее напряжение коммутируемой цепи, для работы при котором предназначен контактор.

Механическая износостойкость определяется числом циклов включено, отключено – ВО контактора без ремонта и замены его узлов и деталей. Она составляет 10÷20 млн операций.

Коммутационная износостойкость определяется числом циклов ВО цепи с током, после которого требуется замена контактов. Она составляет 2÷3 млн операций.

Собственное время включения состоит из времени нарастания потока в эл.магните до значения потока трогания и времени движения якоря. Большая часть этого времени тратится на нарастание потока.

Собственное время отключения – время с момента обесточивания эл.магнита до момента размыкания контактов. Оно определяется временем спада потока от установившегося значения до потока отпускания.

Контактор имеет следующие основные узлы: контактную систему, дугогасительное устройство, эл.магнит и систему вспомогательных контактов.

5.2 Контакторы постоянного тока

Предназначены для коммутации цепей постоянного тока и приводятся в действие эл.магнитом постоянного тока.

Выпускаются контакторы серии КПВ – 600, типа КТПВ – 600, КП 7, КП 207, КМВ – 521, КМГ16, КМГ19, МК5, МК6, серия МК на постоянном токе и другие.

Номинальные напряжения: главной цепи – 220, 440 В; втягивающей катушки – 24, 48, 60, 110, 220, 440 В.

Контактная система . Применяются линейные перекатывающиеся контакты, а в серии МК мостикового типа. Для предотвращения вибрации контактов контактная пружина создает предварительное нажатие, составляющее примерно 50 % конечного.

Контакторы серии КПВ имеют два исполнения контактной системы: с замыкающими и размыкающими контактами.

В контакторах постоянного тока наибольшее распространение получили дугогасительные устройства с эл.магнитным дутьем с катушкой тока.

Электромагнит. Распространены эл.магниты клапанного типа. С целью повышения механической износостойкости применяется вращение якоря на призме.


При включении эл.магнита преодолеваются усилия возвратной и контактной пружин. Тяговая характеристика эл.магнита должна во всех точках идти выше характеристики этих пружин при минимально допустимом напряжении на катушке 0,85U H и нагретом ее состоянии.

Наиболее тяжелым моментом при включении является преодоление силы в момент касания главных контактов, так как эл.магнит должен развивать значительное усилие при большом рабочем зазоре.

Для контакторов постоянного тока, коэффициент возврата К В = U ОТП / U СР мал (0,2÷0,3), что не позволяет использовать контактор для защиты двигателя от снижения напряжения.

Наибольшее напряжение на катушке не должно превышать 1,1U H , так как при большем напряжении увеличивается износ контактов из-за усиления ударов якоря, а температура катушки может превышать допустимое значение.

С целью уменьшения мдс катушки, а следовательно, и потребляемой ею мощности рабочий ход якоря выбирается небольшим – 8-10 мм. Для надежного гашения дуги при малых токах требуется зазор контактов 17-20 мм. В связи с этим расстояние точки касания подвижного контакта от оси вращения подвижной системы берется в 1,5-2 раза больше, чем расстояние от оси полюса до оси вращения.

5.3 Контакторы переменного тока.

Выпускаются на токи от 10 до 1000А при числе главных контактов от одного до пяти (рис.31)

Из-за более благоприятных условий гашения дуги зазор между главными контактами делается меньше, чем в контакторах постоянного тока.

Подвижный контакт в отличие от контакторов постоянного тока плоский без перекатывания.

Рисунок 31. Конструкция электромагнита контактора переменного тока.

Для удобства эксплуатации подвижный и неподвижный контакты сделаны легко сменяемыми.

В контакторах переменного тока распространена мостиковая контактная система с двумя разрывами цепи на каждый полюс, которая обеспечивает быстрое гашение дуги при отсутствии гибких связей. В качестве материала главных контактов применяется металлокерамика, а для вспомогательных – серебро или биметалл (медь, покрытая тонкой пластиной из серебра).

Система дугогашения состоит из последовательной катушки, сердечника, полюсных пластин и керамической камеры. В контакторах переменного тока широко применяются дугогасительные решетки.

Электромагнит. Широкое распространение получили эл.магниты

с Ш и П – образными магнитопроводами. Для амортизации удара якоря о неподвижный сердечник последний крепится к основанию с помощью пружин.

С целью устранения вибрации якоря во включенном положении на полюсах магнитной системы устанавливаются короткозамкнутые витки, которые наиболее эффективны при малом рабочем зазоре. Для плотного прилегания полюсов их поверхность должна шлифоваться.

Из-за изменения индуктивности катушки ток при притянутом якоре значительно меньше, чем при отпущенном. Индуктивное сопротивление катушки эл.магнита , если учесть, что , то .

.

15-кратного.

Эл.магниты контакторов переменного тока могут также питаться от сети постоянного тока.

В связи с большим пусковым током недопустима подача напряжения на катушку, если якорь по каким – либо причинам удерживается в отпущенном состоянии.

Относительно высокий коэффициент возврата Кв=0,6÷0,7 позволяет использовать контакторы переменного тока для защиты двигателей от снижения сетевого напряжения.

Срабатывание и отпускание эл.магнита переменного тока происходит значительно быстрее, чем эл.магнита постоянного тока. Собственное время срабатывания контакторов составляет 0,03÷0,05 с, а время отпускания 0,02 с.

При питании катушки от сети постоянного тока применяют специальную катушку с форсировочным резистором, который шунтирован размыкающим вспомогательным контактом контактора (рис.33).

2.-главный контакт;

3.- дугогасительная камера;

4.-токовая катушка дугогашения;

5.- изоляционная плита.

Контактор имеет вспомогательные 2 з и 2 р контакты, расположенные слева от главного контакта.

Рисунок 33. Конструкция контакторов однополюсных постоянного тока, на ток 2500 А, напряжением до 1000 В КП 7У3 – без отключающих пружин, КП 207У3- с отключающими пружинами.

Контакторы переменного тока выпускаются следующих типов: КТ6000/00, КТ6000/20, КТП6000/00, КТ6000/2, КТ64, КТП64, КТ65, КТП65, серии КТ (КТ7000Б, КТП7000Б, КТ6500, КТП6500, КТ7039), КТ7000, КНТ, серии МК, КМГ15, КМГ16, КМГ19, КМГ17-19, КМГ17Д19, КМГ18-19, КМГ18Д19, КТ6600, КТ6000Б, КТ6000А, КТП6000Б, КТ7100У, КТ7200У и другие.

Номинальное напряжение: главная цепь – 380, 660, 1140 В, втягивающая катушка –24, 36, 42, 110, 127, 220, 230, 240, 380, 400, 415, 500, 660 В.

Контакторы герсиконовые серии КМГ15, типов КМГ16, КМГ19,
КМГ17-19, КМГ17Д19, КМГ18-19, КМГ18Д19.

КМГ – контактор магнитоуправляемый герметичный. Основным элементом контакторов является герсикон – силовой геркон.

Количество полюсов – 1, 2, 3

Номинальные токи – 6,3; 10 А

Номинальное напряжение – переменный 380 В, постоянный 75 В.

Номинальное напряжение включающих катушек:

На постоянном токе – 12, 24, 48, 60, 10, 20 В;

На переменном – 110, 127, 220 В.

Контакторы серии МК. Предназначена для работы в силовых эл.цепях постоянного – 220, 440 В и переменного тока – 380, 500, 660 В.

Номинальный ток: главной цепи 40, 63, 100, 160 А; вспомогательных контактов 10А.

Контакторы с блоком бездуговой коммутации предназначены для работы в повторно-кратковременном и кратковременном режимах работы.

Конструкция контакторов моноблочная. Основные сборочные единицы: магнитная система, системы контактов главной и вспомогательной цепей. Контакторы с бездуговой коммутацией имеют полупроводниковый блок.

Магнитная система всех контакторов, за исключением МК1-10, МК2-10, двухкатушечная, катушки соединяются параллельно или последовательно в зависимости от напряжения цепи управления.

Системы контактов главной цепи конструктивно выполнены в виде одно-, двух- и трех- элементных блоков, мостикового типа.

Контакторы серии КТ6600 переменного тока 660 В с управлением переменным током 36-600 В, 66 серии. Номинальный ток 63, 100, 160 А.

Количество главных контактов 2, 3, 4, 5.

Конструкция контакторов моноблочная с поворотной системой. Контактор состоит из эл. магнита, контактно - дугогасительной системы и блока вспомогательной контактов.

Якорь эл.магнита – внедряющийся, на верхнем полюсе сердечника установлены экран.

Главные контакты (подвижные) пальцевого типа, контактные параметры регулируются. Используется эл.магнитное гашение дуги. Дугогасительные камеры – отдельные на каждый полюс. Для ограничения вылета дуги в камерах установлены пружинные пламегасители, а для ускорения гашения – потенциальный рог подвижного контакта.

Главные контакты выполнены с контактными накладками из металлокерамической композиции на основе серебра. Вспомогательные контакты – на основе серебра. Вспомогательные контакты – мостикового типа с контактной частью из серебра.

Контакторы серии КТ6000/00, КТП6000/00, КТ6000/20.

КТ – управление переменным током, КТП – постоянным током. Iн=16 А.

Наибольшая частота включений в час 600, а для КТ6000/20-60 в час.

После включения контакторов КТ6000/20 напряжения снимается, а подвижная система контактора удерживается во включенном положении защелкивающим механизмом.

Отключение контактора производится с помощью эл. магнита защелкивающего механизма при включении его на напряжение. После отключения контакторов напряжения с катушками эл.магнита защелки автоматически снимается.

Контакты выполняются из серебра.

Контакторы серий КТ6000/2, КТ6000/3.

2 – с замыкающими контактами и защелкой;

3 – с замыкающими и размыкающими контактами и защелкой.

Номинальный ток замыкающих контактов – 130, 250, 630, 1000 А. Замыкающих контактов – 1, 2, 3. Допустимая частота включений 60 в час.

Магнитная, контакто–дугогасительная система, контакты вспомогательной цепи установлены вдоль рейки и вала контактора.

Защелкивающий механизм контакторов устанавливается над магнитной системой. Контакторы имеют эл. магнитное дугогасительное устройство, состоящее из дугогасительной катушки, магнитопровода, рога неподвижного контакта и дугогасительной камеры с узкой щелью.

Замыкающие и размыкающие контакты выполнены с металлокерамическими накладками на основе серебра.

Контакторы серии КТ6000А, КТ6000Б, КТП6000Б, КТ7000Б.

Номинальный ток – 100, 160, 250, 400, 630 А.

Количество полюсов: 2, 3, 4, 5.

А – повышенная коммутационная способность – 500 тыс. циклов

Б – модернизированные.

Частота включений в час от 30 до 1200.

Контакторы выполняются с магнитной системой поворотного типа.

Главные контакты замыкающие пальцевого типа.

Контакторы типов КТ7100У, КТ7200У. Iн=63, 125 А.

У – унифицированные, для встройки в магнитные пускатели.

Конструкции моноблочного типа с поворотной подвижной системой.

Главные подвижные контакты пальцевого типа, контактные параметры регулируются. Используется эл.магнитное гашение дуги. Контактные накладки из металлокерамической композиции серебра. Вспомогательные контакты мостикового типа из серебра.

Контакторы типов КП7, КП207. Iн=2500 А, Uн=600 В.

Однополюсные. Контактор состоит из магнитной системы с двумя включающими катушками, контактной системой и дугогасительного устройства (рис.33). Контактная система имеет две пары параллельно включенных главных контактов и одну пару дугогасительных. Дугогасительная катушка включена последовательно с дугогасительными контактами, причем главные контакты в замкнутом состоянии шунтируют дугогасительные контакты. Главные контакты с серебряными накладками.

Контакторы вакуумные серии КТ12Р.

Р – рудничные. Iн=250, 400 А; Uн=600, 1140 В.

Частота включений в час, циклов ВО до 1200. предназначены для включения и отключения АД с К3 ротором, трансформаторов и т.д.

Три вакуумные дугогасительные камеры.

Полное перемещение якоря 9 мм.

Полупроводниковое дугогасительное устройство к контактору МК приведено на рис.35,а


Рисунок 35. Схемы полупроводниковых приставок к контакторам.

Главные контакты ГК шунтированы тиристорами VS1 и VS2, управление которыми осуществляется через диоды VD2 и VD3. Пусть в данный полупериод направление тока соответствует показанному на рис., то напряжение, приложенное между мостиком ГК и верхним неподвижным главным контактом, через VD2 открывает VS1, по которому начинает проходить ток цепи. После прохождения тока через нуль тиристор закрывается, и процесс отключения заканчивается.

Если ток имеет обратную полярность, то работают диод VD3 и тиристор VS2.

Для защиты управляющих переходов тиристоров от перенапряжений служат диоды VD1 и VD4.

RC цепочка снижает перенапряжение на тиристорах.

I-выводы для переднего присоединения проводников, II-то же для заднего

1- неподвижный контакт,

2- подвижный контакт

3- рог дугогасителя

4- рычаг, связанный с якорем

5- регулировочный винт

6- пружина подвижного контакта

7- регулировочная гайка

9,10- гибкое соединение

11- колодка

12- крепежная рейка

16- дугогасительная камера

17- пластина стальная (пламя-гасители)

Рисунок 34. Конструкция контактора переменного тока КТ 64-3У3 на ток 100 А, напряжение 380 В. (Модификация КТ 6000)

На рис.35,б показано полупроводниковое устройство контакторов КТ64, КТП64, КТ65, КТП65 (рис.34) для одной фазы. Параллельно ГК включается встречно-параллельно тиристоры VS1 и VS2. Управление осуществляется с трансформаторов тока ТТ, одетого на шину главного контакта. Во включенном состоянии контактора, ток проходит только по контактам, т.к. падение напряжения на них меньше порогового напряжения тиристоров.

При отключении контактора ток переходит в цепь тиристоров, находящихся во включенном состоянии под воздействием управления с ТТ. При этом дуга не образуется, так как падение на тиристорах не превышает 4÷5 В, что меньше, чем на дуге.

При перемене знака синусоидального тока управляющие импульса снимаются, а при первом переходе синусоиды тока через нуль тиристоры закрываются.

Имеются и обычные дугогасительные камеры, если устройство вышло из строя.

5.4 Магнитные пускатели.

Являются основным видом аппаратуры управления низковольтными (до 660 В) АД с К3 ротором. Для защиты их от перезагрузок недопустимой продолжительности и «потери фазы» в пускателе устанавливается эл.тепловые реле.

При включении АД Iп=(5÷6)Iн. При таком токе даже незначительная вибрация контактов быстро выводит их из строя. С целью уменьшения времени вибрации контакты и подвижные части пускатели делают возможно легче, уменьшается их скорость, увеличивается контактное нажатие.

При отключении двигателя восстанавливающиеся напряжение на контактах равно разности напряжения сети и эдс двигателя. В результате на контактах появляется напряжение, составляющее (15-20)% Uн, т.е. отключение происходит в облегченных условиях.

Пускателю в работе приходится отключать двигатель от сети сразу после пуска. В этих случаях он отключает ток равный 6Iн и восстанавливающемся напряжении, равным Uн сети.

По действующим нормам после 50-кратного включения и отключения заторможенного двигателя пускатель должен быть пригоден для дальнейшей работы.

Учитывая условия работы пускателя. В них используется мостиковая контактная система с двухкратным разрывом цепи, а это позволяет осуществлять бездуговую коммутация без применения дугогасительных устройств. Токоведущие шинки от зажимов к неподвижным контактам выполняется таким образом, что эл. динамические силы сдувают дугу с контактов.

Магнитная система включает в себя П или Ш – образный прямоходовой эл.магнит (рис.32). Контактное нажатие создается пружиной, упирающейся в траверсу.

1- неподвижные контакты;

2- подвижные контакты;

3- контактный мостик;

4- прижимная пружина;

5- деталь связи контактных мостиков;

6- траверса;

7- якорь электромагнита;

8- возвратная пружина;

9- катушка электромагнита;

10- корпус.

Рисунок 32. Типовая конструкция прямоходового магнитного пускателя.

Возврат пускателя в исходное положение происходит за счет пружины, расположенной внутри эл.магнита.

Для устранения вибрации якоря используют К3 витки.

Высокий коэффициент возврата эл.магнитов переменного ток позволяет защищать двигатель от понижения напряжения сети (эл. магнит отпускает при U=(0,6÷0,7)Uн).

Для реверсивных приводов используют два пускателя взаимосблокированных электрически либо механически.

Выпускаются магнитные пускатели серии ПМЛ, ПМА, ПМ12 и типа ПМА-0000, ПМУ.

В технических данных пускателей указываются их номинальный ток и номинальная мощность двигателя при различных напряжениях, а также категория применения.

В пускателях серии ПМА на токи от 40 до 160А и напряжении 380-660 В эл.магнит может быть как переменного, так и постоянного тока.

Пускатели комплектуются эл.тепловыми реле типа ТРП (однофазное), ТРН (двухфазное), РТТ и РТЛ (трехфазное). Реле ТРП, РТЛ имеют комбинированную систему нагрева. Возврат реле в исходное положение после срабатывания производится кнопкой.

Пускатели могут комплектоваться ограничителями перенапряжений типа ОПН (рис.37), которые должны ограничивать коммутационные перенапряжения на катушках управления. На дугогасительной камере могут встраиваться дополнительные приставки: контактные типа ПКЛ или пневмоприставки ПВЛ, кнопки «Пуск» или «Стоп» и сигнальная лампа.

а) на R-C элементной базе б) на варисторной в) на диодной

элементной базе элементной базе

Рисунок 37. Схемы электрические принципиальные включения ограничителей перенапряжений.

Эл.тепловые реле подсоединяются непосредственно к корпусам пускателей.

В пускателях в сейсмостойком исполнении последовательно и параллельно включающей катушки включается стабилитроны.

Пускатели серии ПМЛ. Могут быть выполнены с трехполюсными реле РТЛ и комплектоваться ОПН. Величина пускателя по Iн 1-10А, 2-25А, 3-40А,
4-63А. Могут иметь дополнительные приставки: ПКЛ, ПВЛ, кнопки «Пуск», «Стоп», сигнальные лампы.

Контакторы пускателей имеют прямоходовую магнитную систему Ш-образного типа.

Пускатели типа ПМА-0000 . Могут комплектоваться трехполюсными реле РТТ5-06, ОПН на R-C или варисторной элементной базе, кнопками управления и сигнальной лампой. Величина пускателя: 0- на 6,3А.

Пускатели имеют Ш-образную магнитную систему.

Пускатели серии ПМА. Предназначены для управления трехфазными АД с К3 ротором мощностью от 18,5 до 75 кВт. При наличии реле РТТ-2П, РТТ-3П или аппаратов позисторной защиты АЗП или УВТЗ-1М защищают двигатели от перегрузок недопустимой продолжительности.

Эл.тепловые реле с температурой компенсацией и ручным возвратом имеют диапазон регулирования тока несрабатывания (0,85-1,15)Iн.

Пускатели могут комплектоваться: ОПН, кнопками «Пуск», «Стоп», сигнальной лампой.

Величины пускателей: 3-40А; 4-63А; Д-80А; 5-100А; 6-160А. Номинальные напряжения включающих катушек переменного тока: 24-660 В; постоянного тока: 24-440 В.

Контакторы пускателей 3-й величины имеют прямоходовую Ш–образную магнитную систему.

Контакторы пускателей 4,5 и6-й величины имеют прямоходовую магнитную систему П–образного типа. В них вертикальное перемещение якоря с помощью Г–образного рычага преобразуется в горизонтальное перемещение траверсы, несущей подвижные главные контакты.

Пускатели серии ПМ12 . Могут комплектоваться: ОПН, реле РТТ-5, кнопками «Пуск», «Стоп», сигнальной лампой.

Обозначение номинального тока: 004-4А; 016-16А; 025-25А; 040-40А;
063-63А.

Контакторы пускателей имеют прямоходовую Ш–образную магнитную систему.

5.5 Тиристорный пускатель.

Один из вариантов схемы показан на рис.36.

Пускатели применяют для подключения мощной нагрузки – электродвигателей, ТЭНов, мощных ламп, и др. Область применения – там, где реле уже не справляются, а полупроводниковые силовые элементы либо малы по току, либо дороги.

Контакторы (пускатели) электромагнитные

Следует внести немного порядка в терминологию. Часто путают пускатели и контакторы . Для некоторых это одно и то же, а некоторые говорят, что контактор – это просто большой мощный пускатель. Но насколько мощный – никто толком объяснить не может…

Раньше, во времена СССР, так оно и было. Теперь пускатели, которые выпускались или разрабатывались в те времена, так и называют пускателями (например, ПМЛ, который выпускается до сих пор на Украине), а новые и зарубежные модели называют контакторами.

Одни и те же устройства электрики называют пускателями, а продавцы – контакторами. Честно говоря, и мне привычней говорить именно пускатели.

Чем отличается контактор от пускателя?

На самом деле контактор – это устройство, состоящее только из электромагнитной катушки и контактов. При подаче напряжения на катушку контакты замыкаются (или размыкаются). Контактор не содержит приспособлений для защиты, фиксации, коммутации, индикации, и др. Пускатель – это устройство, содержащее в себе контактор как главный составляющий элемент. Кроме того, пускатель как правило содержит по току, кнопки ПУСК и СТОП, индикацию, может быть заключен в корпус, иметь автоматический выключатель для защиты от КЗ. Иначе говоря, пускатель служит для пуска (включения) различных потребителей электроэнергии.

Подробно о том, как трехфазный электродвигатель подключается к пускателю, различные схемы включения электродвигателя приведены в моей статье . А ещё пример применения пускателей – в статье про . Различные схемы включения магнитных пускателей .

А если Вам вообще интересно , подписывайтесь на получение новых статей и вступайте в группу в ВК !

Пускатель может содержать два контактора. Это бывает в случаях, когда применяется реверсивное управление двигателем, либо при плавном пуске , когда мощный двигатель включают сначала по схеме “звезда”, а затем – по “треугольнику”.

Хотя, такую схему нельзя назвать “плавной”, для плавного пуска существуют специальные устройства. Читайте мои статьи про и про .

Отличия реле от контактора

Реле от контактора отличаются лишь конструкцией и назначением, и разница иногда между ними слабо различима.

Как правило,

  • Реле не имеет дугогасительных камер.
  • Реле заключено в герметичный корпус.
  • Реле рассчитано на слабый ток и чисто активную нагрузку.
  • Реле имеет переключающие контакты, а значит нормально разомкнутые и замкнутые.
  • Реле не рассчитано на подключение реактивной трехфазной нагрузки.
  • Реле может иметь от 1 до 6 равнозначных контактов, а контактор обязательно имеет 3 силовых и (как опция) 1-2 слаботочных контакта.
  • Реле не имеет дополнительных функций и контактов, а контактор может быть дополнен приставками различной установки и назначения.
  • Реле устанавливается на панель, и легко может быть заменено лишь с помощью рук. Для того, чтобы заменить контактор, нужно обесточивать оборудование и использовать отвертку.

Характеристики и виды пускателей по характеристикам

Перед тем, как выбрать контактор, нужно определиться с нагрузкой, и выбор делать исходя прежде всего мощности нагрузки. Параметры контакторов можно уточнить на сайтах производителей или у торгующих организаций, а здесь мы приведем и рассмотрим самые важные. Основные параметры (ток, мощность нагрузки) обычно указывают на корпусе пускателя.

Величина (условный габарит) пускателя (контактора)

Самый главный параметр, величина характеризует условно мощность и габариты пускателя. Существуют такие величины пускателей:

  • нулевая величина – на максимальный ток до 6 А (через каждый рабочий контакт)
  • первая – на максимальный ток до 9 – 18 А (в зависимости от исполнения контактов)
  • пускатель 2 величины – до 25 – 32 А
  • пускатель 3 величины – до 40 – 50 А
  • пускатель 4 величины – до 65 – 95 А
  • пускатель 5 величины – до 100 – 160 А
  • шестая величина – от 160 А и выше

Имеется ввиду ток по категории применения АС-3 (для индуктивной нагрузки), для категории АС-1 (резистивная или малоиндуктивная нагрузка – например, ТЭНы) максимальный ток для того же пускателя будет в полтора – два раза выше. От величины пускателя зависит, какую мощность он может коммутировать (трехфазная цепь 380 В, индуктивная нагрузка).

  • 1 – до 2,2 – 7,5 кВт
  • 2 – до 11 – 15 кВт
  • 3 – до 18 – 22 кВт
  • 4 – до 30 – 45 кВт

Сразу надо сказать, что эта мощность – действительно максимальная, реально надо смотреть на величину тока конкретного пускателя (как правило, вторая и третья цифра в названии). Величина пускателя указывается в названии первой цифрой. При превышении тока или токе, близком к максимальному, количество срабатываний (надежность) резко уменьшается, поэтому пускатель надо выбирать с запасом по мощности.

Количество контактов (полюсов)

В основном выпускаются контакторы с тремя рабочими контактами (для коммутации) и одним дополнительным. Дополнительный, или блокировочный контакт нужен для блокировки, или “самопитания”, чтобы зафиксировать контактор во включенном состоянии при использовании стандартной схемы включения. Дополнительные контакты бывают нормально разомкнутые (чаще всего используются) и нормально замкнутые.

Для увеличения количества дополнительных контактов используют контактные приставки, применение которых существенно расширяет круг схемотехнических решений. В СССР такие дополнительные приставки назывались ПКИ, сейчас в продаже есть и другие модели, но суть одна.

Дополнительные контактные приставки ПКИ, и др.

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Напряжение электромагнитной катушки контакторов

Электромагнитные катушки контакторов, как правило, выпускаются на следующие напряжения: 24, 36, 110, 230, 380 Вольт. В пускателях большой величины используются катушки бОльшей мощности. Катушки продаются и отдельно, и её можно легко заменить в контакторе, если нужна другая величина напряжения.

Как правило, при наличии нулевого проводника целесообразно применять катушки контактора на напряжение 220 В, а при его отсутствии (чисто трехфазные потребители) – катушки на 380 В.

Виды пускателей по назначению

Теперь приведу пару примеров пускателей – реальных схем.

Эта схема пускателя собрана на трех контакторах второй величины и служит для подключения электродвигателя по схеме “звезда-треугольник”. Вверху слева подается три фазы, внизу – три фазы уходит на питания двигателя. Красные провода – питание катушек контакторов и проверка работы. Защита (мотор-автомат) не показана.

Здесь – пускатель реверсивный, на двух взаимно блокированных контакторах. Мотор-автомат защиты двигателя – справа.

Бонус

В заключение – несколько фотографий контакторов, верой и правдой отслуживших свой век.

Пускатель 2 величины. Совнархоз Латвийской ССР, 1964 г.

Пускатель ПМЛ, справа – его прототип Telemecanique

Страшно смотреть, но именно такие пускатели применялись в СССР…

…и такие. Не правда ли, очень похоже на музейный экспонат?

Где можно купить сейчас контакторы? Конечно, в соседнем электро магазине. И главное. Не забудьте сообщить продавцу напряжение катушки!

Глава 20

КОНТАКТОРЫ И МАГНИТНЫЕ ПУСКАТЕЛИ

§ 20.1. Назначение контакторов и магнитных пускателей

Наиболее распространенным потребителем электриче­ской энергии является электродвигатель. Примерно 2/3 всей выра­батываемой в стране электроэнергии потребляется электродвига­телями. Основным коммутационным аппаратом, осуществляющим подключение электродвигателя к питающей сети, является кон­тактор. Электромагнитный контактор представляет собой выклю­чатель, приводимый в действие с помощью электромагнита. По сути дела, это мощное электромагнитное реле, контактный узел которого способен замыкать и размыкать силовые цепи с токами в десятки и сотни ампер при напряжениях в сотни вольт. При та­ких электрических нагрузках необходимо принятие специальных мер по гашению дуги. Поэтому по сравнению с обычными элект­ромагнитными реле электромагнитные контакторы имеют дугогасительные устройства и более мощные электромагнит и контакт­ные узлы. Кроме силовых (мощных) контактов! имеются и блоки­ровочные контакты, используемые в цепях управления для целей автоматики. Различают контакторы постоянного и переменного тока. Для автоматического пуска, остановки и реверса электродви­гателей применяют магнитные пускатели. Они представляют со­бой комплектные электрические аппараты, включающие в себя электромагнитные контакторы, кнопки управления, реле защиты и блокировки.

Контакторы и магнитные пускатели используются и для вклю­чения других мощных потребителей электроэнергии: осветительпых и нагревательных установок, преобразовательного и техно­логического электрического оборудования.

К этой же группе электрических силовых аппаратов следует отнести автоматические выключатели, которые также предназна­чены для подключения к питающей сети мощных электропотре­бителей. Замыкание их контактов производится не с помощью электромагнита, а вручную. Автоматически они производят лишь выключение нагрузки, защищая ее от перегрузок по току. Если контакторы и магнитные пускатели способны работать при час­тых включениях и отключениях, то автоматические выключатели обычно применяют при включениях па продолжительное время. В типовые схемы электропривода обычно входят автоматический выключатель (питающий и силовые, и управляющие цепи) и маг­нитный пускатель (осуществляющий непосредственную коммута­цию для пуска, остановки и реверса электродвигателя).

§ 20.2. Устройство и особенности контакторов

Принцип действия контакторов такой же, как и у эле­ктромагнитных реле. Поэтому и устройство их во многом сходно. Главное отличие заключается в том, что контакты контакторов коммутируют большие токи. Поэтому они выполняются более мас­сивными, требуют больших усилий, между ними при разрыве воз­никает дуга, которую необходимо погасить.

Основными узлами контактора являются электромагнитный механизм, главный (силовой) контактный узел, дугогасительная система, блокировочный контактный узел.

Электромагнитный механизм осуществляет замыкание и раз­мыкание контактов. При подаче напряжения на втягивающую катушку электромагнита якорь притягивается к сердечнику, а ме­ханически связанные с ним подвижные контакты замыкают сило­вую цепь и выполняют необходимые переключения в цепи управ­ления.

Магнитные системы контакторов в зависимости от характера движения якоря и конструкции различают на поворотные и пря-моходовые. Магпитопровод контактора поворотного типа устроен аналогично клапанному реле. Для устранения залипапия якоря используют немагнитные прокладки. Для замыкания силовых кон­тактов требуются значительно большие усилия, чем развиваемые в реле. Поэтому электромагнитный механизм контактора выполня­ется более мощным и массивным. При срабатывании контактора происходит довольно значительный удар якоря о сердечник. Час­тично этот удар принимает на себя немагнитная прокладка; кро­ме того, магнитную систему амортизируют пружиной, которая так­же уменьшает вибрацию контактов.

Магнитопровод контактора прямоходного типа имеет обычно Ш-образпую форму. В этом случае для устранения заливания яко­ря делают зазор между средними стержнями сердечника и якоря. Втягивающая катушка обычно обеспечивает включение и удержание якоря в притянутом положении. Но иногда использу­ют две катушки: мощную включающую и менее мощную удержи­вающую. В этом случае контактор во включенном состоянии по­требляет меньше электроэнергии, поскольку включающая катушка находится под током только короткое время. Размыкание контак­тов происходит за счет отключающей пружины при снятии напря­жения с катушки контактора. Втягивающая катушка должна обе­спечивать надежное срабатывание контактора при снижении на­пряжения до 0,85. По нагреву катушка должна выдерживать повышение напряжения до 1,05

В контакторах с поворотным якорем наибольшее распростра­нение получили линейные перекатывающиеся контакты (см. рис. 16.5). В примоходных контактах применяются мостиковые кон­тактные системы (см. рис. 16.4). Контактный мостик имеет не­большую массу и выполняется самоустанавливающимся, что сни­жает вибрацию контактов. Для предотвращения вибрации кон­тактная пружина создает предварительное нажатие, равное при­мерно половине конечной силы нажатия.

У контакторов для длительного режима работы на поверх­ность медных контактов обычно напаивается металлокерамическая или серебряная пластинка. Контакты иногда могут выпол­няться из меди, если образующаяся пленка окисла па рабочей поверхности контактов периодически снимается их самоочисткой. Дугогасительная система контакторов постоянного тока обыч­но выполняется в виде камеры с продольными щелями, куда дуга вытесняется с помощью магнитной силы. Дугогасительная систе­ма контакторов переменного тока обычно имеет вид камеры со стальными дугогасительными пластинами и двойным разрывом дуги в каждой фазе.

Блокировочные или вспомогательные контакты применяются для переключений в цепях управления и сигнализации, поэтому они имеют такое же конструктивное выполнение, как и контакты реле.

§ 20.3. Конструкции контакторов

Как правило, род тока в цепи управления, которая пи­тает катушку контактора, совпадает с родом тока главной цепи. Поэтому контакторы постоянного тока, предназначенные для включения двигателей постоянного тока, имеют электромагнитный механизм, питаемый постоянным током. Соответственно контак­торы переменного тока, предназначенные для включения двигате­лей (или другой нагрузки) переменного тока, имеют электромагнитный механизм, питаемый переменным током. Бывают и исклю­чения. Известны, например, случаи, когда катушки контакторов переменного тока получают питание от цепи постоянного тока.

Устройство контактора постоянного тока показано на рис. 20.1. Электромагнитный механизм поворотного типа состоит из сердеч­ника / с катушкой 2, якоря 3 и возвратной пружины 4. Сердеч­ник 1 имеет полюсный наконечник, необходимый для увеличения

Рис. 20.1. Контактор посто- Рис. 20.2. Дугогасительная

янного тока камера с электромагнит-

ным дутьем

магнитной проводимости рабочего зазора электромагнита. Немаг­нитная прокладка 5 служит для предотвращения залипания яко­ря. Силовой контактный узел состоит из неподвижного 6 и по­движного 7 контактов. Контакт 7 шарнирно закреплен на рычаге 8, связанном с якорем 8 и прижатом к нему нажимной пружиной 9. Подвод тока к подвижному контакту 7 выполнен гибкой медной
лентой 10. Замыкание главных контактов 6 и 7 происходит с проскальзыванием и перекатыванием, что обеспечивает очистку кон­тактных поверхностей от окислов и нагара. При срабатывании электромагнитного механизма кроме главных контактов переклю­чаются вспомогательные контакты блокировочного контактного уз­ла 11. При размыкании главных контактов 6 и 7 между ними возникает электрическая дуга, ток которой поддерживается за счет ЭДС самоиндукции в обмотках отключаемого электродвига­теля. Для интенсивного гашения электрической дуги служит ду­гогасительная камера 12. Она имеет дугогасительную решетку в виде тонких металлических пластин, которые разрывают дугу на короткие участки. Пластины интенсивно отводят теплоту от дуги и гасят ее. Однако при большой частоте включения контактора пластины не успевают остывать и эффективность дугогашения падает.

Для вытеснения дуги в сторону дугогасителыюй решетки мож­но использовать электромагнитную силу, так называемое магнит­ное дутье. На рис. 20.2 показана дугогасительная камера с уз­кой щелью и магнитным дутьем. Щелевая камера образована дву­мя стенками /, выполненными из изоляционного материала. Си­стема магнитного дутья состоит из катушки 2, включенной после­довательно с главными контактами и размещенной на сердечнике 3. Для подвода магнитного поля в зону образования дуги служат ферромагнитные щеки 4. В результате взаимодействия электриче­ского тока дуги с магнитным полем появляется сила F, которая растягивает дугу и вытесняет ее в щелевую камеру между стенками 1. За счет усиленного отвода теплоты стенками камеры дуга быстро гаснет.

При последовательном включении главных контактов и катуш­ки магнитного дутья направление силы F остается постоянным при любом направлении тока в силовой цепи, поскольку сила F пропорциональна квадрату тока (ведь магнитное поле создается этим же током). Поэтому магнитное дутье можно использовать и в контакторах переменного тока.

Контакторы переменного тока отличаются от контакторов по­стоянного тока, прежде всего тем, что они, как правило, выпол­няются трехполюсиыми. Основное назначение контакторов пере­менного тока - включение трехфазных асинхронных электродви­гателей. Поэтому они имеют три главных (силовых) контактных узла. Все три главных контактных узла работают от общего эле­ктромагнитного приводного механизма клапанного типа, который поворачивает вал с установленными на нем подвижными контак­тами. С этим же приводом связаны вспомогательные контакты. Главные контактные узлы имеют систему дугогашения с магнит­ным дутьем и дугогасителной щелевой камерой или дугогаси­телной решеткой. В контакторах быстрее всего изнашиваются главные контакты, поскольку они подвергаются интенсивной эро­зии (как говорится, контакты выгорают). Для увеличения общего срока службы контакторов предусматривается возможность сме­ны контактов.

Наиболее сложным и трудным этапом работы контактов является процесс их размыкания. Именно в этот момент контакты оп­лавляются, между ними возникает дуга. Для облегчения работы главных контактов при размыкании выпускаются контакторы пе­ременного тока с полупроводниковым блоком. В этих контакторах параллельно главным замыкающим контактам включают по два тиристора (управляемых полупроводниковых диода). Во включен­ном положении ток проходит через главные контакты, поскольку тиристоры находятся в закрытом состоянии и ток не проводят. При размыкании контактов схема управления на короткое время открывает тиристоры, которые шунтируют цепь главных контак­тов и разгружают их от тока, препятствуя возникновению элект­рической дуги. Такие комбинированные тиристорные контакторы выпускаются на токи в сотни ампер. Поскольку тиристоры рабо­тают в кратковременном режиме, они не перегреваются и не нуж­даются в радиаторах охлаждения.

Коммутационная износостойкость комбинированных контакто­ров составляет несколько миллионов циклов, в то время как глав­ные контакты обычных контакто­ров постоянного и переменного то­ка выдерживают обычно 150-200 тыс. включений.

Для управления электродвига­телями переменного тока неболь­шой мощности применяют прямоходовые контакторы с мостиковыми контактными узлами. Благодаря двукратному разрыву цепи и облег­ченным условиям гашения дуги пе­ременного тока в этих контакторах не требуются специальные дугогасительные камеры с магнитным дутьем, что существенно уменьшает их габаритные размеры.

Рис. 20.3. Контактор переменного тока

Электромагнитный привод контактора переменного тока малой мощности (рис. 20.3) имеет Ш-образный сердечник 1 и якорь 2, собранные из пластин электротехнической стали. Часть полюсов сердечника охвачена короткозамкнутым витком, что предотвра­щает вибрацию якоря, вызванную снижением силы электромаг­нитного притяжения до нуля при прохождении переменного сину­соидального тока через нуль. Катушка 3 контактора охватывает сердечник и якорь, она и создает намагничивающую силу в маг­нитной системе контактора. На якоре 2 закреплены подвижные контакты 4 мостикового типа, что повышает надежность отклю­чения за счет двукратного размыкания. В пластмассовом корпусе установлены неподвижные контакты 5 и 6. Пружина 7 возвраща­ет контакты 4 в исходное положение. В трехфазном контакторе - три контактные пары, отделенные друг от друга пластмассовыми перемычками 8. Главные контакты имеют металлокерамические накладки и защищены крышкой. Вспомогательные контакты на рис. 20.3 не показаны.

§ 20.4. Магнитные пускатели

Магнитный пускатель - это комплектное устройство, предназначенное главным образом для пуска трехфазных асин­хронных двигателей. Основной составной частью магнитного пускателя является трехполюсный контактор переменного тока. Кро­ме того, контактор имеет кнопки управления и тепловые реле.

Схема включения трехфазного асинхронного двигателя с короткозамкнутым ротором показана на рис. 20.4. Для пуска элект­родвигателя М нажимается кнопка SB1 («Пуск»). Через катушку контактора КМ проходит ток, электромагнит контактора срабатывает, и замыкаются все его контакты, которые на схеме обоз­начаются теми же буквами КМ. Силовые контакты КМ подклю-

Рис. 20.4. Схема включения трех- Рис. 20.5. Конструкция неревер-

фазного асинхронного электро- сивного магнитного пускателя

двигателя с магнитным пускате­лем

чают на трехфазное напряжение обмотку электродвигателя М. Параллельно кнопке SB1 подсоединены блокировочные контак­ты КМ. Так как они замкнулись, то после отпускания кнопки SB1 катушка контактора получает питание по этим контактам. Сле­довательно, для включения электродвигателя не надо все время держать кнопку нажатой: достаточно ее один раз нажать и от­пустить. Для остановки электродвигателя служит кнопка SB2 («Стоп»), при нажатии которой разрывается цепь питания кон­тактора КМ. Для защиты электродвигателя от перегрева служат тепловые реле FP1 и FP2, чувствительные элементы которых включаются в две фазы электродвигателя, а размыкающие кон­такты, обозначенные теми же буквами, включены в цепь пита­ния катушки контактора КМ. Для защиты самой схемы управле­ния служат плавкие предохранители FV. На схеме показан также рубильник Р, который обычно замкнут. Его размыкают лишь в том случае, когда собираются проводить ремонтные работы. По­добная схема является типовой, она применяется во всех случаях, когда не требуются изменение направления вращения (реверс) электродвигателя и интенсивное (принудительное) торможение.

На рис. 20.5 показана конструкция нереверсивного магнитно­го пускателя, который смонтирован в ящике с открывающейся крышкой. Электромагнитный механизм 1 контактора при сраба­тывании перемещает три подвижных контакта 2, размещенных в дугогасительных камерах. Одновременно переключаются блокиро­вочные контакты 3. Последовательно с двумя главными контакт­ными узлами включены тепловые реле 4.

Кнопки «Пуск» и «Стоп» обычно находятся вне ящика пуска­теля, они размещены на пульте управления под рукой у рабочего. Кнопка «Стоп» имеет красный цвет. Реверсивная схема включе-

Рис. 20.6. Схема включения трехфазного асинхронного элек­тродвигателя с реверсивным магнитным пускателем

ония трехфазного асинхронного двигателя показана на рис. 20.6. Для того чтобы реверсировать (изменить направление вращения) трехфазный асинхронный двигатель, необходимо изменить поря­док чередования фаз на обмотке статора. Например, если для прямого вращения фазы подключались в последовательности ABC, то для обратного вращения необходима последовательность АСВ. Поэтому в состав реверсивного магнитного пускателя входят два контактора: KB для вращения вперед и КН для вращения назад. Кроме того, реверсивный магнитный пускатель имеет три кнопки управления и тепловые реле. В ряде случаев в комплект магнит­ного пускателя входят пакетный переключатель и плавкие предохранители. Схема (рис. 20.6) работает следующим об­разом.

Для включения электродвигателя М в прямом направлении не­обходимо нажать кнопку SB1 («Вперед»). При этом срабатывает контактор KB и своими силовыми контактами подключает к трех­фазной сети обмотки электродвигателя. Одновременно блокировочные контакты KB разрывают цепь питания катушки контакто­ра КН, чем исключается возможность одновременного включения обоих контакторов. Для включения электродвигателя в обратном направлении необходимо нажать кнопку SB2 («Назад»). В этом случае срабатывает контактор КН и своими силовыми контактами подключает к трехфазной сети обмотки электродвигателя. После­довательность соединения фаз теперь иная, чем при срабатывании контактора KB: две фазы из трех поменялись местами. При сра­батывании контактора КН его блокировочные контакты разрыва­ют цепь питания катушки контактора КВ. Нетрудно видеть, что при одновременном включении контакторов KB и КН произошло бы короткое замыкание двух линейных проводов трехфазной сети друг на друга. Для того чтобы исключить такую аварию, и нуж­ны блокировочные размыкающиеся контакты контакторов KB и КН. Следовательно, если подряд нажать обе кнопки (SB1 и SB2), то включится только тот контактор, кнопка которого была нажа­та раньше (пусть даже на мгновение).

Для реверса электродвигателя надо предварительно нажать кнопку SB3 («Стоп»). В этом случае блокировочные контакты подготавливают цепь управления для нового включения. Для на­дежной работы необходимо, чтобы силовые контакты контактора разомкнулись раньше, чем произойдет замыкание блокировочных контактов в цепи другого контактора. Это достигается соответст­вующей регулировкой положения блокировочных контактов по хо­ду якоря электромагнитного механизма контактора. Для блоки­ровки кнопок SB1 и SB2 используются замыкающиеся блокиро­вочные контакты соответствующего контактора, подключенные па­раллельно кнопке.

Необходимо исключить одновременное срабатывание обоих контакторов, для чего используют двойную или даже тройную блокировку. Для этой цели в схеме рис. 20.6 применяют двухцепные кнопки SB1 и SB2. Например, кнопка SB1 при нажатии за­мыкает свои контакты в цепи контактора KB и разрывает свои контакты в цепи контактора КН. Аналогично работает двухцепная кнопка SB2. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препят­ствующим одновременному срабатыванию электромагнитов кон­такторов. Контакты тепловых реле FP1 и FP2, включенные в две фазы обмотки электродвигателя, отключают цепь питания катушек обоих контакторов при длительном протекании большого тока, чтобы не допустить перегрева обмоток. Для защиты схемы уп­равления служат плавкие предохранители FV.

Магнитные пускатели и контакторы выбирают по номинально­му току электродвигателя с учетом условий эксплуатации. В про­мышленности применяются магнитные пускатели серий ПМЕ и ПМЛ с прямоходовыми контакторами и серии ПАЕ с подвижной системой поворотного типа.


Автоматический выключатель предназначен для вклю­чения и отключения электрических цепей и электрооборудования, а также для защиты от больших токов, возникающих при корот­ких замыканиях и перегрузках. В отличие от магнитного пускате­ля автоматический выключатель не может использоваться для автоматических систем, использующих электрические управляющие сигналы. Он также не обеспечивает ре­верса электродвигателя. Автоматический выключатель часто используют для про­должительного включения нереверсируемых электродвигателей. Может он также использоваться вместо рубильника в схе­мах с магнитным пускателем (см. рис. 20.4 и 20.6).

Устройство автоматического воздуш­ного выключателя (автомата) показано на рис. 20.7. С помощью рукоятки / про­изводится включение и отключение ав­томата. В состоянии, показанном на ри­сунке, автомат отключен, и подвижный контакт 2 не замкнут с неподвижным контактом 3. Для включения автомата следует взвести пружину 6, при этом ру­коятка / перемещается вниз и повора­чивает деталь 4, которая своим нижним концом входит в зацепление с зубом удерживающего рычага 5.

Теперь авто­мат готов к включению. Для его вклю­чения рукоятку 1 перемещают вверх.

Пружина 6 займет такое положение, что шарнирно соединенные рычаги 7 и 8 перемещаются вверх по отношению к тому положе­нию, когда они находятся на одной прямой. Автомат включится: цепь тока создается через контакты 2 и 3, разделители 9 и 10.

Автоматическое отключение автомата происходит при сраба­тывании разделителей. При длительных токовых перегрузках сра­батывает тепловой биметаллический расцепитесь 10, свободный конец, которого перемещается вниз, поворачивая рычаг 5 по часо­вой стрелке. Зуб рычага расцепляется с деталью 4, которая пово­рачивается, а рычаги 7 и 8 проходят мертвое положение. Усилие пружины 6 направлено вниз, под его действием размыкаются кон­такты 2 и 3. Отключение при максимально допустимом токе про­исходит под действием электромагнитной силы , выводящей зуб рычага 5 из зацепления с деталью 4. Если произошло автомати­ческое отключение нагрузки, то рукоятка 1 остается в верхнем положении. Ручное отключение автомата происходит при перемещении ру­коятки 1 вниз. Возникающая при размыкании контактов 2 и 3 электрическая дуга гасится с помощью дугогасительной решет­ки 11.

Автоматы могут снабжаться расцепителями минимального на­пряжения, отключающими автомат при напряжении всети ниже допустимого значения. Для дистанционного управления автомати­ческим выключателем могут использоваться специальные их кон­струкции, дополненные электромагнитным приводом рукоятки 1.

Выпускаемые промышленностью автоматические выключатели типов АК, АП, АЕ имеют от 1 до 3 пар силовых контактов. Они предназначены для цепей с напряжением от 110 до 500 В при то­ках в десятки ампер. Время автоматического отключения состав­ляет 0,02-0,04 с.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то