Числа из двоичной в десятичную. Системы счисления. Позиционная система счисления двоичная

В повседневной жизни мы привыкли пользоваться десятичной системой счисления, знакомой нам еще со школьной скамьи. Однако помимо нее, существует и множество других систем. Как записывать цифры не в десятичной, а, например, в ?

Как перевести в двоичную любое число из десятичной системы

Необходимость перевести десятичное число в двоичный вид выглядит пугающей только на первый взгляд. На самом деле это довольно просто - необязательно искать даже онлайн-сервисы для совершения операции.

  • Для образца возьмем число 156, записанное в привычной нам десятичной форме, и попробуем перевести его в двоичный вид.
  • Алгоритм будет выглядеть следующим образом - начальное число понадобится разделить на два, затем еще раз на 2, и еще раз на 2 до тех пор, пока в ответе не останется единица.
  • При совершении деления для перевода в двоичный код имеют значения не целые числа - а остатки. Если при делении в ответе получилось четное число, то остаток записывается в виде цифры 0, если нечетное - то в виде цифры 1.
  • На практике можно легко убедиться, что начальный двоичный ряд остатков для числа 156 будет выглядеть следующим образом - 00111001. Для того, чтобы превратить его в полноценный двоичный код, этот ряд понадобится записать в обратном порядке - то есть, 10011100.

Двоичное число 10011100, полученное в результате нехитрой операции, и будет двоичным выражением числа 156.

Ещё один пример, но уже на картинке

Перевод двоичного числа в десятичную систему

Обратный перевод - из двоичной в десятичную систему - может показаться чуть более сложным. Но если использовать простой метод удвоения, то и с этой задачей получится справиться за пару минут. Для примера возьмем все то же число, 156, но в двоичном виде - 10011100.

  • Метод удвоения основан на том, что при каждом шаге вычисления берут так называемый предыдущий итог и прибавляют к нему следующую цифру.
  • Поскольку на первом шаге предыдущего итога еще не существует, здесь всегда берут 0, удваивают его и прибавляют к нему первую цифру выражения. В нашем примере это будет 0 * 2 + 1 = 1.
  • На втором шаге мы уже располагаем предыдущим итогом - он равен 1. Это цифру нужно удвоить, а потом прибавить к ней следующую по порядку, то есть - 1 * 2 + 0 = 2.
  • На третьем, четвертом и последующем шагах все так же берутся предыдущие итоги и складываются с последующей цифрой в выражении.

Когда в двоичной записи останется только одна последняя цифра, и прибавлять больше будет нечего, операция будет завершена. При помощи нехитрой проверки можно убедиться, что в ответе получится нужное десятичное число 156.

Разберем одну из важнейших тем по информатике - . В школьной программе она раскрывается довольно "скромно", скорее всего, из-за недостатка отведенных на нее часов. Знания по этой теме, особенно на перевод систем счисления , являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты. Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления , даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления . На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

епозиционные системы счисления.

Непозиционные системы счисления - системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

К непозиционным системам счисления относится, например, римская, где вместо цифр - латинские буквы.

I 1 (один)
V 5 (пять)
X 10 (десять)
L 50 (пятьдесят)
C 100 (сто)
D 500 (пятьсот)
M 1000 (тысяча)

Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

IL 49 (50-1=49)
VI 6 (5+1=6)
XXI 21 (10+10+1=21)
MI 1001 (1000+1=1001)

озиционные системы счисления.

Позиционные системы счисления - системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает "семь сотен", но эта же цифра в числе 71 означает "семь десятков", а в числе 7020 - "семь тысяч".

Каждая позиционная система счисления имеет свое основание . В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

    Например:
  • Двоичная - позиционная система счисления с основанием 2.
  • Четверичная - позиционная система счисления с основанием 4.
  • Пятиричная - позиционная система счисления с основанием 5.
  • Восьмеричная - позиционная система счисления с основанием 8.
  • Шестнадцатиричная - позиционная система счисления с основанием 16.

Чтобы успешно решать задачи по теме "Системы счисления", ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 16 10:

10 с/с 2 с/с 8 с/с 16 с/с
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

Этот "переход единицы" как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления , мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки - разные вещи.

Отсюда у находчивых учеников появляются "свои методики" (на удивление... работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

Для примера разберем получение чисел в восьмеричной системе : К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7. Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток - 10). Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, ..., 27, 30, ..., 77, 100, 101...

равила перевода из одной системы счисления в другую.

1 Перевод целых десятичных чисел в любую другую систему счисления.

Число нужно разделить на новое основание системы счисления . Первый остаток от деления - это и есть первая младшая цифра нового числа. Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания. Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

Пример ("деление уголком"): Переведем число 173 10 в восьмеричную систему счисления.


Таким образом, 173 10 =255 8

2 Перевод правильных десятичных дробей в любую другую систему счисления.

Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть - старшая цифра дробной части нового числа. для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть. Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности ("... вычислить с точностью, например, двух знаков после запятой").

Пример: Переведем число 0,65625 10 в восьмеричную систему счисления.

В одном из наших материалов мы рассмотрели определение . Оно имеет самый короткий алфавит. Только две цифры: 0 и 1. Примеры алфавитов позиционных систем счисления приведены в таблице.

Позиционные системы счисления

Название системы

Основание

Алфавит

Двоичная

Троичная

Четверичная

Пятеричная

Восьмеричная

Десятичная

0,1,2,3,4,5,6,7,8,9

Двенадцатеричная

0,1,2,3,4,5,6,7,8,9,А,В

Шестнадцатеричная

0,1,2,3,4,5,6,7,8,9,А,В,С,D,E,F

Тридцатишестиричная

0,1,2,3,4,5,6,7,8,9,А,В,С,D,E,F,G, H,I,J,K,L,M,N,O,P,R,S,T,U,V,X,Y,Z


Для перевода небольшого числа из десятичного в двоичное, и обратно, лучше пользоваться следующей таблицей.

Таблица перевода десятичных чисел от 0 до 20 в двоичную систему счисления.

десятичное

число

двоичное число

десятичное

число

двоичное число


Однако таблица получится огромной, если записать туда все числа. Искать среди них нужное число будет уже сложнее. Гораздо проще запомнить несколько алгоритмов перевода чисел из одной позиционной системы счисления в другую.


Как сделать перевод из одной системы счисления в другую? В информатике существует несколько простых способов перевода десятичных чисел в двоичные числа. Рассмотрим два из них.

Способ №1.

Допустим, требуется перевести число 637 десятичной системы в двоичную систему.


Делается это следующим образом: отыскивается максимальная степень двойки, чтобы два в этой степени было меньше или равно исходному числу.


В нашем случае это 9, т.к. 2 9 =512 , а 2 10 =1024 , что больше нашего начального числа. Таким образом, мы получили число разрядов результата. Оно равно 9+1=10. Значит, результат будет иметь вид 1ххххххххх, где вместо х может стоять 1 или 0.


Найдем вторую цифру результата. Возведем двойку в степень 9 и вычтем из исходного числа: 637-2 9 =125. Затем сравниваем с числом 2 8 =256 . Так как 125 меньше 256, то девятый разряд будет 0, т.е. результат уже примет вид 10хххххххх.


2 7 =128 > 125 , значит и восьмой разряд будет нулём.


2 6 =64 , то седьмой разряд равен 1. 125-64=61 Таким образом, мы получили четыре старших разряда и число примет вид 10011ххххх.


2 5 =32 и видим, что 32 < 61, значит шестой разряд равен 1 (результат 100111хххх), остаток 61-32=29.


2 4 =16 < 29 - пятый разряд 1 => 1001111ххх. Остаток 29-16=13.


2 3 =8 < 13 => 10011111хх. 13-8=5


2 2 =4 < 5 => 10011111хх, остаток 5-4=1.


2 1 =2 > 1 => 100111110х, остаток 2-1=1.


2 0 =1 => 1001111101.


Это и будет конечный результат.

Способ №2.

Правило перевода целых десятичных чисел в двоичную систему счисления, гласит:

  1. Разделим a n−1 a n−2 ...a 1 a 0 =a n−1 ⋅2 n−1 +a n−2 ⋅2 n−2 +...+a 0 ⋅2 0 на 2.
  2. Частное будет равно an−1 ⋅2n−2+...+a1 , а остаток будет равен
  3. Полученное частное опять разделим на 2, остаток от деления будет равен a1.
  4. Если продолжить этот процесс деления, то на n-м шаге получим набор цифр: a 0 ,a 1 ,a 2 ,...,a n−1 , которые входят в двоичное представление исходного числа и совпадают с остатками при его последовательном делении на 2.
  5. Таким образом, для перевода целого десятичного числа в двоичную систему счисления нужно последовательно выполнять деление данного числа и получаемых целых частных на 2 до тех пор, пока не получим частное, которое будет равно нулю.

Исходное число в двоичной системе счисления составляется последовательной записью полученных остатков. Записывать его начинаем с последнего найденного.


Переведём десятичное число 11 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:


Получили 11 10 =1011 2 .

Пример:

Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:



363 10 =101101011 2



Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде

позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел

позаимствовала арабская нация, у них, в свою очередь, взяли европейцы. В Европе эту систему стали

называть арабской.

Позиционная система — значение всех цифр зависит от позиции (разряда) данной цифры в числе.

Примеры, стандартная 10-я система счисления - это позиционная система. Допустим дано число 453.

Цифра 4 обозначает сотни и соответствует числу 400, 5 — кол-во десятков и соответствует значению 50,

а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.

Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Двоичная система счисления.

Здесь только 2 цифры - это 0 и 1. Основание двоичной системы - число 2.

Цифра, которая находится с самого края справа, указывает количество единиц, вторая цифра -

Во всех разрядах возможна лишь одна цифра — или нуль, или единица.

С помощью двоичной системы счисления возможно закодировать всякое натуральное число, представив

это число в виде последовательности нулей и единиц.

Пример: 10112 = 1*2 3 + 0*2*2+1*2 1 +1*2 0 =1*8 + 1*2+1=1110

Двоичную систему счисления, как и десятичную систему счисления , зачастую используют в вычислительной

технике. Текст и числа компьютер хранит в своей памяти в двоичном коде и программным способом преобразует

в изображение на экране.

Сложение, вычитание и умножение двоичных чисел.

Таблица сложения в двоичной системе счисления:

10 (перенос в

старший разряд)

Таблица вычитания в двоичной системе счисления:

(заём из старшего

разряда) 1

Пример сложения «столбиком» (14 10 + 5 10 = 19 10 или 1110 2 + 101 2 = 10011 2):

+ 1 1 1 0
1 0 1
1 0 0 1 1

Таблица умножения в двоичной системе счисления:

Пример умножения «столбиком» (14 10 * 5 10 = 70 10 или 1110 2 * 101 2 = 1000110 2):

* 1 1 1 0
1 0 1
+ 1 1 1 0
1 1 1 0
= 1 0 0 0 1 1 0

Преобразование чисел в двоичной системе счисления.

Для преобразования из двоичной системы в десятичную пользуются следующей таблицей степеней

основания 2:

Начиная с цифры один каждая цифра умножается на 2. Точка, стоящая после 1, называют двоичной точкой .

Преобразование двоичных чисел в десятичные.

Пусть, есть двоичное число 110001 2 . Для перевода в десятичное записываем его в виде суммы по

разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

Немного по другому:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Также хорошо записывать расчет как таблицу:

Двигаемся справа налево. Под всеми двоичными единицами записываем её эквивалент строчкой ниже.

Преобразование дробных двоичных чисел в десятичные.

Задание: перевести число 1011010, 101 2 в десятичную систему.

Записываем заданное число в таком виде:

1*2 6 +0*2 5 +1*2 4 +1*2 3 +0 *2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 -1 + 0 * 2 -2 + 1 * 2 -3 = 90,625

Другой вариант записи:

1*64+0*32+1*16+1*8+0*4+1*2+0*1+1*0,5+0*0,25+1*0,125 = 90,625

Либо в виде таблицы:

0.25

0.125

0.125

Преобразование десятичных чисел в двоичные.

Пусть, необходимо перевести число 19 в двоичное. Можем сдеать это таким образом:

19 /2 = 9 с остатком 1

9 /2 = 4 c остатком 1

4 /2 = 2 без остатка 0

2 /2 = 1 без остатка 0

1 /2 = 0 с остатком 1

То есть, каждое частное делится на 2 и записывается остаток в конец двоичной записи. Деление

продолжается до того момента, когда в частном не будет нуля. Итог пишем справа налево. Т.е. нижняя

цифра (1) будет крайней левой и так далее. Итак, у нас получилось число 19 в двоичной записи: 10011.

Преобразование дробных десятичных чисел в двоичные.

Когда в заданном числе присутствует целая часть, то ее преобразуют отдельно от дробной. Перевод

дробного числа из десятичной системы счисления в двоичную происходит следующим образом:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего

разряда числа в двоичной системе счисления;

  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если

достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над

дробной частью произведения.

Пример : Нужно перевести дробное десятичное число 206,116 в дробное двоичное число.

Переведя целую часть, получаем 206 10 =11001110 2 . Дробная часть 0,116 умножается на основание 2,

заносим целые части произведения в разряды после запятой:

0,116 . 2 = 0,232

0,232 . 2 = 0,464

0,464 . 2 = 0,928

0,928 . 2 = 1,856

0,856 . 2 = 1,712

0,712 . 2 = 1,424

0,424 . 2 = 0,848

0,848 . 2 = 1,696

0,696 . 2 = 1,392

0,392 . 2 = 0,784

Результат: 206,116 10 ≈ 11001110,0001110110 2

Алгоритм перевода чисел из одной системы счисления в другую.

1. Из десятичной системы счисления:

  • делим число на основание переводимой системы счисления;
  • находим остаток от деления целой части числа;
  • записываем все остатки от деления в обратном порядке;

2. Из двоичной системы счисления:

  • для перевода в десятичную систему счисления находим сумму произведений основания 2 на

соответствующую степень разряда;

Для микросхем компьютера важно лишь одно. Либо сигнал есть (1), либо его нет (0). Но записывать программы в двоичном коде - дело нелегкое. На бумаге получаются очень длинные комбинации из нулей и единиц. Человеку их тяжело.

Использование привычной всем десятичной системы в компьютерной документации и программировании очень неудобно. Преобразования из двоичной в десятичную системы и обратно - весьма трудоемкие процессы.

Происхождение восьмеричной системы, так же как и десятичной, связывают со счетом на пальцах. Но считать нужно не пальцы, а промежутки между ними. Их как раз восемь.

Решением проблемы стала восьмеричная . По крайней мере на заре компьютерной техники. Когда разрядность процессоров была невелика. Восьмеричная система позволила с легкостью переводить как двоичные числа в восьмеричные, так и наоборот.

Восьмеричная система счисления - система счисления с основанием 8. Для представления чисел в ней используются цифры от 0 до 7.

Преобразование

Для того чтобы перевести число в двоичное, необходимо заменить каждую цифру восьмеричного числа на тройку из двоичных цифр. Важно лишь запомнить, какая двоичная комбинация соответствует цифрам числа. Их совсем немного. Всего восемь!
Во всех системах счисления, кроме десятичной, знаки читаются по одному. Например, в восьмеричной системе число 610 произносится «шесть, один, ноль».

Видео по теме

У компонентов электронных машин, к которым относятся и компьютеры, есть только два различимых состояния: есть ток и нет тока. Их обозначают "1" и "0" соответственно. Поскольку таких состояний только два, многие процессы и операции в электронике можно описать с помощью двоичных чисел.

Инструкция

Делим десятичное число на два до тех пор, пока не получим неделимый на два остаток. На шаге получим остаток 1 (если число было нечетным) или 0 (если делимое делится на два без остатка). Все эти остатки обязательно должны быть учтены. Последнее частное, полученное в результате такого пошагового деления, всегда будет единицей.
Записываем последнюю единицу в старший разряд искомого двоичного , а полученные в процессе остатки записываем за этой единицей в обратном порядке. Здесь надо быть внимательным и не пропускать нули.
Таким образом, числу 235 в двоичном коде будет соответствовать число 11101011.

Теперь переведем в двоичную систему счисления дробную часть десятичного числа. Для этого последовательно умножаем дробную часть числа на 2 и фиксируем целые полученных . Эти целые части дописываем к полученному в предыдущем шаге числу после двоичной в прямом порядке.
Тогда десятичному дробному числу 235.62 соответствует двоичное дробное 11101011.100111.

Видео по теме

Обратите внимание

Двоичная дробная часть числа будет конечной, только если дробная часть исходного числа конечна и заканчивается на 5. Простейший случай: 0.5 х 2 = 1, следовательно 0.5 в десятичной системе - это 0.1 в двоичной.

Источники:

  • Перевод десятичных чисел в двоичную систему счисления в 2019

Совет 4: Как перевести в десятичную систему двоичные числа

Двоичная или бинарная система счисления применяется для отображения электронной информации. Любое число можно записать в двоичном виде. Двоичная система используется во всех вычислительных машинах. Каждая запись в них кодируется по определенным правилам с помощью набора двух символов: 0 и 1. Перевести двоичное число в его десятичное представление, более удобное пользователю, можно с помощью разработанного алгоритма.

Инструкция

Представьте число в виде записи степеней по 2. Для этого все восемь цифр последовательно умножаем на число 2, возведенное в . Степень должна соответствовать разряду цифры. Разряд считается от нуля, начиная с младшего, самого правого символа двоичного числа . Все восемь составленных произведений запишите в .

Совет 5: Как записывать десятичное число в двоичной системе счисления

Десятичная система счисления – одна из самых распространенных в математической теории. Однако с появлением информационных технологий, двоичная система получила не менее широкое распространение, поскольку она является основным способом представления информации в компьютерной памяти.

Инструкция

Преобразование из десятичной системы в двоичную реализуется как для целых чисел, так и для дробных. Перевод целого десятичного числа производится методом последовательного деления его на 2. При этом количество итераций (действий) увеличивается до тех пор, пока частное не станет равно нулю, а итоговое двоичное число записывается в виде полученных остатков справа налево.

Например, преобразования числа 19 выглядит так:19/2 = 18/2 + 1 = 9, в остатке – 1, пишем 1;9/2 = 8/2 + 1 = 4, в остатке – 1, пишем 1;4/2 = 2, остаток отсутствует, пишем 0;2/2 = 1, остаток отсутствует, пишем 0;1/2 = 0 + 1, в остатке – 1, пишем 1.Итак, после метода последовательного деления к числу 19 получилось двоичное число 10011.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то