Диффузионная емкость p n перехода. Барьерная и диффузионная емкости диода. Способы получения р - n-Перехода

Диффузионная емкость отражает перераспределение зарядов вблизи p-n-перехода и проявляется в основном при прямом смещении перехода. Изменение прямого напряжения на p-n-переходе изменяет величину заряда неравновесных носителей в базе. Это изменение заряда обуславливает диффузионную емкость:

Полупроводниковые диоды

Полупроводниковыми диодами называют электропреобразовательные приборы с одним p-n-переходом, имеющие 2 электрических вывода.

Обозначение диодов на принципиальной схеме зависит от их функционального назначения. Основные типы диодов:

1. силовые (выпрямительные) диоды;

2. опорные диоды (стабилитроны и стабисторы);

3. импульсные диоды;

4. туннельные диоды;

5. варикапы;

6. СВЧ- диоды;

7. магнитодиоды;

8. светодиоды и т.д.

Силовые диоды

Силовые диоды предназначены для выпрямления тока промышленной частоты. В них используются вентильные свойства вольт-амперной характеристики p-n-перехода. На рис.3.1. представлено условное обозначение диода и его вольт-амперная характеристика, совмещенная с характеристикой p-n-перехода.

Основные параметры силовых диодов:

1. I пр. cр. ¾ среднее допустимое значение прямого тока;

2. U пр.ср. ¾ прямое падение напряжения при допустимом прямом токе;

3. U обр. max ¾ допустимое обратное напряжение диода, не приводящее к электрическому пробою;

4. I обр. max ¾ величина обратного тока диода при допустимом обратном напряжении;

5. Р доп. ¾ допустимая мощность, рассеиваемая на приборе;

6. t° раб. max ¾ максимально допустимая рабочая температура;

7. f max ¾ предельная рабочая частота.

Высокочастотные диоды

Высокочастотные диоды предназначены для преобразования переменного тока в однонаправленный при значительных частотах переменного тока (от сотен кГц до до сотен МГц). Основной причиной, обуславливающей невозможность применения для этих целей обычных выпрямительных диодов, является их значительная барьерная емкость. С ростом частоты выпрямляемого сигнала емкостное сопротивление закрытого диода падает, вентильные свойства нарушаются, и диод перестает выполнять свое функциональное назначение. Для устранения этого эффекта (для минимизации емкости перехода) в высокочастотных диодах используется два технологических приема: так называемые точечная и мезосплавная технологии.



Функции высокочастотного диода аналогичны функциям выпрямительного диода. Обозначение высокочастотного диода на электрических схемах совпадает с обозначением выпрямительного диода. Помимо параметров, характерных для выпрямительного диода, добавляется максимальная емкость диода при нулевом обратном напряжении.

СВЧ-диоды (сверхвысокочастотные диоды)

СВЧ-диоды предназначены для преобразования сигналов электрического тока до десятков МГц. Выполняются по точечной технологи.

Импульсные диоды

Обозначение и вольт-амперная характеристика импульсных диодов аналогичны выпрямительным диодам. Импульсные диоды предназначены для работы с сигналами импульсного характера (в режиме переключения), поэтому необходимо учитывать инерционность процессов включения и выключения диодов. Важное значение начинают приобретать время установления прямого напряжения при скачкообразном изменении прямого тока и время восстановления обратного сопротивления при изменении полярности приложенного напряжения. Оба эти фактора определяются скоростью рекомбинационных процессов (временем жизни свободных носителей тока). Для повышения скорости рекомбинационных процессов в полупроводниковые материалы этих диодов вводят примеси, формирующие "ловушки" для свободных носителей тока (золото, никель).

Под воздействием входного импульса положительной полярности (рис.3.2.) происходит инжекция носителей заряда в базовую область диода. Изменение напряжения с прямого на обратное приводит к выбросу обратного тока из-за наличия диффузионной емкости. Выброс обратного тока можно рассматривать как уменьшение обратного сопротивления диода за счет инжектированного заряда.

Основными параметрами импульсного диода являются:

1. t обр = t 2 – t 1 ¾ время восстановления обратного сопротивления, т.е. интервал времени с момента прохождения тока через нуль (после изменения полярности прямого напряжения) до момента достижения обратным током заданного малого значения;

2. t пр = t 4 – t 3 ¾ время установления прямого сопротивления, т.е. интервал времени от момента подачи импульса прямого тока на диод до достижения заданного значения прямого напряжения на нем;

3. R и = U пр. max / I пр. ¾импульсное сопротивление;

4. I пр. max ¾ максимально допустимый импульсный ток;

5. U пр. max ¾ максимальное импульсное прямое напряжение;

6. Р доп. ¾ максимально допустимая мощность рассеивания.

Разновидностью импульсных диодов является диод Шотки , в котором p-n-переход образован структурой полупроводник-металл. Особенностью такого перехода является отсутствие накопления избыточного заряда в базе. Инерционные свойства такого диода связаны с зарядом в барьерной емкости. Обозначение диода Шотки представлено на ри.3.3.

В идеальном обратный ток уже при сравнительно небольшом обратном напряжении не зависит от значения последнего. Однако при исследованиях реальных наблюдается достаточно сильное увеличение обратного гока при увеличении приложенного напряжения, причем в кремниевых структурах обратный ток на 2-3 порядка выше теплового. Такое огличие экспериментальных данных от теоретических объясняется гермогенерацией носителей заряда непосредственно в области и существованием канальных токов и токов утечки.

Канальные токи обусловлены наличием поверхностных энергетических состояний, искривляющих энергетические зоны вблизи поверхности и приводящих к появлению инверсных слоев. Эти слои называют каналами, а токи, протекающие через переход между инверсным слоем и соседней областью, - канальными токами.

Емкости p-n-перехода.

Наряду с электропроводностью -переход имеет и определенную емкость. Емкостные свойства обусловлены наличием по обе стороны от границы электрических зарядов, которые созданы ионами примесей, а также подвижными носителями заряда, находящимися вблизи границы .

Емкость подразделяют на две составляющие: барьерную, отражающую перераспределение зарядов в , и диффузионную, отражающую перераспределение зарядов вблизи . При прямом смещении перехода в основном проявляется диффузионная емкость, при обратном (режим экстракции) заряды вблизи (в базе) меняются мало и основную роль играет барьерная емкость.

Так как внешнее напряжение влияет на ширину , значение пространственного заряда и концентрацию инжектированных носителей заряда, то емкость зависит от приложенного напряжения и его полярности.

Барьерная емкость обусловлена наличием в -переходе ионов донорной и акцепторной примесей, которые образуют как бы две заряженные обкладки конденсатора. При изменении запирающего напряжения, например увеличении, ширина -перехода увеличивается и часть подвижных носителей заряда (электронов в области и дырок в области ) отсасывается электрическим полем от слоев, прилегающих к переходу. Перемещение этих носителей заряда вызывает в цепи ток

где - изменение заряда обедненного слоя -перехода. Этот ток становится равным нулю по окончании переходного процесса изменения границ -перехода.

Величину для резкого перехода можно определить из приближенного выражения

где - площадь и толщина при .

С увеличением приложенного обратного напряжения U барьерная емкость уменьшается из-за увеличения толщины перехода (рис. 2.10, а).

Зависимость называют вольт-фарадной характеристикой.

При подключении к p-n-переходу прямого напряжения барьерная емкость увеличивается вследствие уменьшения . Однако в этом случае приращение зарядов за счет инжекции играет большую роль и емкость -перехода определяется в основном диффузионной составляющей емкости.

Диффузионная емкость отражает физический процесс изменения концентрации подвижных носителей заряда, накопленных в областях, вследствие изменения концентрации инжектированных носителей.

Влияние диффузионной емкости можно пояснить следующим примером.

Пусть через протекает прямой ток, обусловленный инжекцией дырок в базовую область. В базе накоплен заряд, созданный неосновными носителями, пропорциональный этому току, и заряд основных носителей, обеспечивающий электронейтральность полупроводника. При быстром изменении полярности приложенного напряжения инжектированные дырки не успевают рекомбинировать и под действием обратного напряжения переходят назад в область эмиттера. Основные носители заряда движутся в противоположную сторону и уходят по шине питания. При этом обратный ток сильно увеличивается. Постепенно дополнительный заряд дырок в базе исчезает (рассасывается) за счет рекомбинации их с электронами и возвращения в -область. Обратный ток уменьшается до статического значения (рис. 2.10. б).

Рис. 2.10. Вольт-фарадные характеристики (а) и изменение тока при изменении полярности напряжения (о): 1 - плавный переход; 2 - резкий переход

Переход ведет себя подобно емкости, причем заряд диффузионной емкости пропорционален прямому току, протекавшему ранее через -переход.


Полупроводниковый диод инерционен по отношению к достаточно быстрым изменениям тока или напряжения, поскольку новое распределение носителей устанавливается не сразу. Как известно, внешнее напряжение меняет ширину перехода, а значит, и величину объемных зарядов в переходе. Кроме того, при инжекции или экстракции меняются заряды в области базы (роль зарядов в эмиттере мало существенна). Следовательно, диод обладает емкостью, которую можно считать подключенной параллельно p-n переходу. Эту емкость можно разделить на две составляющие: барьерную емкость , отражающую перераспределение зарядов в переходе, и диффузионную емкость , отражающую перераспределение зарядов в базе. Такое разделение в общем условное, но оно удобно на практике, поскольку соотношение обеих емкостей различно при разных полярностях приложенного напряжения. При прямом напряжении главную роль играют избыточные заряды в базе и соответственно - диффузионная емкость. При обратном напряжении избыточные заряды в базе малы и главную роль играет барьерная емкость. Заметим заранее, что обе емкости не линейны: диффузионная емкость зависит от прямого тока, а барьерная - от обратного напряжения.

Определим величину барьерной емкости, считая переход несимметричным типа n + -p. Тогда протяженность отрицательного заряда в базе р-типа можно считать равной всей ширине перехода: . Запишем модуль этого заряда:

где N - концентрация примеси в базе; S - площадь перехода. Такой же (но положительный) заряд будет в эмиттерном слое.

Представим, что эти заряды расположены на обкладках воображаемого конденсатора, емкость которого можно определить как

Учитывая выражение ширины перехода при обратном включении, и дифференцируя заряд Q по напряжению, окончательно получаем:

(7.10)

где и соответственно ширина и высота потенциального барьера при равновесном состоянии.

Имея в виду, что диод обладает емкостью, можно составить его полную эквивалентную схему для переменного тока (рис.3.10а).

Сопротивление R 0 в этой схеме представляет суммарное сравнительно небольшое сопротивление n- и p- областей и контактов этих областей с выводами. Нелинейное сопротивление R нл при прямом включении равно R пр, т.е. невелико, а при обратном напряжении R нл = R обр, т.е. оно очень большое. Приведенная эквивалентная схема в различных частотных случаях может быть упрощена. На низких частотах емкостное сопротивление очень велико и емкость можно не учитывать. Тогда при прямом смещении в эквивалентной схеме остаются лишь сопротивления R 0 и R пр (рис.7.5б),

Рис.7.5б. Рис.7.5в.

а при обратном напряжении – только сопротивление R обр, так как R 0 << R обр (рис.7.5в).

На высоких частотах емкости имеют сравнительно небольшое сопротивление. Поэтому при прямом напряжении получается схема по рис.7.5г, (если частота не очень высокая, то С диф практически не влияет),

Рис.7.5г. Рис.7.5д.

а при обратном остаются R обр и С б (рис.7.5д).

Следует иметь ввиду, что существует еще емкость С в между выводами диода, которая может заметно шунтировать диод на очень высоких частотах. На СВЧ может также проявляться индуктивность выводов.

Классификация диодов.

Классификация диодов проводится в основном:

1) по технологическим методам создания электрических переходов и диодных структур

2) по выполняемой функции диодов.

По технологии изготовления диоды могут быть точечными и плоскостными. Основные характеристики точечных диодов: площадь p-n-перехода мала, имеют малую емкость (менее 1пФ), малые токи (не более 1 или десятков мА). Применяются на высоких частотах вплоть до свч. Технология: к пластинке германия n-типа или кремния n-типа приваривается при помощи большого импульса тока вольфрамовая нить, покрытая акцепторной примесью (для германия- индий, для кремния- алюминий).

Плоскостные диоды: технология изготовления может быть либо вплавление, либо диффузия. При вплавлении на очищенную поверхность полупроводниковой пластинки обычно n-типа помещается таблетка металлического акцепторного материала, например алюминий, если полупроводник кремний. При нагревании до 600…700 0 С она расплавляется и растворяет в себе прилегающий слой кремния, температура плавления которого значительно выше. После охлаждения у поверхности пластинки слой кремния р + -типа, насыщенный алюминием (эмиттер р-типа, база- n-типа). Диффузия: примесные атомы поступают обычно из газовой среды в полупроводниковую пластинку через ее поверхность при высокой температуре (около 1000 0) и распространяются вглубь вследствие диффузии, т.е. теплового движения. Процесс осуществляется в специальных диффузионных печах, где с высокой точностью поддерживается температура и время процесса. Чем больше время и температура, тем дальше примеси проникают в глубь пластины. Диффузионный p-n-переход получается плоским, а его площадь велика и равна площади исходной пластины, рабочие токи достигают десятков ампер.

По выполняемой функции различают диоды выпрямительные, импульсные, преобразовательные, переключательные, детекторные диоды, стабилитроны, варикапы и т.д. Отдельные классы диодов могут подразделяться на подклассы в зависимости от диапазона рабочих частот (низкочастотные, высокочастотные, СВЧ-диоды, диоды оптического диапазона). Различают диоды также по полупроводниковому материалу: наиболее широко применяется кремний, вытесняющий распространенный ранее германий. Кремниевые диоды имеют большую максимальную рабочую температуру (Si – 125…150 0 C, Ge – 70…80 0 C) и на несколько порядков меньший обратный ток. Непрерывно увеличивается число диодов на арсениде галлия (в частности, металл-полупроводниковых), превосходящих по параметрам кремниевые диоды.

Рассмотрим некоторые типы диодов и их основные параметры.

1.Выпрямительные низкочастотные диоды . Они используются в источниках питания для выпрямления переменного тока.

Основными электрическими параметрами диода являются величины U пр.ср при заданном I пр.ср, а также I обр.ср при заданном амплитудном (максимальном) значении обратного напряжения (U обр.макс) (U пр.ср и I обр.ср – средние значения прямого напряжения и обратного тока за период). Для кремниевых диодов с p-n переходом, имеющих наибольшее распространение, U пр.ср не превышает 1..1,5В при Т=20 0 С. С ростом температуры эта величина уменьшается, причем ТКН зависит значения прямого тока; с ростом тока уменьшается, а при большом токе может стать даже положительным. Обратный ток кремниевых диодов при Т=20 0 С, как правило, не превышает десятых долей мкА, и увеличивается с ростом температуры (температура удвоения около 10 0 С). При Т=20 0 С обратным током можно пренебречь. Напряжение пробоя кремниевых диодов составляет сотни вольт и увеличивается с ростом температуры.

Прямое напряжение кремниевых диодов с переходом металл-полупроводник примерно в два раза меньше, чем в диодах с p-n переходом. А обратный ток несколько больше и сильнее зависит от температуры, удваиваясь на каждые 6..8 0 С.

При выборе типа диода учитывают предельно допустимый выпрямленный ток, обратное напряжение и температуру. В зависимости от допустимого тока различают диоды малой (<300мА), средней (<1А) и большой (>10А) мощности. Предельное обратное напряжение ограничено пробоем перехода и лежит в пределах от 50 до 1500В. Для увеличения допустимого обратного напряжения диоды соединяют последовательно. Несколько последовательно соединенных диодов, изготовленных в едином технологическом цикле и заключенных в общий корпус, называют выпрямительным столбом. Максимальная рабочая температура кремниевых диодов достигает 125..50 0 С и ограничена ростом обратного тока.

Маломощные диоды с небольшой площадью p-n перехода (менее 1мм 2) создают методом вплавления, мощные – с большой площадью - методом диффузии. Силовые диоды с p-n переходом могут работать до частот обычно не более 1кГц, а диоды с переходом металл- полупроводник – до частот в сотни кГц.

Германиевые диоды имеют прямое напряжение примерно в 1,5..2 раза меньше, чем кремниевые (обычно не более0,5 В) из-за меньшей ширины запрещенной зоны. Оно в основном определяется падением напряжения на сопротивлении базы, в этом случае ТК U пр >0. Обратный ток при Т=20 0 С на 2..3 порядка больше, чем в кремниевых диодах, и сильнее зависит от температуры. Удваиваясь на каждые 8 0 С, в связи с этим максимальная рабочая температура значительно ниже (70…80 0 С).

Тепловой механизм пробоя ведет к тому, что германиевые диоды выходят из строя даже при кратковременных импульсных перегрузках. Это является существенным недостатком. Напряжение пробоя уменьшается с ростом температуры.

Из-за малой площади перехода предельно допустимые прямые токи высокочастотных диодов невелики (обычно менее 100мА), пробивные напряжения, как правило, не превышают 100В.

3. Импульсные диоды. Предназначены для работы в импульсном режиме, т.е. в устройствах формирования и преобразования импульсных сигналов, ключевых и цифровых схемах.

Важнейшим параметром импульсных диодов является время восстановления обратного сопротивления. Оно характеризует переходный процесс переключения диода из состояния с заданным прямым током I пр в состояние с заданным обратным напряжением U обр. На рис.7.6 показаны временные диаграммы напряжения и тока через диод.

Время восстановления t вос отсчитывается момента t 1 изменения напряжения на диоде с прямого на обратное до момента t 2 , когда обратное напряжение достигнет значения 0,1 пр. Время восстановления в диоде с p-n переходом определяется временем рассасывания заряда, накопленных в базе до переключения (до момента t 1), а также процессом перезаряда барьерной емкости. В импульсных диодах время восстановления должно быть как можно меньше; необходимо снижать время жизни неосновных носителей в базе, для чего кремниевые диоды с p-n переходом легируются золотом. Но для кремниевых диодов не удается получить время восстановления порядка менее 1нс. В арсениде галлия время жизни гораздо меньше, чем в кремнии, и в диодах с p-n переходом удается получить t вос порядка 0,1 нс. Снижение барьерной емкости достигается уменьшением площади перехода. Наименьшее время восстановления (t вос <0.1нс) имеют диоды с переходом металл-полупроводник, в которых отсутствует накопление неосновных носителей при протекании прямого тока. В них время восстановления порядка C б r б определяется процессом перезаряда барьерной емкости перехода через сопротивление базы.

Для всех импульсных диодов указывается емкость при определенном обратном напряжении и частоте переменного сигнала, используемого при измерении. Минимальные значения емкости составляют 0,1…1 пФ.

К специфическим параметрам импульсных диодов относятся максимальный импульсный обратный ток I обр.и.макс и максимальное импульсное сопротивление r пр.и.макс, равное отношению максимального прямого напряжения в процессе его установления к к прямому току. Значения этих величин желательно иметь как можно меньше.

Для импульсных диодов важны также и статические параметры, определяющие установившиеся значения тока и напряжений в схемах. К ним относятся прямое напряжение при заданном прямом токе и обратный ток при определенном обратном напряжении.

4. Стабилитроны. Стабилитроном называется полупроводниковый диод, предназначенный для стабилизации напряжений в схемах. стабилитроны используются в источниках питания, ограничителях, фиксаторах уровня, источниках опорного напряжения и других устройствах. Принцип действия стабилитронов основан на использовании лавинного или туннельного пробоя в p-n переходе. На рис.7.7 дана типичная вольт-амперная характеристика стабилитрона при обратном напряжении.

На участке пробоя – рабочем участке ВАХ напряжение очень слабо зависит от тока. Минимальное значение рабочего тока I ст.мин соответствует началу «вертикального» участка ВАХ, где достигается малое дифференциальное сопротивление r диф =ΔU/ΔI. Максимальный ток I ст.мах определяется допустимой рассеиваемой мощностью. Основной параметр – напряжение стабилизации U ст, практически равное напряжению пробоя, задается при определенном значении тока I ст на рабочем участке.

Схема включения стабилитрона приведена на рис.7.8.

Здесь R огр – ограничивающий резистор; R н – резистор нагрузки, напряжение на котором U н = U ст. Ток, протекающий через ограничивающий резистор, равен I=(E-U ст)/R огр, а ток через стабилитрон I ст =I-I н, где I н = U ст /R н, что соответствует рабочей точки с на рис.3.11. Если напряжение источника питания отклоняется на величину от номинального значения, ток через стабилитрон изменяется на Δ I ст = ΔE)/R огр при r диф <<(R огр ││ R н) и рабочая точка перемещается в пределах участка C ’ C”; напряжение на нагрузке изменяется на очень малую величину

(7.11)

Если изменяется ток нагрузки и. следовательно, нагрузки на величину Δ I н, то примерно так же изменится ток через стабилитрон и Δ U=- r диф ΔI н. Знак «-» означает, что увеличении тока нагрузки ток стабилитрона уменьшается. Для получения хорошей стабилизации дифференциальное сопротивление должно быть как можно меньше.

Напряжение пробоя p-n перехода уменьшается с ростом концентрации примесей базы. Для приборов различных типов U ст может составлять от 3 до 200В.

Влияние температуры оценивается температурным коэффициентом напряжения стабилизации ТКН, который характеризует изменение напряжения U ст при изменении температуры на один градус, т.е.

(7.12)

Температурный коэффициент напряжения может быть от 10 -5 до 10 -3 К -1 . Значение U ст и знак ТКН зависят от удельного сопротивления основного полупроводника. Стабилитроны на напряжение до 7В изготавливаются из кремния с малым удельным сопротивлением, т.е. с большой концентрацией примесей. В этих стабилитронах p-n переход имеет малую толщину, в нем действует поле с высокой напряженностью и пробой происходит главным образом за счет туннельного эффекта. При этом ТКН получается отрицательным. Если же применен кремний с меньшей концентрацией примесей, то p-n переход будет толще. Его пробой возникает при более высоких напряжениях и является лавинным. Для таких стабилитронов характерен положительный ТКН.

Температурный коэффициент стабилизации высоковольтных стабилитронов может быть уменьшен на 1…2 порядка, с помощью термостабилизации. Для этого обратно включенному p-n переходу стабилитрона соединяют последовательно с одним или двумя p-n переходами, включенными в прямом направлении. Известно, что прямое напряжение на p-n переходе уменьшается при повышении температуры, что компенсирует увеличение напряжения пробоя. Такие термокомпенсированные стабилитроны называются прецизионными. Они применяются в качестве источников опорного напряжения.

Наиболее часто стабилитрон работает в таком режиме, когда напряжение источника нестабильно, а сопротивление нагрузки R н постоянно. Для установления и поддержания правильного режима стабилизации в этом случае сопротивление R огр должно иметь определенное значение. Обычно R огр рассчитывают для средней точки с характеристики стабилитрона. Если напряжение Е меняется от E min до E max , то можно R огр найти по следующей формуле

(7.13)

где Е ср =0,5(Е min + Е max) – среднее напряжение источника;

I ср =0,5(I min + I max) – средний ток стабилитрона;

I н = U ст /R н – ток нагрузки.

Если напряжение Е станет изменяться в ту или другую сторону, то будет изменяться ток стабилитрона, но напряжение на нем, а следовательно, и на нагрузке будет почти постоянным. Поскольку все изменения напряжения источника должны поглощаться ограничительным резистором, то наибольшее изменение этого напряжения, равное E max - E min , должно соответствовать наибольшему возможному изменению тока, при котором еще сохраняется стабилизация, т.е. I max - I min . Отсюда следует, что если значение Е изменяется на ΔЕ, то стабилизация будет осуществляться только при соблюдении условия

Второй возможный режим стабилизации применяется в том случае, когда E=const, а R н изменяется в пределах от R н min до R н max . Для такого режима R огр можно определить по средним значениям токов по формуле

(7.15)

I н ср =0,5(I н min + I н max) , причем I н min = U ст /R н max и I н max = U ст /R н min .

Для получения более высоких стабильных напряжений применяется последовательное соединение стабилитронов, рассчитанных на одинаковые токи.

5. Варикапы. Варикапами называют диоды, принцип действия которых основан на зависимости барьерной емкости p-n перехода от обратного напряжения. Таким образом. Варикапы представляют собой конденсаторы переменной емкости, управляемые не механически, а электрически, т.е. изменением обратного напряжения. Они применяются в качестве элементов с электрически управляемой емкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.

Простейшая схема включения варикапа для настройки частоты колебательного контура представлена на рис.7.9.

Управляющее напряжение U подается на варикап VD через высокоомный резистор R, который уменьшает шунтирование варикапа и колебательного контура источником напряжения. Для устранения постоянного тока через элемент индуктивности колебательный контур подключается параллельно варикапу через разделительный конденсатор С р большой емкости. Изменяя величину обратного напряжения и, следовательно, емкость варикапа и суммарную емкость колебательного контура, изменяют резонансную частоту последнего.

Основным полупроводниковым материалом для изготовления варикапа служит кремний, используется также арсенид галлия, обеспечивающий меньшее сопротивление базы.

К электрическим параметрам варикапа относятся емкость при номинальном, максимальном и минимальном напряжениях, измеренная на заданной частоте, коэффициент перекрытия по емкости, добротность, частотный диапазон, температурные коэффициенты емкости и добротности. В разных типах варикапов номинальная емкость может лежать в пределах от несколько единиц до несколько сотен пикофарад.

Диффузионная емкость – это виртуальная емкость, с помощью которой моделируют эффект конечного времени «рассасывания» неравновесного заряда неосновных носителей в высокоомной части p-n- перехода.

Если, как и ранее, рассматривать случай, когда область р является более высокоомной, т. е.

n n >> p n ,

то в области р электроны являются неосновными носителями и их равновесная концентрация мала. При подаче прямого смещения электроны – основные носители слоя n – в огромном количестве переходят в слой р , создавая там объемный заряд неравновесных неосновных носителей.

Если резко сменить приложенное напряжение на запирающее, то переход электронов из n -области прекратится, но электроны слоя n , оказавшиеся в р- слое (неравновесный объемный заряд), будут, как неосновные носители, возвращаться в слой n , пока объемный заряд неосновных носителей в р- области не уменьшится до равновесного. Физически это означает, что в течение некоторого времени после смены напряжения с прямого на обратное через p-n- переход будет протекать обратный ток, намного больший равновесного значения I S (рис. 3.12, а ).

Рис. 3.12. Проявление диффузионной емкости p-n- перехода:

а – при низкой скорости изменения сигнала;

б – при высокой скорости изменения сигнала

На рис. 3.12, б показано, как диффузионная емкость при высокой частоте изменения напряжения приводит к потере свойства односторонней проводимости p-n -перехода. Очевидно, что чем больше величина прямого тока, тем больше неравновесный заряд, тем больше времени необходимо для его рассасывания (разряда диффузионной емкости), тем больше инерционность p-n- перехода.

3.7. Пробой p-n -перехода

Увеличение обратного напряжения до некоторого критического значения вызывает явление лавинообразного нарастания обратного тока, которое, если не принять мер по его ограничению, вызовет разрушение p-n- перехода. Это явление называется пробоем. Физический механизм пробоя достаточно сложен, и его условно можно разделить на два типа: тепловой и электрический .

Тепловой пробой

Тепловой пробой можно упрощенно представить следующей схемой: при протекании обратного тока на p-n- переходе выделяется мощность Р=U 0 I 0 , что приводит к нагреву объема полупроводника. Возникает положительная тепловая связь, которая, если не обеспечить температурного равновесия (за счет эффективного отвода тепла), приведет к тепловому разрушению p-n- перехода. Предотвращение теплового пробоя является серьезной инженерной задачей и достигается за счет ограничения величины обратного напряжения и обеспечения хорошего отвода тепла от p-n -перехода (установка p-n -перехода на теплоотводящие пластины-радиаторы, активное вентилирование).

Наличие в р–n-переходе ионов примесей и подвижных носителей заряда, находящихся вблизи границы перехода, обуславливает его емкостные свойства.

Имеются две составляющие емкости р–n-перехода: барьерная (зарядная) Cбар и диффузионная Cдиф. Барьерная емкость обусловлена наличием в p-n-переходе ионов донорной и акцепторной примесей, p- и n- области образуют как бы 2 заряженные обкладки конденсатора, а сам обедненный слой служит диэлектриком. В общем случае зависимость зарядной емкости от приложенного к p-n-переходу обратного напряжения выражается формулой.

где C 0 – емкость р–n перехода при Uобр=0.

γ - коэффициент, зависящий от типа р–n перехода (для резких переходов γ = 1/2, а для плавных γ = 1/3). Из этого выражения видно, что с увеличением обратного напряжения барьерная емкость уменьшается. Т.е. при увеличении обратного напряжения толщина обедненного слоя p-n-перехода возрастает, обкладки конденсатора как бы раздвигаются, и емкость его падает. Это свойство барьерной емкости позволяет использовать переход как емкость, управляемую величиной обратного напряжения.

Зависимость емкости от приложенного напряжения называется вольт-фарадной характеристикой. Где кривая 1-планый p-n-переход, 2- резкий.

Диффузионная емкость обусловлена изменением числа неравновесных носителей заряда в p-и n-областях (кривая 3).

Iпр - прямой ток, протекающий через переход, τ – время жизни инжектированных неравновесных носителей.

При переходе в область прямых напряжений возрастает не только барьерная емкость, но и емкость, обуловленная накоплением неравновесного заряда в p- и n-областях перехода. Накопленные носители в р– и n–областях быстро рекомбинируют, следовательно диффузионная емкость уменьшается во времени. Скорость спада зависит от времени жизни τ неравновесных носителей заряда. Диффузионная емкость всегда зашунтирована малым прямым сопротивлением р–n перехода и во многом определяет быстродействие полупроводниковых элементов.

Эквивалентная схема p-n-перехода – математическая модель, которая используется для анализа электронных схем, которые включают п/п диоды.

Параметры Lв – индуктивность выводов и Ск – емкость корпуса используются когда структура размещена в корпусе.

Эквивалентная схема для обратного включения перехода выглядит по-другому:

При больших прямых токах из эквивалентной схемы можно исключить Сб.

16. Классификация п/п диодов. Система обозначений. Условные графические обозначения п/п диодов.

Полупроводниковым диодом называется электропреобразовательный прибор, содержащий один или несколько переходов и два вывода для подключения к внешней цепи.

П/п диоды классифицируются: по роду исходного материала, конструкторско-технологическим особенностям, назначению и т.д. По типу исходного материала диоды бывают: германиевые, кремниевые, селеновые, карбид-кремниевые, арсенид-галлиевые и др. По конструкторско-технологическим особенностям: точечные, сплавные, микросплавные, диффузионные, эпитаксиальные, с барьером Шоттки, поликристаллические и др. По назначению делятся на: 1. Выпрямительные (силовые), предназначенные для преобразования переменного напряжения источников питания промышленной частоты в постоянное. 2. Стабилитроны (опорные диоды), предназначенные для стабилизации напряжений, имеющие на обратной ветви ВАХ участок со слабой зависимостью напряжения от протекающего тока. 3. Варикапы, предназначенные для работы в быстродействующих импульсных системах. 5. Туннельные и обращенные диоды, предназначенные для усиления, генерирования и переключения высокочастотных колебаний. 6. Сверхвысокочастотные, предназначенные для преобразования, переключения, генерирования сверхвысокочастотных колебаний. 7. Светодиоды, предназначенные для преобразования электрического сигнала в световую энергию. 8. Фотодиоды, предназначенные для преобразования световой энергии в электрический сигнал. Система обозначений. Она стоит из буквенных и цифровых элементов. Первым элементом обозначения является буква или цифра, определяющая исходный материал диода: Г или 1 – германий или его соединения; К или 2 – кремний или его соединения; А или 3 – арсенид галлия и соединения галлия; Второй элемент – буква, указывающая назначение диода: Д – выпрямительные, импульсные; С – стабилитроны; В – варикапы; И – туннельные, обращенные; А – сверхвысокочастотные; Л – светодиоды; Ф – фотодиоды. Третий элемент – цифра, указывающая на энергетические особенности диода. Четвертый элемент – две цифры, указывающие номер разработки. Пятый элемент – буква, характеризующая специальные параметры диода. Условные графические изображения.

Выводы диода называются анод и катод. Анод – вывод электронного прибора, к которому прямой ток течет из внешней электрической цепи. Катод – вывод электронного прибора, от которого прямой ток течет во внешнюю электрическую цепь. Стрелка в обозначении диода указывает на n-область перехода.

"
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то