Эталонная модель ISO OSI. Эталонная модель BPM

Сетевая модель OSI (англ.open systems interconnection basic reference model - базовая эталонная модельвзаимодействия открытых систем) -сетевая модельстекасетевых протоколовOSI/ISO.

В связи с затянувшейся разработкой протоколов OSI, в настоящее время основным используемым стеком протоколов является TCP/IP, он был разработан ещё до принятия модели OSI и вне связи с ней.

Модель OSI

Тип данных

Уровень (layer)

Функции

7. Прикладной (application)

Доступ к сетевым службам

6. Представительский (presentation)

Представление и шифрование данных

5. Сеансовый (session)

Управление сеансом связи

Сегменты / Дейтаграммы

4. Транспортный (transport)

Прямая связь между конечными пунктами и надежность

3. Сетевой (network)

Определение маршрута и логическая адресация

2. Канальный (data link)

Физическая адресация

1. Физический (physical)

Работа со средой передачи, сигналами и двоичными данными

Уровни модели osi

В литературе наиболее часто принято начинать описание уровней модели OSI с 7-го уровня, называемого прикладным, на котором пользовательские приложения обращаются к сети. Модель OSI заканчивается 1-м уровнем - физическим, на котором определены стандарты, предъявляемые независимыми производителями к средам передачи данных:

    тип передающей среды (медный кабель, оптоволокно, радиоэфир и др.),

    тип модуляции сигнала,

    сигнальные уровни логических дискретных состояний (нуля и единицы).

Любой протокол модели OSI должен взаимодействовать либо с протоколами своего уровня, либо с протоколами на единицу выше и/или ниже своего уровня. Взаимодействия с протоколами своего уровня называются горизонтальными, а с уровнями на единицу выше или ниже - вертикальными. Любой протокол модели OSI может выполнять только функции своего уровня и не может выполнять функций другого уровня, что не выполняется в протоколах альтернативных моделей.

Каждому уровню с некоторой долей условности соответствует свой операнд - логически неделимый элемент данных, которым на отдельном уровне можно оперировать в рамках модели и используемых протоколов: на физическом уровне мельчайшая единица - бит, на канальном уровне информация объединена в кадры, на сетевом - в пакеты (датаграммы), на транспортном - в сегменты. Любой фрагмент данных, логически объединённых для передачи - кадр, пакет, датаграмма - считается сообщением. Именно сообщения в общем виде являются операндами сеансового, представительского и прикладного уровней.

К базовым сетевым технологиям относятся физический и канальный уровни.

Прикладной уровень

Прикладной уровень (уровень приложений) - верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:

    позволяет приложениям использовать сетевые службы:

    • удалённый доступ к файлам и базам данных,

      пересылка электронной почты;

    отвечает за передачу служебной информации;

    предоставляет приложениям информацию об ошибках;

    формирует запросы к уровню представления.

Протоколы прикладного уровня: RDP HTTP (HyperText Transfer Protocol), SMTP (Simple Mail Transfer Protocol), SNMP (Simple Network Management Protocol), POP3 (Post Office Protocol Version 3), FTP (File Transfer Protocol), XMPP, OSCAR,Modbus, SIP,TELNETи другие.

Представительский уровень

Представительский уровень (уровень представления; англ.presentation layer ) обеспечивает преобразование протоколов и шифрование/дешифрование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Уровень представлений обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой.

Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC, например, это может бытьмейнфреймкомпанииIBM, а другая - американский стандартный код обмена информациейASCII(его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от приема несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных.

Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT- формат изображений, применяемый для передачи графики QuickDraw между программами. Другим форматом представлений является тэгированный формат файлов изображенийTIFF, который обычно используется для растровых изображений с высокимразрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандартJPEG.

Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (MIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандартMPEG.

Протоколы уровня представления: AFP - Apple Filing Protocol, ICA -Independent Computing Architecture, LPP - Lightweight Presentation Protocol, NCP -NetWare Core Protocol, NDR -Network Data Representation, XDR -eXternal Data Representation, X.25 PAD -Packet Assembler/Disassembler Protocol.

Сеансовый уровень

Сеансовый уровень (англ.session layer ) модели обеспечивает поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений.

Протоколы сеансового уровня: ADSP, ASP, H.245, ISO-SP (OSI Session Layer Protocol (X.225, ISO 8327)), iSNS, L2F, L2TP, NetBIOS, PAP (Password Authentication Protocol), PPTP, RPC, RTCP, SMPP, SCP (Session Control Protocol), ZIP (Zone Information Protocol), SDP (Sockets Direct Protocol)..

Транспортный уровень

Транспортный уровень (англ.transport layer ) модели предназначен для обеспечения надёжной передачи данных от отправителя к получателю. При этом уровень надёжности может варьироваться в широких пределах. Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных. Например, UDPограничивается контролем целостности данных в рамках одной датаграммы и не исключает возможности потери пакета целиком или дублирования пакетов, нарушения порядка получения пакетов данных;TCPобеспечивает надёжную непрерывную передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и, наоборот, склеивая фрагменты в один пакет.

Протоколы транспортного уровня: ATP, CUDP, DCCP, FCP, IL, NBF, NCP, RTP, SCTP, SPX, SST, TCP (Transmission Control Protocol), UDP (User Datagram Protocol).

Сетевой уровень

Сетевой уровень (англ.network layer ) модели предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и «заторов» в сети.

Протоколы сетевого уровня маршрутизируют данные от источника к получателю. Работающие на этом уровне устройства (маршрутизаторы) условно называют устройствами третьего уровня (по номеру уровня в модели OSI).

Протоколы сетевого уровня: IP/IPv4/IPv6 (Internet Protocol), IPX, X.25, CLNP (сетевой протокол без организации соединений), IPsec (Internet Protocol Security). Протоколы маршрутизации - RIP, OSPF.

Канальный уровень

Канальный уровень (англ.data link layer ) предназначен для обеспечения взаимодействия сетей по физическому уровню и контролем над ошибками, которые могут возникнуть. Полученные с физического уровня данные, представленные в битах, он упаковывает в кадры, проверяет их на целостность и, если нужно, исправляет ошибки (формирует повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием.

Спецификация IEEE 802разделяет этот уровень на два подуровня:MAC(англ.media access control ) регулирует доступ к разделяемой физической среде, LLC(англ.logical link control ) обеспечивает обслуживание сетевого уровня.

На этом уровне работают коммутаторы,мостыи другие устройства. Эти устройства используют адресацию второго уровня (по номеру уровня в модели OSI).

Протоколы канального уровня- ARCnet,ATMEthernet,Ethernet Automatic Protection Switching(EAPS),IEEE 802.2,IEEE 802.11wireless LAN,LocalTalk, (MPLS),Point-to-Point Protocol(PPP),Point-to-Point Protocol over Ethernet(PPPoE),StarLan,Token ring,Unidirectional Link Detection(UDLD),x.25.

Физический уровень

Физический уровень (англ.physical layer ) - нижний уровень модели, который определяет метод передачи данных, представленных в двоичном виде, от одного устройства (компьютера) к другому. Осуществляют передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов.

На этом уровне также работают концентраторы,повторителисигнала имедиаконвертеры.

Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом. К физическому уровню относятся физические, электрические и механические интерфейсы между двумя системами. Физический уровень определяет такие виды сред передачи данных как оптоволокно,витая пара,коаксиальный кабель, спутниковый канал передач данных и т. п. Стандартными типами сетевых интерфейсов, относящимися к физическому уровню, являются:V.35,RS-232,RS-485, RJ-11,RJ-45, разъемыAUIиBNC.

Протоколы физического уровня: IEEE 802.15 (Bluetooth),IRDA,EIARS-232,EIA-422,EIA-423,RS-449,RS-485,DSL,ISDN,SONET/SDH,802.11Wi-Fi,Etherloop,GSMUm radio interface,ITUиITU-T,TransferJet,ARINC 818,G.hn/G.9960.

Семейство TCP/IP

Семейство TCP/IPимеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных;UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмендатаграммамимежду приложениями, не гарантирующий получения данных; иSCTP, разработанный для устранения некоторых недостатков TCP, в который добавлены некоторые новшества. (В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протоколICMP, используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами).

Семейство IPX/SPX

В семействе IPX/SPXпорты (называемые сокетами или гнёздами) появляются в протоколе сетевого уровня IPX, обеспечивая обмендатаграммамимежду приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

В качестве адреса хоста IPX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Модель TCP/IP (5 уровней)

    Прикладной (5) уровень (Application Layer) или уровень приложений обеспечивает услуги, непосредственно поддерживающие приложения пользователя, например, программные средства передачи файлов, доступа к базам данных, средства электронной почты, службу регистрации на сервере. Этот уровень управляет всеми остальными уровнями. Например, если пользователь работает с электронными таблицами Excel и решает сохранить рабочий файл в своей директории на сетевом файл-сервере, то прикладной уровень обеспечивает перемещение файла с рабочего компьютера на сетевой диск прозрачно для пользователя.

    Транспортный (4) уровень (Transport Layer) обеспечивает доставку пакетов без ошибок и потерь, а также в нужной последовательности. Здесь же производится разбивка на блоки передаваемых данных, помещаемые в пакеты, и восстановление принимаемых данных из пакетов. Доставка пакетов возможна как с установлением соединения (виртуального канала), так и без. Транспортный уровень является пограничным и связующим между верхними тремя, сильно зависящими от приложений, и тремя нижними уровнями, сильно привязанными к конкретной сети.

    Сетевой (3) уровень (Network Layer) отвечает за адресацию пакетов и перевод логических имен (логических адресов, например, IP-адресов или IPX-адресов) в физические сетевые MAC-адреса (и обратно). На этом же уровне решается задача выбора маршрута (пути), по которому пакет доставляется по назначению (если в сети имеется несколько маршрутов). На сетевом уровне действуют такие сложные промежуточные сетевые устройства, как маршрутизаторы.

    Канальный (2) уровень или уровень управления линией передачи (Data link Layer) отвечает за формирование пакетов (кадров) стандартного для данной сети (Ethernet, Token-Ring, FDDI) вида, включающих начальное и конечное управляющие поля. Здесь же производится управление доступом к сети, обнаруживаются ошибки передачи путем подсчета контрольных сумм, и производится повторная пересылка приемнику ошибочных пакетов. Канальный уровень делится на два подуровня: верхний LLC и нижний MAC. На канальном уровне работают такие промежуточные сетевые устройства, как, например, коммутаторы.

    Физический (1) уровень (Physical Layer) – это самый нижний уровень модели, который отвечает за кодирование передаваемой информации в уровни сигналов, принятые в используемой среде передачи, и обратное декодирование. Здесь же определяются требования к соединителям, разъемам, электрическому согласованию, заземлению, защите от помех и т.д. На физическом уровне работают такие сетевые устройства, как трансиверы, репитеры и репитерные концентраторы.

Привет, посетитель сайта сайт! Продолжаем рубрику Сервера и протоколы. Сегодня мы поговорим о том, как происходит взаимодействие в сети Интернет, да вообще в любой компьютерной сети, разобравшись с тем, что такое модель OSI, для чего нужна семиуровневая модель OSI и кто и когда разработал эталонную модель сетевого взаимодействия OSI. Итак, данная статья посвящена семиуровневой модели взаимодействия OSI. Естественно, разбираться с принципами работы модели OSI мы будем на простых примерах, буквально на пальцах . А в тех местах, где будут сложные моменты, я буду стараться давать ссылки на материалы, в которых вы найдете простое объяснение этих моментов.

В данной публикации мы поговорим о том, что такое семиуровневая модель взаимодействия OSI что собой она представляет. Разберемся с тем для чего нужна эталонная сетевая модель OSI и кто и когда ее разработал. Рассмотрим архитектуру семиуровневой модели OSI и поговорим про каждый ее уровень в отдельности. Посмотрим на простые примеры, описывающие принципы работы модели OSI: один пример будет очень простым, а второй пример объясняет принцип работы модели OSI буквально на пальцах. И в завершении публикации мы погорим про недостатки эталонной модели OSI и узнаем почему протоколы модели OSI , в отличии от самой модели, не получили такого широкого распространения .

Что такое эталонная модель OSI?

Если вы так или иначе связаны с сетью Интернет или сферой телекоммуникаций, то наверняка вы неоднократно слышали фразу эталонная модель или модель OSI . Давайте разберемся с тем, что такое модель сетевого взаимодействия OSI простыми словами буквально на пальцах , так как понимание сути гораздо важнее умных и сложных терминов. Если вы разберётесь с тем, «как работает модель сетевого взаимодействия OSI», то вы поймете общие принципы работы любой компьютерной сети, включая и сеть Интернет.

Модель OSI не случайно называют моделью сетевого взаимодействия, а также ее не случайно называют эталонной моделью. Модель OSI описывает то как должны взаимодействовать машины в компьютерной сети. Если говорить в рамках определения, то OSI – это базовая или эталонная модель взаимодействия открытых систем. Как мы знаем, любое взаимодействие происходит по протоколу или определённому набору правил взаимодействия, например, взаимодействие между браузером и (например, ) происходит по .

Браузер посылает специальные , которые имеют свою особую структуру и формат и получили название такие сообщения – . HTTP сервер принимает эти сообщения, анализирует их и понимает, что хотел браузер по , которые есть в запросе. Проанализировав сообщение от браузера, сервер посылает свое собственное сообщение браузеру, которое получили название . Ответы сервера содержат , по которым браузер видит, как сервер понял его запрос.

Стоит заметить, что в основе взаимодействия по протоколу HTTP лежит (впрочем, как и в основе многих других протоколов). Которая нужна, чтобы разделить зону ответственности и производственные ресурсы между и . Обратите внимание: модель клиент-сервер не делит машины на строго клиентские или строго серверные, она лишь распределяет функции: клиент – это заказчик услуг, а сервер – это поставщик услуг. Однако серверные приложения и клиентские приложения могут работать вместе на одной машине (читайте про и ).

Мы немного отвлеклись, но заметим, что протокол HTTP находится на самом высоком – седьмом уровне модели OSI. Про уровни модели OSI и их назначение мы поговорим немного ниже. Сейчас нам нужно понять, что сетевая модель взаимодействия OSI – это довольно абстрактная вещь, которая описывает то, как должны взаимодействовать машины друг с другом в компьютерной сети.

Для чего нужна модель OSI и кто разработал данную модель?

Ответим на вторую часть вопроса данного раздела: кто разработал эталонную модель взаимодействия OSI ? Модель OSI разработала международная организация стандартизации ISO. Отчасти теперь становится понятно, почему модель OSI называют эталонной. Теперь поговорим о том, для чего нужна модель взаимодействия OSI.

Не секрет, что в отрасли IT довольно много различных направлений и даже не направлений, а, скажем так, слоев. Например, возьмем любого интернет провайдера. И посмотрим на общую структуру отделов, отвечающих за предоставление услуги передачи данных. Начнем с того, что в компании есть монтажники, которые прокладывают кабель от точки А до точки Б, среднестатистический монтажник хорошо знает свое дело и умеет работать руками и знает, как проложить кабель, а как прокладывать не нужно, то есть он знает физические свойства кабеля.

Более грамотный монтажник знает не только свойства материала, но и особенности передачи сигнала по тому или иному кабелю. Далее есть отдел, который отвечает за проектирование и строительство сети. В него могут входить инженеры-проектировщики, менеджеры проектов и прочие. Сейчас мы не вдаемся в юридические и бизнес тонкости, поэтому отметим, что эти люди должны разработать проект подключения.

Соответственно, они должны выбрать оборудование, которое будет установлено, определить точку, от которой будет подключено новое оборудование (выбрать ее на самом деле нужно оптимально) и определить маршрут, по которому будут проложены коммуникации. Другими словами – разработать проект. Мы видим уже, что эти люди должны обладать несколько другим и даже несколько более широким спектром знаний, нежели монтажники.

Также есть третий отдел – отдел сетевых администраторов, в задачи которого уже входит настройка и поддержание работоспособности оборудования. Этим людям необязательно знать о том, что при прокладке оптического кабеля следует выдерживать радиус изгиба, им не нужно знать, какой кабель следует использовать для прокладки в грунте, а какой используется для перекида между зданиями более 140 метров и прочее. Но они должны знать, как вообще работают сетевые устройства и как они взаимодействуют между собой, а также должны понимать сетевую архитектуру.

Мы лишь поверхностно коснулись структуры ШПД провайдера, но уже заметили, что есть три группы специалистов с разным набором знаний и разными функциями, теперь нам будет несколько проще разобраться с тем, для чего нужна модель сетевого взаимодействия OSI .

Итак, семиуровневая модель OSI делит процесс передачи данных на несколько уровней. Это деление обусловлено тем, что ни один человек в мире не может знать всего и сразу. Таким образом модель OSI делит зоны ответственности между людьми и, как ни странно, между сетевым оборудованием и приложениями. Например, заметим, что если у вас не работает какой-то сайт в Интернете, то в 99 случаях из 100 – это не повод звонить в тех. поддержку вашего провайдера. Провайдер не виноват в том, что какой-то сайт не работает, он лишь предоставляет вам доступ в общую компьютерную сеть Интернет, но не отвечает за работоспособность того или иного ресурса.

Подытожим наши рассуждения о том, для чего нужна модель OSI. Модель OSI нужна для того, чтобы разделить ответственность между людьми и оборудованием в процессе передачи данных по сети . Но это еще не все, для полного ответа на вопрос: для чего нужна модель сетевого взаимодействия OSI, нам следует обратиться к истории.

Для начала поговорим про мифологию, а именно – про Вавилонскую башню. Ее строительство закончилось плачевно, так как в один момент, неожиданно, люди перестали понимать друг друга и не смогли слаженно взаимодействовать, чтобы успешно завершить строительство. Примерно такая же ситуация произошла в 70-ых годах XX века: к этому моменту в мире накопилось очень много различных фирменных сетевых протоколов, и очень остро встал вопрос взаимодействия между машинами в сети.

Получилась такая ситуация, что машины одной очень крупной корпорации не могли нормально взаимодействовать с машинами другой корпорации, что очень мешало развитию бизнеса и технологий. Проблема сетевого взаимодействия, а точнее проблема заключалась именно в отсутствии сетевого взаимодействия из-за несовместимости различных протоколов, породила необходимость в создании единого принципа взаимодействия компьютеров в сети.

И, как вы уже догадались, в качестве выхода из сложившейся ситуации была разработка эталонной модели сетевого взаимодействия OSI . Естественно, модель OSI – это академический подход и ее разработка заняла около 7 лети. Заметим, что модель OSI лишь описывает принципы взаимодействия устройств в сети, но не говорит о том, как это должно быть реализовано физически.

Ранее мы уже упоминали о том, что HTTP протокол находится на самом верхнем (седьмом) уровне эталонной модели взаимодействия OSI, из чего можно сделать вывод о том, что всего насчитывается семь уровней модели OSI, поэтому иногда модель OSI называют семиуровневой моделью . Заметим, что самый нижний уровень модели взаимодействия OSI называется физический или, как его еще называют, первый уровень модели OSI, самый верхний уровень называют прикладной уровень модели OSI или седьмой уровень.

На рисунке выше вы можете увидеть архитектуру эталонной модели OSI . Давайте перечислим уровни снизу-вверх: физический, канальный, сетевой, транспортный, сеансовый, представления, прикладной. Про взаимодействие соседних уровней говорят так: сетевой уровень оказывает услугу транспортному или же канальный уровень оказывает услугу физическому. Также на каждом уровне модели OSI имеются свои собственные единицы измерения данных .

По задумке разработчиков модели OSI любое компьютерное приложение, взаимодействующее с конечным пользователем, должно обращаться за услугами только к прикладному уровню, а далее процесс идет по цепочки вниз, но это не совсем так, и это является одним из недостатков архитектуры модели OSI , о которых мы поговорим более подробно ниже.

Итак, мы разобрались с архитектурой модели OSI и выяснили, что данная модель состоит из семи уровней. Строгость и иерархичность модели OSI — это также недостаток данной модели, так как в природе нет ничего идеального и строго иерархичного.

Давайте несколько более подробно разберемся с каждым из уровней эталонной модели сетевого взаимодействия, начинать будем снизу и пойдем вверх, хотя это и нарушение классического способа подачи информации о уровнях модели OSI, так как обычно описание дается, начиная с прикладного уровня.

Первый уровень модели OSI. Физический уровень эталонной модели взаимодействия

Физический уровень модели OSI – это самый нижний уровень эталонной модели сетевого взаимодействия, который определяет способ передачи и представления информации между устройствами. Разработкой методов передачи данных в различных средах занимаются различные институты стандартизации и телекоммуникационные институты.

Нам важно понимать, что на физическом уровне определяется среда передачи данных, например, оптическое волокно, радиоэфир, электрический сигнал, который может предаваться по витой паре или, например, по коаксиальному кабелю. Помимо среды, по которой будет предаваться сигнал, на физическом уровне модели OSI определяются различные требования к передаче сигнала :

  • оптимальный уровень сигнала (минимальный и максимальный);
  • какой уровень сигнала считать нулем;
  • какой уровень сигнала считать единицей;
  • какую модуляцию сигнала использовать;
  • и прочее.

Также нам стоит отметить, что единицей измерения на первом уровне модели OSI является бит. На физическом уровне модель OSI помимо самой среды передачи работают медиаконвертеры и SFP модули, преобразующие электрический сигнал в оптический и наоборот; концентраторы, повторители и усилители сигналов.

Как ни странно, но на физическом уровне уже происходит деление на клиент и сервер. Также на физическом уровне есть свои собственные протоколы: различные протоколы Wi-Fi, GSM, Bluetooth и другие.

Второй уровень модели OSI. Канальный уровень эталонной модели взаимодействия

Канальный уровень модели OSI является вторым по счету . На канальном уровне происходит две важных вещи:

  1. Происходит физическая адресация сетевых устройств. Как вы знаете, у любого устройства есть уникальный (хотя это довольно спорно) mac-адрес, по которому можно однозначно идентифицировать устройство и его производителя в любой точке мира.
  2. А также на втором уровне модели OSI происходит контроль и исключение ошибок передачи данных на физическом уровне модели OSI. Это достигается за счет того, что биты упаковываются в кадры, которые можно проверить на целостность и, если устройство видит, что кадр битый, оно его пытается восстановить, либо делает повторный запрос к передающему устройству.

Как мы уже видели, единицей измерения информации на втором уровне модели OSI является кадр, который состоит из нескольких бит полезной информации и служебной информации. Канальный уровень модели OSI делится на два подуровня:

  1. Подуровень MAC. На этом подуровне определяется доступ к физической среде, за счет данного подуровня канальный уровень может взаимодействовать с несколькими физическими уровнями.
  2. Подуровень LLC. Данный подуровень обеспечивает взаимодействие с сетевым уровнем модели OSI.

Самым широко распространённым устройством второго уровня модели OSI является коммутатор доступа , который устанавливается практически в каждом доме провайдером, именно к коммутатору подключаются роутеры, которые стоят в наших квартирах. Если говорить про наши компьютеры, то второй уровень модели OSI представлен в виде драйверов для сетевой платы.

В качестве примера протоколов канального уровня можно привести: wireless LAN, PPPoE, Ethernet.

Третий уровень модели OSI. Сетевой уровень эталонной модели взаимодействия

Сетевой уровень модели OSI является третьим по счету уровнем эталонной модели сетевого взаимодействия . На третьем уровне модели OSI происходит формирование маршрутов и путей передачи данных между устройствами, находящимися в сети. Естественно, маршрут определяется оптимально и при этом учитывается дальность маршрута и нагрузка на узлы сети.

Также на третьем уровне эталонной модели происходит преобразование логических сетевых адресов в физические и наоборот, этот процесс получил название – трансляция. Роутеры, установленные в ваших квартирах – это хороший пример устройств сетевого уровня модели OSI . Самым популярным протоколом третьего уровня модели OSI является протокол IP, на данный момент поддерживается две версии протокола IP: IPv4 и IPv6.

Четвертый уровень модели OSI. Транспортный уровень эталонной модели взаимодействия

Транспортный уровень модели OSI является четвертым по счету уровнем модели сетевого взаимодействия . Транспортный уровень определяет надежность передачи данных по сети, а также устанавливает непосредственную связь между конечными точками цепочки передачи данных.

Четвертый уровень модели OSI насчитывает множество различных протокол передачи данных: есть протоколы, которые только лишь обеспечивают транспортные функции, а есть протоколы, которые гарантируют правильную передачу данных по сети. В зависимости от потребностей и технических условий выбирается тот или иной протокол. Например, потоковое видео в Интернете никто не будет предавать по протоколу, гарантирующему 100% правильность передачи данных, в качестве примера такого протокола можно привести UPD.

Если же говорить о протоколе, который гарантирует правильность передачи данных то в качестве примера можно привести TCP. Протокол TCP является протоколом транспортного уровня модели OSI и гарантирует надёжность и правильность передачи данных по сети , также он исключает потерю данных в процессе их передачи и обеспечивает не нарушения порядка поступления данных, то есть данные по протоколу TCP придут на приемное устройство в том порядке, в котором они передавались.

Пятый уровень модели OSI. Сеансовый уровень эталонной модели взаимодействия

Пятый уровень модели взаимодействия OSI или сеансовый уровень предназначен для управления сеансом связи. Сеансовый уровень позволяет взаимодействовать сетевым приложениям длительное время. Пятый уровень модели сетевого взаимодействия OSI призван решать следующие проблемы:

  • создавать сеанс связи;
  • завершать сеанс связи;
  • поддерживать обмен информацией между приложениями;
  • осуществлять синхронизацию между приемным и передающим устройством;
  • поддерживать сеанс связи, когда передача данных не ведется.

На самом деле, задачи сеансового уровня модели OSI несколько шире, чем описаны выше. В качестве примера протоколов сеансового уровня можно привести: ADSP, PPTP, H.245.

Шестой уровень модели OSI. Уровень представления эталонной модели взаимодействия

Уровень представления или представительский уровень модели OSI является шестым уровнем эталонной модели сетевого взаимодействия. Шестой уровень модели OSI определяет способы представления данных, а также способы шифрования передачи данных. Например, протокол HTTP никак не шифрует данные при передаче, поэтому эти функции на себя берут протоколы SSL и TLS, которые относятся к шестому уровню модели OSI.

В качестве представления данных можно привести в качестве примера протоколы ASCII и JPEG. В данном случае термин протокол будет более правильным, чем таблица перекодировки или формат изображения.

Но, помимо выше описанных функций, уровень представления выполняет функции преобразования протоколов и форматов из одного в другой (своеобразный переводчик). Условно мы можем разделить данные, которые передаются по сети и данные, которые видит клиент на экране. Именно на шестом уровне модели взаимодействия OSI происходит преобразование данных, которые понятны машине, в данные, которые понятны человеку и наоборот.

Любой архиватор на вашем компьютере работает на уровне представления. Также шестой уровень позволяет взаимодействовать компьютерам различных производителей между собой, преобразую данные их одного формата записи в другой. Шестой и седьмой уровень модели OSI представляют наибольший интерес для веб-разработчиков и веб-мастеров, а также для администраторов различных веб-серверов.

Седьмой уровень модели OSI. Прикладной уровень эталонной модели взаимодействия

Мы уже упоминали, что прикладной уровень модели OSI или седьмой уровень эталонной модели взаимодействия является наивысшим . Этот уровень позволяет обычному неподготовленному пользователю работать с машиной и передавать данные по сети. По задумке разработчиков эталонной модели OSI клиентские приложения при передаче данных должны взаимодействовать только с седьмым уровнем модели OSI, но это далеко не так.

В качестве примера рассмотрим , например, ( нам в данном случае не очень подходит), во-первых, указывая TCP порт, а как вы помните, протокол TCP работает на четвертом уровне модели взаимодействия, то есть мы можем сделать вывод, что в клиентской части MySQL есть механизмы, позволяющие взаимодействовать с четвертым уровнем модели OSI.

Эталонная модель под названием "Взаимодействие Открытых Систем" (OSI - Open Systems Interconnection) была выпущена в 1984 году.

Включает в себя:

  • · Поиск приложения, с которым будем обмениваться информацией.
  • · Установление и поддержание связи.
  • · Обработка потерь и помех при обмене.

Модель OSI разделяет задачу сетевого обмена на семь более мелких задач, что упрощает решение. Каждая из подзадач сформулирована таким образом, чтобы для её решения требовался минимум внешней информации.

Каждый уровень модели OSI соответствует своей подзадаче. Из этого следует, что каждый уровень модели в достаточной степени автономен. Поэтому реальные реализации сетей могут использовать не все уровни, а только часть из них.

Эталонная модель OSI, иногда называемая стеком OSI представляет собой 7-уровневую сетевую иерархию (рис. 1) разработанную Международной организацией по стандартам (International Standardization Organization - ISO). Эта модель содержит в себе по сути 2 различных модели:

  • · горизонтальную модель на базе протоколов, обеспечивающую механизм взаимодействия программ и процессов на различных машинах
  • · вертикальную модель на основе услуг, обеспечиваемых соседними уровнями друг другу на одной машине

В горизонтальной модели двум программам требуется общий протокол для обмена данными. В вертикальной - соседние уровни обмениваются данными с использованием интерфейсов API.

Рисунок 1. Модель OSI

Уровень 1, физический.

Физический уровень получает пакеты данных от вышележащего канального уровня и преобразует их в оптические или электрические сигналы, соответствующие 0 и 1 бинарного потока. Эти сигналы посылаются через среду передачи на приемный узел. Механические и электрические/оптические свойства среды передачи определяются на физическом уровне и включают:

  • · Тип кабелей и разъемов.
  • · Разводку контактов в разъемах.
  • · Схему кодирования сигналов для значений 0 и 1.

Уровень 2, канальный.

Канальный уровень обеспечивает создание, передачу и прием кадров данных. Этот уровень обслуживает запросы сетевого уровня и использует сервис физического уровня для приема и передачи пакетов. Спецификации IEEE 802.x делят канальный уровень на два подуровня: управление логическим каналом (LLC) и управление доступом к среде (MAC). LLC обеспечивает обслуживание сетевого уровня, а подуровень MAC регулирует доступ к разделяемой физической среде.

Уровень 3, сетевой.

Сетевой уровень отвечает за деление пользователей на группы. На этом уровне происходит маршрутизация пакетов на основе преобразования MAC-адресов в сетевые адреса. Сетевой уровень обеспечивает также прозрачную передачу пакетов на транспортный уровень.

Уровень 4, транспортный.

Транспортный уровень делит потоки информации на достаточно малые фрагменты (пакеты) для передачи их на сетевой уровень.

Уровень 5, сеансовый.

Сеансовый уровень отвечает за организацию сеансов обмена данными между оконечными машинами. Протоколы сеансового уровня обычно являются составной частью функций трех верхних уровней модели.

Уровень 6, уровень представления.

Уровень представления отвечает за возможность диалога между приложениями на разных машинах. Этот уровень обеспечивает преобразование данных (кодирование, компрессия и т.п.) прикладного уровня в поток информации для транспортного уровня. Протоколы уровня представления обычно являются составной частью функций трех верхних уровней модели.

Уровень 7, прикладной.

Прикладной уровень отвечает за доступ приложений в сеть. Задачами этого уровня является перенос файлов, обмен почтовыми сообщениями и управление сетью.

Эталонная модель

Эталонная модель (англ. reference model , master model ) - это абстрактное представление понятий и отношений между ними в некоторой проблемной области. На основе эталонной строятся более конкретные и детально описанные модели, в итоге воплощённые в реально существующие объекты и механизмы. Понятие эталонной модели используется в информатике .

Примеры Эталонных моделей

  • Сетевая модель OSI (Open Systems Interconnection Reference Model),
  • модель Открытого геопространственного консорциума (англ.) ,
  • архитектура фон Неймана - модель эталонной модели с последовательными вычислениями,
  • эталонная модель Архитектуры государственного предприятия (англ.) ,
  • Эталонная Информационная Модель HL7 (Reference Information Model, RIM HL7),
  • Эталонная Модель (Reference Model, RM) openEHR .

Wikimedia Foundation . 2010 .

Смотреть что такое "Эталонная модель" в других словарях:

    эталонная модель - иерархическая модель — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы иерархическая модель EN reference model …

    эталонная модель - etaloninis modelis statusas T sritis automatika atitikmenys: angl. master model; reference model vok. Referenzmodell, n rus. эталонная модель, f pranc. modèle de référence, m; modèle standard, m … Automatikos terminų žodynas

    эталонная модель - 3.1.41 эталонная модель (reference model): Структурированный комплект взаимосвязанных представлений об объекте (например информационной системе), охватывающий данный объект в целом, упрощающий разбиение связей по тематике, который может быть… … Словарь-справочник терминов нормативно-технической документации

    эталонная модель ВОС - Модель взаимодействия открытых систем, разработанная ISO в 1984 г. Позволяет универсальным образом описать логику информационного обмена между взаимосвязанными системами и абонентами. Полная модель содержит семь уровней. На самом нижнем… … Справочник технического переводчика

    эталонная модель ISO/OSI - Семиуровневая эталонная модель протоколов передачи данных. Определяет уровни: физический, канальный, сетевой, транспортный, сеансовый, представительский и прикладной. В CAN сетях обычно реализуются только физический, канальный и прикладной уровни … Справочник технического переводчика

    эталонная модель протоколов широкополосной ISDN-сети - Модель включает четыре горизонтальных уровня (физический, ATM, адаптации ATM и верхние уровни) и три вертикальных плоскости (пользователя, управления и администрирования). Соответствие между моделями В ISDN и OSI обеспечивается на физическом… … Справочник технического переводчика

    эталонная модель BOC - ЭМВОС Модель, разработанная МОС, содержащая семь уровней (слоев) протоколов и предназначенная для коммуникации между устройствами в сети. [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики… … Справочник технического переводчика

    эталонная модель взаимодействия открытых систем - — Тематики электросвязь, основные понятия EN ISO/OSI reference model … Справочник технического переводчика

    эталонная модель протокола - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN protocol reference modulePRM … Справочник технического переводчика

    эталонная модель соединения открытых систем - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN reference model of open systems … Справочник технического переводчика

Книги

  • Компьютерные сети. В 2 томах. Том 1. Системы передачи данных , Р. Л. Смелянский. Приведены теоретические основы систем передачи данных, характеристики основных видов физических сред, способы кодирования и передачи аналоговых и цифровых данных, основы организации…

Несмотря на то что протоколы, связанные с эталонной моделью OSI, используются сейчас очень редко, сама модель до сих пор весьма актуальна, а свойства ее уровней, которые будут обсуждаться в этом разделе, очень важны. В эталонной модели TCP/IP все наоборот - сама модель сейчас почти не используется, а ее протоколы являются самыми распространенными. Исходя из этого, мы обсудим подробности, касающиеся обеих моделей.

Эталонная модель OSI

Эталонная модель OSI (за исключением физической среды) показана на рис. 1.16. Эта модель основана на разработке Международной организации по стандарти­зации (International Organization for Standardization, ISO) и является первым ша­гом к международной стандартизации протоколов, используемых на различных уровнях (Day и Zimmerman, 1983). Затем она была пересмотрена в 1995 году (Day, 1995). Называется эта структура эталонной моделью взаимодействия от­крытых систем ISO (ISO OSI (Open System Interconnection) Reference Model), поскольку она связывает открытые системы, то есть системы, открытые для свя­зи с другими системами. Для краткости мы будем называть эту модель просто «модель OSI».

Модель OSI имеет семь уровней. Появление именно такой структуры было обусловлено следующими соображениями.

1. Уровень должен создаваться по мере необходимости отдельного уровня абстракции.

2. Каждый уровень должен выполнять строго определенную функцию.

3. Выбор функций для каждого уровня должен осуществляться с учетом создания стандартизированных международных протоколов.

4. Границы между уровнями должны выбираться так, чтобы поток данных между интерфейсами был минимальным.

5. Количество уровней должно быть достаточно большим, чтобы различные функции не объединялись в одном уровне без необходимости, но не слишком высоким, чтобы архитектура не становилась громоздкой.

Далее мы обсудим каждый уровень модели, начиная с самого нижнего. Обра­тите внимание: модель OSI не является сетевой архитектурой, поскольку она не описывает службы и протоколы, используемые на каждом уровне. Она просто определяет, что должен делать каждый уровень. Тем не менее ISO также разработала стандарты для каждого уровня, хотя эти стандарты не входят в саму эталонную модель. Каждый из них был опубликован как отдельный международный стандарт.

Физический уровень

Физический уровень занимается реальной передачей необработанных битов по каналу связи. При разработке сети необходимо убедиться, что когда одна сторона передает единицу, то принимающая сторона получает также единицу, а не ноль. Принципиальными вопросами здесь являются следующие: какое напряжение должно использоваться для отображения единицы, а какое - для нуля; сколько микросекунд длится бит; может ли передача производиться одновременно в двух направлениях; как устанавливается начальная связь и как она прекращается, когда обе стороны закончили свои задачи; из какого количества проводов должен состоять кабель и какова функция каждого провода. Вопросы разработки в основном связаны с механическими, электрическими и процедурными интерфейсами, а также с физическим носителем, лежащим ниже физического уровня.

Уровень передачи данных

Основная задача уровня передачи данных - быть способным передавать «сырые» данные физического уровня по надежной линии связи, свободной от необнаруженных ошибок с точки зрения вышестоящего сетевого уровня. Уровень выполняет эту задачу при помощи разбиения входных данных на кадры, обычный размер которых колеблется от нескольких сотен до нескольких тысяч байт. Кадры данных передаются последовательно с обработкой кадров подтверждения, отсылаемых обратно получателем.

Еще одна проблема, возникающая на уровне передачи данных (а также и на большей части более высоких уровней), - как не допустить ситуации, когда быстрый передатчик заваливает приемник данными. Должен быть предусмотрен некий механизм регуляции, который информировал бы передатчик о наличии свободного места в буфере приемника на текущий момент. Часто подобное управление объединяется с механизмом обработки ошибок.

В широковещательных сетях существует еще одна проблема уровня передачи данных: как управлять доступом к совместно используемому каналу. Эта проблема разрешается введением специального дополнительного подуровня уровня передачи данных - подуровня доступа к носителю.

Сетевой уровень

Сетевой уровень занимается управлением операциями подсети. Важнейшим моментом здесь является определение маршрутов пересылки пакетов от источника к пункту назначения. Маршруты могут быть жестко заданы в виде таблиц и редко меняться. Кроме того, они могут задаваться в начале каждого соединения, например терминальной сессии. Наконец, они могут быть в высокой степени динамическими, то есть вычисляемыми заново для каждого пакета с учетом текущей загруженности сети.

Если в подсети одновременно присутствует слишком большое количество пакетов, то они могут закрыть дорогу друг другу, образуя заторы в узких местах. Недопущение подобной закупорки также является задачей сетевого уровня. В бо­лее общем смысле сетевой уровень занимается предоставлением определенного уровня сервиса (это касается задержек, времени передачи, вопросов синхронизации).

При путешествии пакета из одной сети в другую также может возникнуть ряд проблем. Так, способ адресации, применяемый в одной сети, может отличаться от принятого в другой. Сеть может вообще отказаться принимать пакеты из-за того, что они слишком большого размера. Также могут различаться протоколы, и т. д. Именно сетевой уровень должен разрешать все эти проблемы, позволяя объединять разнородные сети.

В широковещательных сетях проблема маршрутизации очень проста, поэтому в них сетевой уровень очень примитивный или вообще отсутствует.

Транспортный уровень

Основная функция транспортного уровня - принять данные от сеансового уровня, разбить их при необходимости на небольшие части, передать их сетевому уровню и гарантировать, что эти части в правильном виде прибудут по назначению. Кроме того, все это должно быть сделано эффективно и таким образом, чтобы изолировать более высокие уровни от каких-либо изменений в аппаратной технологии.

Транспортный уровень также определяет тип сервиса, предоставляемого сеансовому уровню и, в конечном счете, пользователям сети. Наиболее популярной разновидностью транспортного соединения является защищенный от ошибок канал между двумя узлами, поставляющий сообщения или байты в том порядке, в каком они были отправлены. Однако транспортный уровень может предоставлять и другие типы сервисов, например пересылку отдельных сообщений без гарантии соблюдения порядка их доставки или одновременную отправку сообщения различным адресатам по принципу широковещания. Тип сервиса определяется при установке соединения. (Строго говоря, полностью защищенный от ошибок канал создать невозможно. Говорят лишь о таком канале, уровень ошибок в котором достаточно мал, чтобы ими можно было пренебречь на практике.)

Транспортный уровень является настоящим сквозным уровнем, то есть доставляющим сообщения от источника адресату. Другими словами, программа на машине-источнике поддерживает связь с подобной программой на другой машине при помощи заголовков сообщений и управляющих сообщений. На более низких уровнях для поддержки этого соединения устанавливаются соединения между всеми соседними машинами, через которые проходит маршрут сообщений.

Сеансовый уровень

Сеансовый уровень позволяет пользователям различных компьютеров устанавливать сеансы связи друг с другом. При этом предоставляются различные типы сервисов, среди которых управление диалогом (отслеживание очередности передачи данных), управление маркерами (предотвращение одновременного выполнения критичной операции несколькими системами) и синхронизация (установка служебных меток внутри длинных сообщений, позволяющих после устранения ошибки продолжить передачу с того места, на котором она оборвалась).

Уровень представления

В отличие от более низких уровней, задача которых - достоверная передача битов и байтов, уровень представления занимается по большей части синтаксисом и семантикой передаваемой информации. Чтобы было возможно общение компьютеров с различными представлениями данных, необходимо преобразовывать форматы данных друг в друга, передавая их по сети в неком стандартизированном виде. Уровень представления занимается этими преобразованиями, предоставляя возможность определения и изменения структур данных более высокого уровня (например, записей баз данных).

Прикладной уровень

Прикладной уровень содержит набор популярных протоколов, необходимых пользователям. Одним из наиболее распространенных является протокол передачи гипертекста HTTP (HyperText Transfer Protocol), который составляет основу технологии Всемирной Паутины. Когда браузер запрашивает веб-страницу, он передает ее имя (адрес) и рассчитывает на то, что сервер будет использовать HTTP. Сервер в ответ отсылает страницу. Другие прикладные протоколы используются для передачи файлов, электронной почты, сетевых рассылок.

Критика модели и протоколов OSI

Некоторое время назад, многим экспертам в данной области казалось, что модель OSI и ее протоколы завоюют весь мир и вытеснят все остальное. Этого не случилось. По­чему? Может быть, полезно оглянуться и учесть некоторые из уроков этой истории. Основных причин неудачи модели OSI было четыре:

Несвоевременность;

Неудачная технология;

Неудачная реализация;

Неудачная политика.

Несвоевременность

Прежде всего рассмотрим причину номер один: несвоевременность. Для успеха стандарта чрезвычайно важно, в какое время он устанавливается. У Дэвида Клар­ка (David Clark) из M.I.T. есть теория стандартов, которую он называет апокалипсисом двух слонов.

На этом рисунке изображена активность, сопровождающая любую новую разработку. Открытие новой темы вначале вызывает всплеск исследовательской активности в виде дискуссий, статей и собраний. Через некоторое время наступает спад активности, эту тему открывают для себя корпорации, и в результате в нее инвестируются миллиарды долларов.

Существенным является то, что стандарты пишутся именно в период между двумя «слонами». Если их создавать слишком рано, прежде чем закончатся исследования, предмет может оказаться еще слишком мало изучен и понят, что повлечет принятие плохих стандартов. Если создавать их слишком поздно, компании могут успеть вложить деньги в несколько отличные от стандартов технологии, так что принятые стандарты могут оказаться проигнорированными. Если интервал между двумя пиками активности будет слишком коротким (а все стремятся делать деньги как можно быстрее), разработчики стандартов могут просто не успеть их выработать.

Теперь становится ясно, почему стандартные протоколы OSI потерпели неудачу. К моменту их появления среди исследовательских университетов уже получили широкое распространение конкурирующие с ними протоколы TCP/IP. И хотя волна инвестиций еще не обрушилась на данную область, рынок университетов был достаточно широк для того, чтобы многие разработчики стали осторожно предлагать продукты, поддерживающие протоколы TCP/IP. Когда же появился OSI, разработчики не захотели поддерживать второй стек протоколов; таким образом, начальных предложений не было. Каждая компания выжидала, пока первым начнет кто-нибудь другой, поэтому OSI так никто и не стал поддерживать.

Плохая технология

Второй причиной, по которой модель OSI не была реализована, оказалось несовершенство как самой модели, так и ее протоколов. Выбор семиуровневой структуры стал больше политическим решением, чем техническим. В результате два уровня (сеансовый и уровень представления) почти пусты, тогда как два других (сетевой и передачи данных) перегружены.

Эталонная модель OSI вместе с соответствующими определениями служб и протоколами оказалась невероятно сложной. Если сложить в стопку распечатку официального описания стандартов, получится кипа бумаги высотой в один метр. Модель тяжело реализуема и неэффективна в работе.

Еще одна проблема, помимо невозможности понять стандарты OSI, заключалась в том, что некоторые функции, такие как адресация, управление потоком и обработка ошибок, повторялись снова и снова в каждом уровне. Так, например, в книге Saltzer и др. (1984) указывается, что для того, чтобы контроль за ошибками был эффективным, он должен осуществляться на самом верхнем уровне, поэтому повторение его снова и снова на каждом уровне часто оказывается излишним и неэффективным.

Неудачная реализация

Учитывая огромную сложность модели и протоколов, громоздкость и медлительность первых реализаций не стали неожиданностью. Неудачу потерпели все, кто попытался реализовать эту модель. Поэтому вскоре понятие «OSI» стало ассоциироваться с плохим качеством. И хотя со временем продукты улучшились, ассоциации остались.

Первые реализации TCP/IP, основанные на Berkley UNIX, напротив, были достаточно хороши (не говоря уже о том, что они были открытыми). Они довольно быстро вошли в употребление, что привело к появлению большого сообщества пользователей. Это вызвало исправления и улучшения реализации, в результате чего сообщество пользователей еще выросло. В данном случае обратная связь явно была положительной.

Неудачная политика

Из-за особенностей первоначальной реализации многие, особенно в университетских кругах, считали TCP/IP частью системы UNIX. А к системе UNIX в университетских кругах в 80-е годы испытывали чувства, средние между родительскими (в те времена некорректно по отношению к правам мужского населения называемые материнскими) и чувствами к яблочному пирогу.

С другой стороны, OSI считался детищем европейских телекоммуникационных министерств, Европейского сообщества и (позднее) правительства США. Все это было лишь отчасти верным, однако сама мысль о группе правительственных чиновников, пытающихся протолкнуть неудачный в техническом отношении стандарт в глотки бедных исследователей и программистов, прокладывавших компьютерные сети в траншеях, не способствовала продвижению этой модели. Кое-кто рассматривал это развитие в том же свете, что и заявления корпорации IBM, сделанные в 1960 году, о том, что PL/I будет языком будущего, или Министерства обороны, поправлявшего позднее это утверждение своим заявлением, что в действительности таким языком будет Ada.

Несмотря на все недостатки, модель OSI (кроме сеансового уровня и уровня представления) показала себя исключительно полезной для теоретических дискуссий о компьютерных сетях. Протоколы OSI, напротив, не получили широкого распространения. Для TCP/IP верно обратное: модель практически не существует, тогда как протоколы чрезвычайно популярны.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то