Как работает http протокол. Что нужно знать про HTTP протокол веб-разработчику. Правила HTTP протокола

Вы уже наверное немало раз слышали о том, что Google отдает предпочтение сайтам, которые используют безопасный протокол соединения HTTPS. Правда ли это? В данной статье рассмотрим протоколы HTTP и HTTPS , какая разница между ними и стоит ли вообще переходить вашему сайту на HTTPS.

HTTP – используется для получения данных с веб-сайтов в качестве прикладного протокола. HTTPS – расширение для протокола HTTP, которое имеет поддержку по протоколам SSL и TLS. Как видим HTTP и HTTPS это не разные протоколы, а HTTPS это только надстройка для шифрования, применяется для защищенного процесса обмена информацией и авторизации серверов, которым необходима дополнительная безопасность.

Протокол передачи гипертекста (HTTP) прежде всего используется для доступа к HTML-страницам. Протокол не сохраняет информации о предыдущей сессии пользователя, поэтому он посылает меньше данных и соответственно работает быстрее.

Безопасный HTTPS применяется для авторизации и защищенных транзакций. Он работает идентично HTTP, но использует дополнительный криптографический уровень защиты данных – протокол SSL. С технической стороны оба протокола применяют два разных порта для коммуникации: в отличии от HTTP, безопасный аналог применяет 443 TCP-порт. Благодаря SSL обмен данными производится на защищенном уровне, а это очень важно для сайтов, которые хранят конфиденциальную информацию клиентов, например, данные банковских карт.

Совсем не странно, что поисковая система Google более доверительно относится к сайтам, которые беспокоятся о безопасности посетителей, поэтому проекты с HTTPS ранжируются выше. Переход на “безопасный режим” будет полезен даже сайтам, которым не нужно беспокоиться о личных данных пользователей. Такие сайты получат преимущество в выдаче и соответственно привлекут еще больше посетителей на свои страницы.

Какие технические аспекты положены в основу TLS (Transport Layer Security) :

  • кодирование информации для повышения безопасности ее передачи;
  • сохранность целосности данных, которые не изменяются и не искажаются при передачи;
  • аутинтификация, которая гарантирует, что посетитель попадает именно на тот сайт, который ему необходим.

Хотя поисковик и ранжирует сайты с HTTPS выше, но пока этот фактор имеет малый вес по сравнению с другими, на которых он также обращает внимание, например, качественный контент.

Преимущества при переходе на HTTPS с точки зрения :

  1. сохранение защищенных реферальных данных пользователя;
  2. повышение позиций в поиске (хотя данный фактор пока мало весом, но в будущем он обязательно повысит свое значение);
  3. конфиденциальность: шифрование всех коммуникаций, недоступность для третьих лиц, защита личной информации.

Но кроме всех выше перечисленных преимуществ, есть и недостатки такого перехода, которых опасаются многие веб-мастера. К примеру, если не придерживаться советов специалистов, то переход на HTTPS немного снижает скорость загрузки сайта. Кроме того сайт на HTTP и на HTTPS для поисковика два разных ресурса, поэтому нужно время для того, чтобы система поняла, что это один и тот же сайт и склеила их. Плюс ко всему, чтобы перейти на безопасный режим нужно покупать SSL сертификат, ценовой диапазон которого зависит от его вида.

Для того, чтобы избежать проблем при переходе, необходимо придерживаться следующих правил:

  • выбирайте необходимый для вашего ресурса сертификат: для одного домена, мульти или wildcard;
  • применяйте сертификаты с 2048-битными ключами;
  • не закрывайте от индексации HTTPS-страницы в файле robots.txt;
  • по максимуму старайтесь не использовать noindex в метатеге «robots»;
  • анализируйте переходы с HTTP на HTTPS в программе Google Webmaster Tools;
  • применяйте относительные URL без указания протокола для всех остальных доменов и тп.

Если придерживаться данных советов, можно безболезненно перейти на безопасный протокол HTTPS. Поверьте, Ваши посетители и клиенты это оценят. Ведь сайту, который беспокоится о сохранности данных своих пользователей доверяют намного больше. Переходи на HTTPS: Устанавливаем SSL бесплатно! Детали .

В компании HyperHost Вы сможете приобрести необходимый для вашего онлайн проекта SSL-сертификат и тем самым осуществить переход на HTTPS. Наша техническая поддержка поможет сделать все необходимые настройки и ответит на все интересующие Вас вопросы. О преимуществах SSL-сертификата и его видах можете ознакомиться в предыдущей статье: . Преимущества перехода на HTTPS описаны более детально .

5075 раз(а) 5 Сегодня просмотрено раз(а)

Позволяющий получать различные ресурсы, например HTML-документы. Протокол HTTP лежит в основе обмена данными в Интернете. HTTP является протоколом клиент-серверного взаимодействия, что означает инициирование запросов к серверу самим получателем, обычно веб-браузером. Полученный итоговый документ будет реконструирован из различных субдокументов, например, из отдельно полученного текста, описания структуры документа, изображений, видео-файлов, скриптов и многого другого.

Клиенты и серверы взаимодействуют, обмениваясь индивидуальными сообщениями (а не потоком данных). Сообщения, отправленные клиентом, обычно веб-браузером, называются запросами , а сообщения, отправленные сервером, называются ответами .

Хотя HTTP был разработан еще в начале 1990-х годов, за счет своей расширяемости в дальнейшем он все время совершенствовался. HTTP является протоколом прикладного уровня, который чаще всего использует возможности другого протокола - TCP (или TLS - защищённый TCP) - для пересылки своих сообщений, однако любой другой надежный транспортный протокол теоретически может быть использован для доставки таких сообщений. Благодаря своей расширяемости, он используется не только для получения клиентом гипертекстовых документов либо изображений и видео, но и для передачи контента серверам, например, с помощью HTML-форм. HTTP также может быть использован для получения только частей документа с целью обновления веб-страницы по запросу.

Компоненты систем, основанных на HTTP

HTTP - это клиент-серверный протокол, то есть запросы отправляются какой-то одной стороной - юзер-агентом (user-agent) (либо прокси вместо него). Чаще всего в качестве юзер-агента выступает веб-браузер, но им может быть кто угодно, например, робот, путешествующий по Сети для пополнения и обновления данных индексации веб-страниц для поисковых систем.

Каждый индивидуальный запрос (англ. request ) отправляется серверу, который обрабатывает его и возвращает ответ (англ. response ). Между этими запросами и ответами существуют многочисленные посредники, называемые прокси , которые выполняют различные операции и работают как шлюзы или кэш , например.

В реальности, между браузером и сервером гораздо больше различных устройств-посредников, которые играют какую-либо роль в обработке запроса: роутеры, модемы и так далее. Благодаря тому, что Сеть построена на основе системы уровней (слоёв) взаимодействия, эти посредники "спрятаны" на сетевом и транспортном уровнях. В этой системе уровней HTTP занимает самый верхний уровень, который называется "прикладным" (или "уровнем приложений"). Знания об уровнях сети, таких как представительский, сеансовый, транспортный, сетевой, канальный и физический, имея важное значение для понимания работы сети и диагностики возможных проблем, не требуются для описания и понимания HTTP.

Клиент: юзер-агент

Юзер-агент - это любой инструмент или устройство, действующие от лица пользователя. Эта роль преимущественно принадлежит веб-браузеру; в некоторых случаях юзер-агентами выступают программы, которые используются инженерами и веб-разработчиками для отладки своих приложений.

Браузер всегда является той сущностью, которая инициирует запрос. Сервер никогда этого не делает (хотя за многие годы существования сети были созданы механизмы, которые могут симулировать запросы со стороны сервера).

Чтобы отобразить веб страницу, браузер отправляет начальный запрос для получения HTML-документа этой страницы. После этого браузер анализирует этот документ, и запрашивает дополнительные файлы, необходимые для отбражения содержания веб-страницы (исполняемые скрипты, информацию о макете страницы - CSS таблицы стилей, дополнительные ресурсы в виде изображений и видео-файлов). Далее браузер соединяет все эти ресурсы для отображения их пользователю в виде единого документа - веб-страницы. Скрипты, выполняемые самим браузером, могут получать по сети дополнительные ресурсы на последующих этапах обработки веб-страницы, и браузер соотвествующим образом обновляет представление этой страницы для пользователя.

Веб-страница является гипертекстовый документом. Это означает, что некоторые части отображаемого текста являются ссылками, которые могут быть активированы (обычно нажатием кнопки мыши) с целью получения и соответственно отображения новой веб-страницы. Это позволяет пользователю направлять своего юзер-агента, осуществляя навигацию по Сети. Браузер транслирует эти "направления движения" в HTTP-запросы и в дальнейшем интерпретирует HTTP-ответы в понятном для пользователя виде.

Веб-сервер

На другой стороне коммуникационного канала расположен сервер, который обслуживает (англ. serve ) пользователя, предоставляя ему документы по запросу. С точки зрения конечного пользователя, сервер всегда является некой одной виртуальной машиной, полностью или частично генерирующей документ, хотя фактически он может быть группой серверов, между которыми балансируется нагрузка, то есть перераспределяются запросы различных пользователей, либо сложным программным обеспечением, опрашивающим другие компьютеры (такие как кэширующие серверы, серверы баз данных, серверы приложений электронной коммерции и другие).

Сервер не обязательно расположен на одной машине, и наоборот - несколько серверов могут быть расположены (хоститься) на одной и той же машине. В соответствии с версией HTTP/1.1 и имея Host заголовок, они даже могут делить тот же самый IP-адрес.

Прокси

Между веб-браузером и сервером находятся большое количество сетевых узлов передающих HTTP сообщения. Из за слоистой структуры, большинство из них оперируют также на транспортном сетевом или физическом уровнях, становясь прозрачным на HTTP слое и потенциально снижая производительность. Эти операции на уровне приложений называются прокси . Они могут быть прозрачными, или нет, (изменяющие запросы не пройдут через них), и способны исполнять множество функций:

  • caching (кеш может быть публичным или приватными, как кеш браузера)
  • фильтрация (как сканирование антивируса, родительский контроль, …)
  • выравнивание нагрузки (позволить нескольким серверам обслуживать разные запросы)
  • аутотентификация (контролировать доступом к разным ресурсам)
  • протоколирование (разрешение на хранение истории операций)

Основные аспекты HTTP

HTTP - прост

Даже с большей сложностью, введенной в HTTP/2 путем инкапсуляции HTTP-сообщений в фреймы, HTTP, как правило, прост и удобен для восприятия человеком. HTTP-сообщения могут читаться и пониматься людьми, обеспечивая более легкое тестирование разработчиков и уменьшенную сложность для новых пользователей.

HTTP - расширяемый

Введенные в HTTP/1.0 HTTP-заголовки сделали этот протокол легким для расширения и экспериментирования. Новая функциональность может быть даже введена простым соглашением между клиентом и сервером о семантике нового заголовка.

HTTP не имеет состояния, но имеет сессию

HTTP не имеет состояния: не существует связи между двумя запросами, которые последовательно выполняются по одному соединению. Из этого немедленно следует возможность проблем для пользователя, пытающегося взаимодействовать с определенной страницей последовательно, например, при использовании корзины в электронном магазине. Но хотя ядро HTTP не имеет состояния, куки позволяют использовать сессии с сохранением состояния. Используя расширяемость заголовков, куки добавляются к рабочему потоку, позволяя сессии на каждом HTTP-запросе делиться некоторым контекстом, или состоянием.

HTTP и соединения

Содинение управляется на транспортном уровне, и потому принципиально выходит за границы HTTP. Хотя HTTP не требует, чтобы базовый транспортного протокол был основан на соединениях, требуя только надёжность , или отсутствие потерянных сообщений (т.е. как минимум представление ошибки). Среди двух наиболее распространенных транспортных протоколов Интернета, TCP надёжен, а UDP -- нет. HTTP впоследствии полагается на стандарт TCP, являющийся основанным на соединениях, несмотря на то, что соединение не всегда требуется.

HTTP/1.0 открывал TCP-соединение для каждого обмена запросом/ответом, имея два важных недостатка: открытие соединения требует нескольких обменов сообщениями, и потому медленно, хотя становится более эффективным при отправке нескольких сообщений, или при регулярной отправке сообщений: теплые соединения более эффективны, чем холодные .

Для смягчения этих недостатков, HTTP/1.1 предоставил конвеерную обработку (которую оказалось трудно реализовать) и устойчивые соединения: лежащее в основе TCP соединение можно частично контролировать через заголовок Connection . HTTP/2 сделал следующий шаг, добавив мультиплексирование сообщений через простое соединение, помогающее держать соединение теплым и более эффективным.

Проводятся эксперименты по разработке лучшего транспортного протокола, более подходящего для HTTP. Например, Google эксперементирует с QUIC , которая основана на UDP, для предоставления более надёжного и эффективного транспортного протокола.

Чем можно управлять через HTTP

Естественная расширяемость HTTP со временем позволила большее управление и функциональность Сети. Кэш и методы аутентификации были ранними функциями в истории HTTP. Способность ослабить первоначальные ограничения, напротив, была добавлена в 2010-е.

Ниже перечислены общие функции, управляемые с HTTP.


  • Сервер может инструктировать прокси и клиенты: что и как долго кэшировать. Клиент может инструктировать прокси промежуточных кэшей игнорировать хранимые документы.
  • Ослабление ограничений источника
    Для предотвращения шпионских и других, нарушающих приватность, вторжений, веб-браузер обчеспечивает строгое разделеление между веб-сайтами. Только страницы из того же источника могут получить доступ к информации на веб-странице. Хотя такие ограничение нагружают сервер, заголовки HTTP могут ослабить строгое разделение на стороне сервера, позволяя документу стать частью информации с различных доменов (по причинам безопасности).
  • Аутентификация
    Некоторые страницы доступны только специальным пользователям. Базовая аутентификация может предоставляться через HTTP, либо через использование заголовка WWW-Authenticate и подобных ему, либо с помощью настройки спецсессии, используя куки.
  • Прокси и тунелирование
    Серверы и/или клиенты часто располагаются в интранете, и скрывают свои истинные IP-адреса от других. HTTP запросы идут через прокси для пересечения этого сетевого барьера. Не все прокси -- HTTP прокси. SOCKS-протокол, например, оперирует на более низком уровне. Другие, как, например, ftp, могут быть обработаны этими прокси.
  • Сессии
    Использование HTTP кук позволяет связать запрос с состоянием на сервере. Это создает сессию, хотя ядро HTTP -- протокол без состояния. Это полезно не только для корзин в интернет-магазинах, но также для любых сайтов, позволяющих пользователю настроить выход.

HTTP поток

Когда клиент хочет взаимодействовать с сервером, являясь конечным сервером или промежуточным прокси, он выполняет следующие шаги:

  1. Открытие TCP соединения: TCP-соедиенение будет использоваться для отправки запроса или запросов, и получения ответа. Клиент может открыть новое соединение, переиспользовать существующее, или открыть несколько TCP-соединений к серверу.
  2. Отправка HTTP-сообщения: HTTP-собщения (до HTTP/2) -- человеко-читаемо. Начиная с HTTP/2, простые сообщения инкапсилуруются во фреймы, делая невозможным их чтения напрямую, но принципиально остаются такими же. GET / HTTP/1.1 Host: сайт Accept-Language: fr
  3. Читает ответ от сервера: HTTP/1.1 200 OK Date: Sat, 09 Oct 2010 14:28:02 GMT Server: Apache Last-Modified: Tue, 01 Dec 2009 20:18:22 GMT ETag: "51142bc1-7449-479b075b2891b" Accept-Ranges: bytes Content-Length: 29769 Content-Type: text/html
  4. Закрывает или переиспользует соединение для дальнейщих запросов.

Если активирован HTTP-конвеер, несколько запросов могут быть отправлены без ожидания получения первого ответа целиком. HTTP-конвеер тяжело внедряется в существующие сети, где старые куски ПО сосуществуют с современными версиями. HTTP-конвеер был заменен в HTTP/2 на более надежные мультиплексивные запросы во фрейме.

HTTP сообщения

HTTP/1.1 и более ранние HTTP сообщения человеко-читаемы. В версии HTTP/2 эти сообщения встроены в новую бинарную структуру, фрейм, позволяющий оптимизации, такие как компрессия заголовков и мультиплексирование. Даже если часть оригинального HTTP сообщения отправлена в этой версии HTTP, семантика каждого сообщения не изменяется и клиент воссоздаёт (виртуально) оригинальный HTTP-запрос. Это также полезно для понимания HTTP/2 сообщений в формате HTTP/1.1.

6.1 Служба WWW

Служба WWW (World Wide Web) - предназначена для обмена гипертекстовой информацией.

Проект был предложен в 1989 году. В 1993 появился первый браузер.

WWW построена по схеме "клиент-сервер".

Браузер (Internet Explorer, Opera ...) является мультипротокольным клиентом и интерпретатором HTML. И как типичный интерпретатор, клиент в зависимости от команд (тегов) выполняет различные функции. В круг этих функций входит не только размещение текста на экране, но обмен информацией с сервером по мере анализа полученного HTML-текста, что наиболее наглядно происходит при отображении встроенных в текст графических образов.

Сервер HTTP (Apeche, IIS ...) обрабатывает запросы клиента на получение файла (в самом простом случае).

Взаимодействие клиент и сервера по протоколу HTTP.

В начале служба WWW базировалась на трех стандартах:

    HTML (HyperText Markup Lan-guage) - язык гипертекстовой разметки документов;

    URL (Universal Resource Locator) - универсальный способ адресации ресурсов в сети;

    HTTP (HyperText Transfer Protocol) - протокол обмена гипертекстовой информацией.

    CGI (Common Gateway Interface) - универсальный интерфейс шлюзов. Создан для взаимодействия HTTP - сервера с другими программами, установленными на сервере (например, СУБД).

6.2 Протокол HTTP

Первый документ (но не стандарт) - RFC1945 (Hypertext Transfer Protocol -- HTTP/1.0 T. Berners-Lee, R. Fielding, H. Frystyk May 1996)

Некоторые возможности программы:

    задание глубины сканирования сайта, и внешних ссылок

    задание типа файлов (расширение) для скачивания, например можно скачать только графику.

    выставить лимит по размеру файла.

    сканирование графических карт.

    задание расписания работы, встроенный Scheduler.

    задание название клиента, если есть ограничение для некоторых клиентов.

    задание количества одновременно скачиваемых файлов.

Если вы хотели узнать, как передаются данные в интернете - эта статья для вас. Я расскажу вам все что знаю о протоколах HTTP и HTTPS, покажу разницу и отличия между ними. Приятного чтения!

HTTP 1.1 - что это за протокол?

HTTP (англ. «протокол передачи гипертекста») - сетевой протокол верхнего уровня для передачи гипертекстовых и произвольных данных в интернете.

При помощи HTTP браузер получает данные от веб-серверов и может отображать их в приемлемом и понятном для интернет-пользователей виде. Точно также происходит и обратный процесс - отправку пользовательских данных обратно, на сервер (например, при регистрации).

Контент отправляемый с сервера и на сервер может быть представлен в любом виде: рисунков, файлов, документов, ссылок и кода - в любом случае, именно благодаря HTTP люди могут пользоваться интернетом и загружать в браузере сотни веб-страниц.

Актуальная версия протокола - 1.1. Ее описание находится в спецификации RFC.

HTTP используется в клиент-серверной инфраструктуре передачи данных. Как это работает? Приложение на стороне «клиент» формирует запрос для обработки на стороне «сервер», после чего ответ отправляется обратно «клиенту». Затем «клиент» может инициировать дополнительные запросы, получать новые ответы. И так далее.

Наиболее распространенное «клиентское» приложение это веб-браузер через который осуществляется доступ к веб-ресурсам. С развитием мобильных технологий к браузерам добавились еще мобильные приложения на разнообразных смартфонах и планшетах. Причем серверная сторона современных многопрофильных приложений может одновременно обрабатывать данные и из браузера, и со смартфона. Все это через протокол HTTP.

Более того, HTTP часто выступает как протокол-транспорт для трансфера других прикладных протоколов и их API: WebDAV, XML-RPC, REST, SOAP. Ну а данные передаваемые по API могут иметь самый разный формат: XML, JSON и другие.

Как передаются эти данные? Чаще всего по TCP/IP-соединению: приложение-клиент по умолчанию использует TCP-порт 80, а сервер может использовать любой другой, но обычно это тоже 80 порт.

Объект манипуляций в HTTP это ресурс, указываемый в URI запроса клиентского приложения, чтобы корректно идентифицировать «что вообще нужно». Обычно это файлы, данные или логические объекты, которые хранятся на сервере. При этом в запросе можно указать, как именно представить одни и те же данные: какой выбрать формат, кодировку, язык. Такая «фича» позволяет обмениваться не только гипертекстом, но и двоичными данными.

Второй особенностью HTTP является отсутствие сохранения состояния между последовательными парами «запрос-ответ». Но это не проблема, потому что компоненты приложений на клиентской или серверной стороне само могут хранить информацию о состоянии последних запросов и ответов. На стороне клиента такая информация называется cookies («куки»), на стороне сервера - sessions («сессии»).

При этом для клиентского браузера не проблема следить за задержкой ответа сервера, а для сервера - хранить заголовки последних запросов и IP-адреса клиентов. Но, еще раз подчеркну, сам протокол об этом ничего не знает - он только передает данные.

Принимать участие в передаче данных могут и посредники (прокси-сервера), для того чтобы отличить прокси от конечных серверов (т.н. «исходный сервер»).

Самое волшебство начинается, когда одна и та же программа (клиентская или серверная) может выполнять функции посредник, клиента, сервера - в зависимости от задач.

HTTP/2 - а это что за протокол?

Первоначальная версия протокола HTTP появилась в ЦЕРНЕ (CERN) в 1991 году. Уже в 1992 году была опубликована публичная версия HTTP 0.9 и его спецификация, благодаря чему были упорядочены правила взаимодействия между клиентскими и серверными приложениями, а также четкому разграничению функциональности.

В 1996 году появился HTTP/1.0, а современная версия протокола - HTTP/1.1 - в 1999 году. На рубеже тысячелетий, протокол HTTP научился поддерживать режим постоянного соединения, т.е. оставлять соединение открытым после того как получен ответ на запрос. Это позволило за одно соединение посылать сразу несколько запросов, а не открывать-закрывать сессию каждый раз.

Шло время и по мере развития интернета размер страниц увеличивался, росло количество запросов - требовалось все больше ресурсов. Так сформировалась потребность в новом протоколе.

И спустя шестнадцать лет, в 2015 году была опубликована финальная версия черновика спецификации следующей версии протокола - HTTP/2. Бинарный протокол HTTP/2 более подготовлен к современным реалиям, чем прародитель HTTP 1.1 потому что новый протокол решает наиболее существенную проблему передачи данных в интернете - несколько отрытых соединений.

А все потому что нынешние сайты подгружают много элементов, как со своего сервера, так и с CDN: JS-скрипты, CSS-стили, шрифты и картинки. При передаче полного комплекта файлов по протоколу HTTP 1.1 создается несколько соединений. Если мы в будущем перейдем на протокол HTTP/2 - передача будет происходить в рамках одного соединения между клиентом и сервером, что позволит существенно ускорить и оптимизировать загрузку содержимого сайта.

Ключевые особенности HTTP/2, которые будут полезны для сайтов:

  • Расстановка и управление приоритетами запросов/потоков - клиент самостоятельно задает для сервера приоритетность ресурсов и данных
  • Сжатие HTTP заголовков;
  • Мультиплексирование запросов или параллельная загрузка по TCP-соединению нескольких элементов сайта - через одно соединение отправляется несколько запросов, а ответы клиент может получать в любом порядке т.е. теперь не нужны несколько открытых TCP-соединений;
  • Наличие и поддержка со стороны сервера проактивных push-уведомлений - сервер самостоятельно может отправлять данные для клиента, которые тот еще не запросил (например на основании информации о том, какую страницу пользователь откроет после этой).

Конечно, главное здесь это мультиплексирование потоков. Принцип работы объяснить проще простого: пакеты TCP/IP-соединения смешиваются в рамках одного соединения. Так, в смешанном режиме происходит соединение нескольких «вагонов данных» в один «состав поезда», которые разделяются «по приезду». Ранее «вагоны» были вынуждены ехать дольше и раздельно, сейчас они будут ехать вместе и быстрее.

Вышеперечисленные преимущества протокола HTTP/2 позволят веб-разработчикам дышать полной грудью и отказаться от таких «костылей» как:

  • Использование большего числа родственных доменов для обеспечения установки большого количества TCP/IP-соединений (для скачивания файлов);
  • Спрайты картинок - когда изображения объединяются в один файл, чтобы снизить число запросов к веб-серверу (а сам файл «раздувается» ведь в него записано больше изображений);
  • Объединение CSS- и JS-файлов, которые тоже делаются для уменьшения запросов.

Последнее очевидное преимущество заключается в том, что с самим сайтом (для включения HTTP/2) ничего дополнительно делать не нужно - все работы проводятся на сервере чуть ли не в «1 клик», а для клиентов shared- и VPS-хостингов вообще пройдут незаметно.

Словом, заживем!

HTTP/2 создан и разработан на основе черновика протокола SPDY/3 (Google) и превзошел его - компания Гугл признала преимущества HTTP/2 более многообещающими и в будущем откажется от поддержки SPDY/2.

Прогнозируемое ускорение ответа сервера по протоколу HTTP/2 составит порядка 30%, - реальные тесты уже показали скорости на 19-23% выше и это не предел.

По результатам тестов компании Айри.рф, только от включения протокола HTTP/2 прирост скорости составляет 13-18% (без оптимизации). Почему это важно?

Несмотря на то, что поддержка сайтом протокола HTTP/2 на данный момент не влияет напрямую на ранжирование сайтов в Гугле и Яндекса, на позиции в выдаче влияет скорость загрузки. И раз протокол показывает более высокую скорость загрузки (что является довольно значительным фактором), косвенно он влияет и на ранжирование.

Прежде всего за счет поведенческих факторов. Ускорение загрузки позволяет пользователям меньше уставать и больше концентрироваться на изучении сайта: просматривать больше страниц и не покидать сайт из-за долгой загрузки (уменьшаются отказы).

Большая часть современных браузеров уже поддерживает HTTP/2 - через них проходит ~70% интернет-трафика:

  • Chrome 41-52 и Chrome 46+ в Android;
  • Firefox 36-48 и Firefox 41+ в Android;
  • Opera 28-34 и Opera 30+ в Android;
  • Safari 9 и Safari в iOS 9.1;
  • IE 11 в Windows 10 и браузер Edge 12, 13.

Когда произойдет полноценный переход на HTTP/2 пока непонятно - вероятнее всего в самом ближайшем будущем. Главное что от HTTP/1.x никто не собирается поспешно отказываться. Как говорится: «Работает - не трогай».

Что значит и где применяется HTTPS-протокол?

Ну, про обмен данными по протоколу HTTP вы уже все знаете: любая передача данных осуществляется через запросы по этому протоколу-транспорту. А зачем тогда нужен HTTPS и что он из себя представляет? Ведь жили же нормально и без него?

Проблема в том что данные по HTTP не защищаются и передаются в открытом виде. Интернет - глобальная распределенная сеть узлов. И если вы передаете открытые данные по незащищенному протоколу (Wi-Fi в ТРЦ сюда тоже относится), то один из этих узлов может перехватить их.

Не специально конечно, может быть просто взлом усилиями злоумышленников. HTTPS и создан для того чтобы соединение было безопасным, а данные передавались в зашифрованном виде по криптографическому протоколу SSL/TLS. Это специальная «обертка» поверх HTTP, она шифрует данные, делая их недоступными для злоумышленников и посторонних людей.

HTTPS - англ. «безопасный протокол передачи гипертекста».

Так что в отличие от 80 порта, используемого по умолчанию в HTTP, в HTTPS используется TCP-порт 443 и есть ключ для шифрования. Ключ может быть длиной 40, 56, 128 или 256 бит, достаточный уровень безопасности на данный момент начинается со 128-битных ключей.

Сейчас все браузеры поддерживают HTTPS - он включается автоматически, когда есть возможность и этого требует сервер.

Жизненно важно использовать HTTPS в следующих сервисах:

  • Электронные платежные системы (банки, электронные деньги и прочее);
  • Сервисы принимающие и отправляющие приватную информацию и персональные данные, например у Яндекса это: Паспорт, Такси, Директ , Метрика, Почта, Деньги , Вебмастер и другие;
  • Социальные сети и личные кабинеты в интернет-сервисах;
  • Поисковые системы.

Работает HTTPS просто. Объясню на примере.

Вы кладете важную информацию (логин, пароль, данные карты, персональные данные) в ячейку, «запираете ее на ключ»: ячейка шифрует ваши данные при помощи этого ключа.

Теперь отправляете ее почтой адресату. Адресат получает ячейку-посылку, но открыть ее не может - у него нет ключа. Тогда он запирает (шифрует) ячейку на второй замок и возвращает посылку вам обратно. Вы получаете посылку с двумя замками, при этом ключ к одному у вас есть. Теперь можно отпереть свой замок (расшифровать данные) и отправить посылку обратно еще раз - первоначальному адресату.

Данные при этом остаются защищенными - ведь они никем не просматривались и не менялись и до момента получения адресатом находятся под защитой зашифрованного им ключа. Адресат получает посылку, уже с одним замком, расшифровывает ее и обрабатывает ваши данные. Например, проводит вашу транзакцию.

Все - вот так просто работает HTTPS.

Фишка тут в том, что при первом таком обмене происходит обмен ключом шифрования, чтобы он был известен обоим конечным адресатам, но не известен ни одному из узлов по маршруту следования данных. После обмена шифром можно свободно обмениваться сообщениями (зашифрованными) без опасений о перехвате этих данных, ведь без ключа-шифра открыть и прочитать их не удастся.

Единственный нюанс здесь - надо знать, что вы отправляете данные именно туда, куда нужно. И что конечный пункт и является пунктом назначения. Но нужно подтвердить и точно знать, что конечный адресат существует и управляется тем самым сервером, куда отправляются данные.

Для этого серверы получают в центрах сертификации специальные HTTPS-сертификаты безопасности, которые подтверждают «конечность» пункта назначения (что сайт не является узлом передающим данные дальше) и работоспособность технологии шифрования SSL/TLS, т.е. безопасность соединения.

А вот как выглядит сам сертификат:

На текущий момент HTTPS встроен во все современные браузеры и все что требуется от пользователя для поддержания безопасности отправки данных по HTTPS - регулярно обновлять программное обеспечение для серфинга, приема и отправки важных данных в интернете.

Осуществляя взаимодействие «клиент-сервер» по протоколу HTTPS можно не беспокоиться за сохранность данных - вы надежно защищены от прослушивания сетевого соединения: атак снифферов и man-in-the-middle.

Что означает перечеркнутый значок HTTPS и зеленый значок HTTPS, в чем разница? В безопасности. Зеленый - безопасный, красный и перечеркнутый - небезопасный.

И очень удобно, что перечеркнутый значок HTTPS означает, что несмотря на использование этого протокола, соединение не безопасное. Так происходит когда элементы сайта подгружаются не по HTTPS или истек срок действия сертификата. Пользователю сразу видно - ага, небезопасно. И он может уйти с сайта, либо рисковать своими данными.

Что лучше HTTP 1.1, HTTP/2 или HTTPS?

В качестве подведения итога затрону тему предпочтительного использования протоколов.

Понятно, что на данный момент HTTP 1.1 - наиболее распространенный протокол и используется по умолчанию. Время HTTP/2 еще не пришло, но вскоре большая часть интернет-трафика будет идти через вторую версию протокола HTTP. Это упростит жизнь пользователям, потому что сайты будут загружаться быстрее. Администраторы серверов и сайтов тоже будут рады, потому что новый протоко позволяет по новому оптимизировать сайты, ускоряя загрузку и отдачу данных.

При этом, вряд ли возможно, что все сайты перейдут HTTPS, потому что для целей потребления развлекательного контента шифрование ни к чему. Да, сейчас уже 10% сайтов используют HTTPS в рейтинге наиболее посещаемых веб-ресурсов «Alexa». Но это всего десять процентов, среди которых такие гиганты как Гугл, ПейПал, Амазон, Алиэкспресс и другие. То есть множество сайтов, где не использовать HTTPS означает нарушать право интернет-пользователя на безопасность и сохранность данных.

А обычным сайтам типа блога семи блоггеров HTTPS ни к чему - нет приема персональных или платежных данных, нет регистрации и отправки важных сообщений.

Так что в ближайшем будущем мы станем постепенно отходить от HTTP 1.1 в пользу HTTP/2 и HTTPS.

Вашему вниманию предлагается описание основных аспектов протокола HTTP - сетевого протокола, с начала 90-х и по сей день позволяющего вашему браузеру загружать веб-страницы. Данная статья написана для тех, кто только начинает работать с компьютерными сетями и заниматься разработкой сетевых приложений, и кому пока что сложно самостоятельно читать официальные спецификации.

HTTP - широко распространённый протокол передачи данных, изначально предназначенный для передачи гипертекстовых документов (то есть документов, которые могут содержать ссылки, позволяющие организовать переход к другим документам).

Аббревиатура HTTP расшифровывается как HyperText Transfer Protocol , «протокол передачи гипертекста». В соответствии со спецификацией OSI , HTTP является протоколом прикладного (верхнего, 7-го) уровня. Актуальная на данный момент версия протокола, HTTP 1.1, описана в спецификации RFC 2616 .

Протокол HTTP предполагает использование клиент-серверной структуры передачи данных. Клиентское приложение формирует запрос и отправляет его на сервер, после чего серверное программное обеспечение обрабатывает данный запрос, формирует ответ и передаёт его обратно клиенту. После этого клиентское приложение может продолжить отправлять другие запросы, которые будут обработаны аналогичным образом.

Задача, которая традиционно решается с помощью протокола HTTP - обмен данными между пользовательским приложением, осуществляющим доступ к веб-ресурсам (обычно это веб-браузер) и веб-сервером. На данный момент именно благодаря протоколу HTTP обеспечивается работа Всемирной паутины.

Также HTTP часто используется как протокол передачи информации для других протоколов прикладного уровня, таких как SOAP, XML-RPC и WebDAV. В таком случае говорят, что протокол HTTP используется как «транспорт».

API многих программных продуктов также подразумевает использование HTTP для передачи данных - сами данные при этом могут иметь любой формат, например, XML или JSON.

Как правило, передача данных по протоколу HTTP осуществляется через TCP/IP-соединения. Серверное программное обеспечение при этом обычно использует TCP-порт 80 (и, если порт не указан явно, то обычно клиентское программное обеспечение по умолчанию использует именно 80-й порт для открываемых HTTP-соединений), хотя может использовать и любой другой.

Как отправить HTTP-запрос?

Самый простой способ разобраться с протоколом HTTP - это попробовать обратиться к какому-нибудь веб-ресурсу вручную. Представьте, что вы браузер, и у вас есть пользователь, который очень хочет прочитать статьи Анатолия Ализара.

Предположим, что он ввёл в адресной строке следующее:

Http://alizar.сайт/

Соответственно вам, как веб-браузеру, теперь необходимо подключиться к веб-серверу по адресу alizar.сайт.

Для этого вы можете воспользоваться любой подходящей утилитой командной строки. Например, telnet:

Telnet alizar.сайт 80

Сразу уточню, что если вы вдруг передумаете, то нажмите Ctrl + «]», и затем ввод - это позволит вам закрыть HTTP-соединение. Помимо telnet можете попробовать nc (или ncat) - по вкусу.

После того, как вы подключитесь к серверу, нужно отправить HTTP-запрос. Это, кстати, очень легко - HTTP-запросы могут состоять всего из двух строчек.

Для того, чтобы сформировать HTTP-запрос, необходимо составить стартовую строку, а также задать по крайней мере один заголовок - это заголовок Host, который является обязательным, и должен присутствовать в каждом запросе. Дело в том, что преобразование доменного имени в IP-адрес осуществляется на стороне клиента, и, соответственно, когда вы открываете TCP-соединение, то удалённый сервер не обладает никакой информацией о том, какой именно адрес использовался для соединения: это мог быть, например, адрес alizar..ru или m.. Однако фактически сетевое соединение во всех случаях открывается с узлом 212.24.43.44, и даже если первоначально при открытии соединения был задан не этот IP-адрес, а какое-либо доменное имя, то сервер об этом никак не информируется - и именно поэтому этот адрес необходимо передать в заголовке Host.

Стартовая (начальная) строка запроса для HTTP 1.1 составляется по следующей схеме:

Например (такая стартовая строка может указывать на то, что запрашивается главная страница сайта):

Ну и, конечно, не забывайте, что любая технология становится намного проще и понятнее тогда, когда вы фактически начинаете ей пользоваться.

Удачи и плодотворного обучения!

Теги:

  • http
  • alizar
  • spdy
Добавить метки
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то