Как работает сжатие аудио

Формат сжатия звука MP3

Методы сжатия звуковой информации

Сжатие звуковых данных

Сжатие аудиоданных представляет собой процесс уменьшения скорости цифрового потока за счет сокращения статистической и психоакустической избыточности цифрового звукового сигнала.

Сжатие звуковых данных (сжатие аудио) - тип сжатия данных, кодирования, применяемая для уменьшения объема аудиофайлов или для возможности уменьшения полосы пропускания для потокового аудио. Алгоритмы сжатия звуковых файлов реализуются в компьютерных программах, называемых аудиокодеками. Изобретение специальных алгоритмов сжатия звуковых данных мотивировано тем, что общие алгоритмы сжатия неэффективны для работы со звуком и делают невозможным работу в реальном времени.

Как и в общем случае, различают сжатия звука без потерь, что делает возможным восстановление исходных данных без искажений, и сжатие с потерями, при котором такое восстановление невозможно. Алгоритмы сжатия с потерями дают большую степень сжатия, например audio CD может вместить не более часа «несжатой» музыки, при сжатии без потерь CD вместит почти 2 часа музыки, а при сжатии с потерями при среднем битрейте - 7-10 часов.

Сжатие без потерь

Сложность сжатия звука без потерь заключается в том, что записи звука являются чрезвычайно сложными в своей структуре. Одним из методов сжатия является поиск образцов и их повторений, однако этот метод не эффективен для более хаотических данных, которыми являются, например оцифрованный звук или фотографии. Интересно, что если сгенерированная компьютером графика значительно легче поддается сжатию без потерь, то синтезированный звук в этом отношении не имеет преимуществ. Это объясняется тем, что даже сгенерированный компьютером звук обычно имеет очень сложную форму, которая представляет сложную задачу для изобретения алгоритма.

Другая сложность заключается в том, что звучание обычно меняется очень быстро и это также является причиной того, что упорядоченные последовательности байтов появляются очень редко.

Наиболее распространенными форматами сжатия без потерь являются:
Free Lossless Audio Codec (FLAC), Apple Lossless , MPEG-4 ALS , Monkey"s Audio , и TTA .

Сжатие с потерями

Сжатие с потерями имеет чрезвычайно широкое применение. Кроме компьютерных программ, сжатие с потерями используется в потоковом аудио в DVD, цифровом телевидении и радио и потоковому медиа в интернете.

Новацией этого метода сжатия было использование психоакустики для обнаружения компонентов звучания, которые не воспринимаются слухом человека. Примером могут служить или высокие частоты, которые воспринимаются только при достаточной их мощности, или тихие звуки, возникающие одновременно или сразу после громких звуков и поэтому маскируются ними - такие компоненты звучания могут быть переданы менее точно, или и вообще не переданы.

Для осуществления маскировки сигнал из временной последовательности отсчетов амплитуды превращается в последовательность спектров звуков, в которых каждый компонент спектра кодируется отдельно. Для осуществления такого преобразования используются методы быстрого преобразования Фурье, МДКП, квадратурной-зеркальных фильтров или другие. Общий объем информации при таком перекодировании остается неизменным. Сжатие в определенной частотной области может заключаться в том, что замаскированные или нулевые компоненты не запоминаются вообще, или кодируются с меньшим разрешением. Например, частотные компоненты в до 200 Гц и более 14 кГц могут быть закодированы с 4-битной разрядностью, тогда как компоненты в среднем диапазоне - с 16 битной. Результатом такой операции станет кодирования со средней разрядностью 8-бит, однако результат будет значительно лучше, чем при кодировании всего диапазона частот с 8-битной разрядностью.

Однако очевидно, что перекодированные с низким разрешением фрагменты спектра уже не могут быть восстановлены в точности, и, таким образом, теряются безвозвратно.
Главным параметром сжатия с потерями является битрейт, определяющий степень сжатия файла и, соответственно, качество. Различают сжатия с постоянным битрейтом (англ. Constant BitRate - CBR), переменным битрейтом (англ. Variable BitRate - VBR) и усереденим битрейтом (англ. Average BitRate - ABR).

Наиболее распространенными форматами сжатия с потерями являются: AAC, ADPCM, ATRAC, Dolby AC-3, MP2, MP3, Musepack Ogg Vorbis, WMA и другие.

Формат сжатия звука MP3

MPEG-1 Audio Layer 3 Расширение файла: .mp3 Тип MIME: audio/mpeg Тип формата: Audio

MP3 (более точно, англ. MPEG-1/2/2.5 Layer 3 (но не MPEG-3) - третий формат кодирования звуковой дорожки MPEG) - лицензируемый формат файла для хранения аудио-информации.

На данный момент MP3 является самым известным и популярным из распространённых форматов цифрового кодирования звуковой информации с потерями. Он широко используется в файлообменных сетях для оценочной передачи музыкальных произведений. Формат может проигрываться практически в любой популярной операционной системе, на практически любом портативном аудио-плеере, а также поддерживается всеми современными моделями музыкальных центров и DVD-плееров.

В формате MP3 используется алгоритм сжатия с потерями, разработанный для существенного уменьшения размера данных, необходимых для воспроизведения записи и обеспечения качества воспроизведения очень близкого к оригинальному (по мнению большинства слушателей), хотя меломаны говорят об ощутимом различии. При создании MP3 со средним битрейтом 128 кбит/с в результате получается файл, размер которого примерно равен 1/10 от оригинального файла с аудио CD. MP3 файлы могут создаваться с высоким или низким битрейтом, который влияет на качество файла-результата.

Принцип сжатия заключается в снижении точности некоторых частей звукового потока, что практически неразличимо для слуха большинства людей. Данный метод называют кодированием восприятия. При этом на первом этапе строится диаграмма звука в виде последовательности коротких промежутков времени, затем на ней удаляется информация не различимая человеческим ухом, а оставшаяся информация сохраняется в компактном виде. Данный подход похож на метод сжатия, используемый при сжатии картинок в формат JPEG.

MP3 разработан рабочей группой института Фраунгофера (нем. Fraunhofer-Institut f?r Integrierte Schaltungen) под руководством Карлхайнца Бранденбурга и университета Эрланген-Нюрнберг в сотрудничестве с AT&T Bell Labs и Thomson (Джонсон, Штолл, Деери и др.).



Основой разработки MP3 послужил экспериментальный кодек ASPEC (Adaptive Spectral Perceptual Entropy Coding). Первым кодировщиком в формат MP3 стала программа L3Enc, выпущенная летом 1994 года. Спустя один год появился первый программный MP3-плеер - Winplay3.

При разработке алгоритма тесты проводились на вполне конкретных популярных композициях. Основной стала песня Сюзанны Веги «Tom"s Diner». Отсюда возникла шутка, что «MP3 был создан исключительно ради комфортного прослушивания любимой песни Бранденбурга», а Вегу стали называть «мамой MP3».

Описание формата

В этом формате звуки кодируются частотным образом (без дискретных партий); есть поддержка стерео, причём в двух форматах (подробности - ниже). MP3 является форматом сжатия с потерями, то есть часть звуковой информации, которую (согласно психоакустической модели) ухо человека воспринять не может или воспринимается не всеми людьми, из записи удаляется безвозвратно. Степень сжатия можно варьировать, в том числе в пределах одного файла. Интервал возможных значений битрейта составляет 8 - 320 кбит/c. Для сравнения, поток данных с обычного компакт-диска формата Audio-CD равен 1411,2 кбит/c при частоте дискретизации 44100 Гц.

MP3 и «качество Audio-CD»

В прошлом было распространено мнение, что запись с битрейтом 128 кбит/c подходит для музыкальных произведений, предназначенных для прослушивания большинством людей, обеспечивая качество звучания Audio-CD. В действительности всё намного сложнее. Во-первых, качество полученного MP3 зависит не только от битрейта, но и от кодирующей программы (кодека) (стандарт не устанавливает алгоритм кодирования, только описывает способ представления). Во-вторых, помимо превалирующего режима CBR (Constant Bitrate - постоянный битрейт) (в котором, проще говоря, каждая секунда аудио кодируется одинаковым числом бит) существуют режимы ABR (Average Bitrate - усредненный битрейт) и VBR (Variable Bitrate - переменный битрейт). В-третьих, граница 128 кбит/c является условной, так как она была «изобретена» в эпоху становления формата, когда качество воспроизведения звуковых плат и компьютерных колонок как правило было ниже, чем в настоящее время.

В общих чертах смысл сжатия без потерь таков: в исходных данных находят какую-либо закономерность и с учётом этой закономерности генерируют вторую последовательность, которая однозначно описывает исходную. Например, для кодирования двоичных последовательностей, в которых много нулей и мало единиц, мы можем использовать такую замену:

00 > 0
01 > 10
10 > 110
11 > 111

В таком случае шестнадцать битов:

00 01 00 00 11 10 00 00

будут преобразованы в тринадцать битов:

0 10 0 0 111 110 0 0

Если мы запишем сжатую строку без пробелов, мы всё равно сможем расставить в ней пробелы - а значит, восстановить исходную последовательность.

FLAC (Free Lossless Audio Codec - свободный аудио-кодек без потерь)

Принцип кодирования: алгоритм пытается описать сигнал такой функцией, чтобы полученный после её вычитания из оригинала результат (называемый разностью, остатком, ошибкой) можно было закодировать минимальным количеством битов.

Когда модель подобрана, алгоритм вычитает приближение из оригинала, чтобы получить остаточный (ошибочный) сигнал, который затем кодируется без потерь.

Сжатие с потерями (MP3, AAC, WMA, OGG)

Используется алгоритм сжатия с потерями, размер MP3-файла со средним битрейтом 128 кбит/с примерно равен 1/11 от оригинального файла с аудио CD (несжатое аудио формата CD-Audio имеет битрейт 1411,2 кбит/с). MP3 файлы могут создаваться с высоким или низким битрейтом, что влияет на качество результата.

Принцип сжатия заключается в снижении точности некоторых частей звукового потока, что практически неразличимо для слуха большинства людей. Звуковой сигнал разбивается на равные по продолжительности отрезки, каждый из которых после обработки упаковывается в свой фрейм (кадр). Разложение в спектр требует непрерывности входного сигнала, в связи с этим для расчётов используется также предыдущий и следующий фрейм. В звуковом сигнале есть гармоники с меньшей амплитудой и гармоники, лежащие вблизи более интенсивных - такие гармоники отсекаются, так как среднестатистическое человеческое ухо не всегда сможет определить присутствие либо отсутствие таких гармоник. Такая особенность слуха называется эффектом маскировки. Также возможна замена двух и более близлежащих пиков одним усреднённым (что, как правило, и приводит к искажению звука). Критерий отсечения определяется требованием к выходному потоку. Поскольку весь спектр актуален, высокочастотные гармоники не отсекаются, а только выборочно удаляются, чтобы уменьшить поток информации за счёт разрежения спектра. После спектральной «зачистки» применяются математические методы сжатия и упаковка во фреймы.

Типы битрейта MP3

CBR расшифровывается как Constant Bit Rate, то есть постоянный битрейт, который задаётся пользователем и не изменяется при кодировании произведения. Таким образом, каждой секунде произведения соответствует одинаковое количество закодированных бит данных (даже при кодировании тишины).

VBR расшифровывается как Variable Bit Rate, то есть изменяющийся битрейт или переменный битрейт, который динамически изменяется программой-кодером при кодировании в зависимости от насыщенности кодируемого аудиоматериала и установленного пользователем качества кодирования (например, тишина закодируется с минимальным битрейтом). Минусом данного метода кодирования является то, что VBR считает «незначительной» звуковой информацией более тихие фрагменты, таким образом получается, что если слушать очень громко, то эти фрагменты будут некачественными, в то время как CBR делает с одинаковым битрейтом и тихие, и громкие фрагменты.

ABR расшифровывается как Average Bit Rate, то есть усредненный битрейт, который является гибридом VBR и CBR: битрейт в кбит/c задаётся пользователем, а программа варьирует его, постоянно подгоняя под заданный битрейт. Таким образом, кодек будет с осторожностью использовать максимально и минимально возможные значения битрейта, так как рискует не вписаться в заданный пользователем битрейт. Это является явным минусом данного метода, так как сказывается на качестве выходного файла, которое будет немного лучше, чем при использовании CBR, но хуже, чем при использовании VBR (при том же размере файла) .

Итак, как мы уже знаем, для передачи звука с качеством аудио-компакт-дисков требуется пропускная способность, равная 1,411 Мбит/с. Понятно, что для практической передачи подобных данных через Интернет требуется значительное сжатие. Для этого были разработаны различные алгоритмы сжатия оцифрованного звука. Одним из самых популярных форматов является аудио-MPEG, имеющий три уровня (разновидности). Самым известным и качественным является MP3 (MPEG layer 3 - MPEG 3-го уровня). В Интернете можно найти огромное количество записей в MP3, не все из которых на самом деле являются легальными. Это привело к множеству судебных разбирательств, инициированных ущемленными в своих законных правах артистами и обладателями авторских прав. MP3 - это часть стандарта MPEG, предназначенного для сжатия видеосигнала. Методы сжатия движущихся изображений мы рассмотрим позднее в этой главе, а сейчас обратимся к сжатию звука.

Существуют две концепции сжатия звука. При кодировании формы сигналов сигнал раскладывается на компоненты при помощи преобразования Фурье. На рис. 2.1, а показан пример в виде временной функции и амплитуд, получающихся в результате ее разложения в ряд Фурье. Амплитуда каждого компонента кодируется с минимальными искажениями. Задачей является максимально аккуратная передача формы сигнала с минимально возможной затратой битов.

Другая концепция называется перцепционным кодированием. Она основана на некоторых недостатках слухового аппарата человека, позволяющих шифровать сигнал таким образом, что слушатель не ощутит никакой разницы по сравнению с настоящим сигналом, хотя на осциллографе эта разница будет весьма заметна. Наука, на которой базируется перцепционное кодирование, называется психоакустикой. Она изучает восприятие звука человеком. Формат MP3 использует перцепционное кодирование.

Ключевым свойством перцепционного кодирования является то, что одни звуки могут маскировать другие. Представьте себе, что теплым летним вечером вы медитируете на лужайке, слушая живой концерт для флейты с оркестром. Затем, откуда ни возьмись, появляется бригада рабочих с отбойными молотками в руках, которая начинает вскрывать асфальт на близлежащей улице. Расслышать флейту, к сожалению, уже никто не в состоянии. Нежные звуки, издаваемые ею, подверглись маскированию звуками отбойных молотков. Если рассматривать ситуацию с точки зрения передачи данных, то в этот момент достаточно кодировать лишь диапазон частот, в котором работают отбойные молотки, - все равно флейту за этим грохотом не слышно. Способность громких звуков определенного диапазона частот «прятать» более тихие звуки других диапазонов (которые были бы слышны при отсутствии громких звуков) называется частотным маскированием. На самом деле, даже после того как рабочие выключат отбойные молотки, слушатели не будут слышать флейту в течение некоторого небольшого периода времени. Это связано с тем, что при появлении очень громкого звука коэффициент усиления человеческого уха резко снизился, и после прекращения работы отбойных молотков требуется время для его возвращения в нормальное состояние. Этот эффект называется временным маскированием.

Чтобы перейти от качественного описания этих эффектов к количественным, представим себе проведение некого эксперимента 1. Человек, находящийся в тихом помещении, надевает наушники, соединенные со звуковой картой компьютера. Компьютер генерирует звук (чистую синусоидальную звуковую волну) с частотой 100 Гц, сила которого постепенно возрастает. Испытуемый должен нажать клавишу на клавиатуре, как только он услышит звук. Компьютер запоминает силу звука, при которой была нажата клавиша, и повторяет эксперимент на частотах 200 Гц, 300 Гц и т. д., доходя до верхнего предела слышимых частот. Эксперимент необходимо провести над большим количеством испытуемых. На рис. 7.27, а показан график с логарифмическим масштабом на обеих осях, показывающий усредненную зависимость порога слышимости от частоты звука. Наиболее очевидный вывод, который можно сделать при взгляде на эту кривую, состоит в том, что нет никакой необходимости когда бы то ни было кодировать частоты, амплитуда которых ниже порога слышимости.

Например, если сила звука на частоте 100 Гц равна 20 дБ, этот звук можно не кодировать, и качество звучания при этом не ухудшится, так как уровень 20 дБ при 100 Гц находится ниже порога слышимости (рис. 7.27, а).

Теперь рассмотрим эксперимент 2. Пусть компьютер повторяет действия эксперимента 1, но на этот раз на каждую тестовую частоту будет накладываться синусоидальная звуковая волна постоянной амплитуды с частотой, скажем, 150 Гц. Мы обнаружим, что порог слышимости для частот, расположенных вблизи 150 Гц, резко возрастает. Это отражено на графике на рис. 7.27, б.


Рис. 7.27. Порог слышимости как функция частоты (а); эффект маскирования (б)

Из последнего наблюдения можно сделать следующий вывод: зная, какие сигналы маскируются более мощными сигналами на близлежащих частотах, мы можем пренебречь соответствующими частотами и не кодировать их, экономя тем самым биты. Из рис. 7.27, б очевидно, что сигналом с частотой 125 Гц мо^ п ° полностью пренебречь, и никто не заметит разницы. Знание свойств времени° г ° маскирования позволяет даже после прекращения звучания громкого сип* 2 ^ в каком бы то ни было частотном диапазоне в течение некоторого времени (пока ухо настраивается на меньшую мощность звука) продолжать пренебрегать кодированием этой частоты. Суть алгоритма MP3 состоит в разложении сигнала в ряд Фурье для получения силы звука на каждой из частот с последующей передачей исключительно немаскированных частот, кодируемых минимально возможным числом бит.

Теперь, зная основной принцип, мы можем рассмотреть, как производится само кодирование. Сжатие звука выполняется путем замеров формы сигналов, производимых с частотой 32 000, 44 100 или 48 000 раз в секунду. Замеры могут сниматься по одному или двум каналам в одной из четырех комбинаций:

1. Монофонический звук (один входной поток).

2. Двойной монофонический звук (например, звуковая дорожка на английском

и японском).

3. Разъединенное стерео (каждый канал сжимается отдельно).

4. Объединенное стерео (учитывается межканальная избыточность сигнала).

Для начала выбирается желаемая выходная битовая скорость. С помощью алгоритма MP3 можно сжать записанную на компакт-диск стереофоническую запись рок-н-ролла до 96 Кбит/с с потерей качества, едва заметной даже для фанатов рок-н-ролла, не лишенных слуха. Если мы хотим «перегнать в MP3» фортепианный концерт, нам понадобится битовая скорость по крайней мере 128 Кбит/с. Чем обусловлена такая разница? Дело в том, что соотношение сигнал/шум в рок-н- ролле гораздо выше, чем в фортепианном концерте (только в техническом смысле, разумеется). Можно, впрочем, выбрать меньшую битовую скорость и получить более низкое качество воспроизведения.

После этого отсчеты обрабатываются группами по 1152 (что занимает около 26 мс). Каждая группа предварительно проходит через 32 цифровых фильтра, выделяющих 32 частотных диапазона. Одновременно входной сигнал заводится в психоакустическую модель для определения маскирующих частот. Затем каждый из 32 частотных диапазонов преобразуется с целью получения более точного спектрального разрешения.

Следующим шагом является распределение имеющегося запаса бит между частотными диапазонами. При этом большее число бит отводится под диапазон с наибольшей немаскированной спектральной мощностью, меньшее - под немаскируемые диапазоны с меньшей спектральной мощностью, и совсем не отводятся биты под маскируемые диапазоны. Наконец, битовые последовательности шифруются с помощью кода Хаффмана (Huffman), который присваивает короткие коды числам, появляющимся наиболее часто, и длинные - появляющимся редко.

На самом деле, эта тема далеко не исчерпана. Существуют методы шумоподавления, сглаживания сигналов, использования межканальной избыточности (при наличии такой возможности), однако все это, к сожалению, невозможно охватить в рамках нашей книги. Более формально изложенные математические основы этих процессов даются в книге (Pan, 1995).

Сегодня количество потребляемой нами информации в сети выросло в тысячи раз в сравнении с началом 2000-х. И неудивительно, ведь раньше, помимо намного менее распространенного интернет-покрытия, привычные нам сайты и сервисы выглядели совсем по другому.

Мы ежедневно читаем статьи и новости о том, что та или иная компания разработала новый стандарт соединения, превосходящий нынешние аналоги по скорости передачи данных. За уже практически два десятилетия провайдеры и производители многих гаджетов сделали огромный шаг в направлении к скоростному доступу в Интернет. Но не одними лишь скоростями наш мгновенный доступ к сайтам един.


Огромную роль в экономии нашего времени сыграло развитие алгоритмов сжатия изображений, аудио и видеофайлов. Гуляя по просторам сети, зачастую мы даже не задумываемся над тем, как и что устроено, сколько сил было приложено к разработке той или иной технологии. В новой серии статей мы рассмотрим методы сжатия таких популярных форматов, как MP3 и JPEG, а также базово рассмотрим процесс кодирования видео.

Работа алгоритма

Первым в новой серии статей станет самый популярный формат сжатия аудио–файлов *.mp3. Появился он в 1993 году, благодаря рабочей группе института Фраунгофера, а стандартизирован объединением MPEG. По данным Википедии, объединение было образовано международной организацией ISO для разработки норм в сжатии аудио и видеофайлов. Ими были установлены также следующие стандарты:

  • MPEG–1 : Предназначался для сжатия видео и аудио–файлов, позже стал устоявшимся стандартом для VCD (Video CD).
  • MPEG–2 : Уже ориентировался на передачу сигнала широковещательного телевидения семейств ATSC, ISDB и DVB и в прочих спутниковых ТВ-вещаниях. Таких как например Dish Network.
  • MPEG–3 : Стандарт разработанный для вещания HDTV, но был не принят по причине того, что MPEG–2, с небольшими доработками вполне хватало для таких целей. И нет, это не тот самый mp3, о котором вы сейчас могли подумать. На самом деле, mp3 является ответвлением стандарта MPEG–1, 3 уровня.
  • MPEG–4 : Является во многом усовершенствованным MPEG–1, с поддержкой декодирования 3D–контента и сжатия с низким битрейтом. В него также была интегрирована система программной защиты авторских прав - DRM. Из новых введенных в стандарт видео-форматов, можно отметить ASP и H.264.
Все таки давайте вернемся обратно к mp3. Основной задачей формата было и является уменьшение размера файлов за счет удаления определенных участков звукового спектра, которые не ощущаются на непрофессиональной аудиотехнике, в соответствии с психоакустической моделью звуковосприятия человека.

На этом этапе при помощи алгоритма преобразования Фурье, звуковая волна раскладывается на спектры разной частоты. Все те малоразличимые нашим слухом частоты просто удаляются. В основном это весь спектр звука выше 16 000 Гц. По такому принципу, кстати, работают и сервисы определения музыки, типа SoundHound и Shazam. Встроенный в их работу алгоритм разделяет слышимую звуковую волну на несколько, выделяет ритмику, основные ноты и сравнивает их со своей базой данных.

Но тем не менее, общая картина звучания, например, mp3-файла в битрейте 320 кбит/с мало чем отличается от несжатого файла, при этом в размере может составлять 1/10 от оригинального.

Уже на этом этапе размер файла можно значительно уменьшить, но самый больший процент сжатия происходит на следующих этапах маскировки. Работа первого из них заключается в удалении кратных звуковых частот на громких моментах в песне, то есть если звучит громкий барабан, то все остальные сигналы исходящие от включенных в аранжировку инструментов, можно просто–напросто убрать, и никто этого не заметит.

А в некоторых случаях, в соответствии с той же психоакустической моделью, можно удалять доли перед, и после звучания громких звуков, так как в этот период у всех людей наступает кратковременная (буквально на несколько сотых секунды) глухота.

Потом идет распределение звуков по каналам. Это происходит не без потерь в детализации, с помощью специальных формул, которые вы можете посмотреть на картинке (упрощено). Разница в звучании каждого из каналов сводится почти к нулю с целью сэкономить еще одну сотню-другую байт.

В конце каждый из сжатых фреймов аудиозаписи закодированные одинаковыми символами (например нулями), сокращаются до минимальных размеров при помощи метода кода Хаффмана. В процессе его работы дополнительная информация не теряется, просто к каждому из значений фреймов присваивается какой-то код, в зависимости от того, сколько раз то или иное число в нем встречается. Далее все оставшиеся куски нашей аудиозаписи склеиваются и на выходе образуют привычный нам аудио–файл.

Спасибо, что дочитали до конца теперь мы разобрались с тем, как устроен один из самых распространенных аудиоформатов. B следующей статье мы рассмотрим процесс сжатия видео.

Сжатие звуковых данных (сжатие аудио ) - тип сжатия данных, кодирования, применяемая для уменьшения объема аудиофайлов или для возможности уменьшения полосы пропускания для потокового аудио. Алгоритмы сжатия звуковых файлов реализуются в компьютерных программах, называемых аудиокодеками. Изобретение специальных алгоритмов сжатия звуковых данных мотивировано тем, что общие алгоритмы сжатия неэффективны для работы со звуком и делают невозможным работу в реальном времени.

Как и в общем случае, различают сжатия звука без потерь, что делает возможным восстановление исходных данных без искажений, и сжатие с потерями, при котором такое восстановление невозможно. Алгоритмы сжатия с потерями дают большую степень сжатия, например audio CD может вместить не более часа «несжатой» музыки, при сжатии без потерь CD вместит почти 2 часа музыки, а при сжатии с потерями при среднем битрейте - 7-10 часов.

Сжатие без потерь

Сложность сжатия звука без потерь заключается в том, что записи звука являются чрезвычайно сложными в своей структуре. Одним из методов сжатия является поиск образцов и их повторений, однако этот метод не эффективен для более хаотических данных, которыми являются, например оцифрованный звук или фотографии. Интересно, что если сгенерированная компьютером графика значительно легче поддается сжатию без потерь, то синтезированный звук в этом отношении не имеет преимуществ. Это объясняется тем, что даже сгенерированный компьютером звук обычно имеет очень сложную форму, которая представляет сложную задачу для изобретения алгоритма.

Другая сложность заключается в том, что звучание обычно меняется очень быстро и это также является причиной того, что упорядоченные последовательности байтов появляются очень редко.

Наиболее распространенными форматами сжатия без потерь являются:
Free Lossless Audio Codec (FLAC), Apple Lossless , MPEG-4 ALS , Monkey"s Audio , и TTA .

Сжатие с потерями

Сжатие с потерями имеет чрезвычайно широкое применение. Кроме компьютерных программ, сжатие с потерями используется в потоковом аудио в DVD, цифровом телевидении и радио и потоковому медиа в интернете.

Новацией этого метода сжатия было использование психоакустики для обнаружения компонентов звучания, которые не воспринимаются слухом человека. Примером могут служить или высокие частоты, которые воспринимаются только при достаточной их мощности, или тихие звуки, возникающие одновременно или сразу после громких звуков и поэтому маскируются ними - такие компоненты звучания могут быть переданы менее точно, или и вообще не переданы.

Для осуществления маскировки сигнал из временной последовательности отсчетов амплитуды превращается в последовательность спектров звуков, в которых каждый компонент спектра кодируется отдельно. Для осуществления такого преобразования используются методы быстрого преобразования Фурье, МДКП, квадратурной-зеркальных фильтров или другие. Общий объем информации при таком перекодировании остается неизменным. Сжатие в определенной частотной области может заключаться в том, что замаскированные или нулевые компоненты не запоминаются вообще, или кодируются с меньшим разрешением. Например, частотные компоненты в до 200 Гц и более 14 кГц могут быть закодированы с 4-битной разрядностью, тогда как компоненты в среднем диапазоне - с 16 битной. Результатом такой операции станет кодирования со средней разрядностью 8-бит, однако результат будет значительно лучше, чем при кодировании всего диапазона частот с 8-битной разрядностью. Однако очевидно, что перекодированные с низким разрешением фрагменты спектра уже не могут быть восстановлены в точности, и, таким образом, теряются безвозвратно.
Главным параметром сжатия с потерями является битрейт, определяющий степень сжатия файла и, соответственно, качество. Различают сжатия с постоянным битрейтом (англ. Constant BitRate - CBR), переменным битрейтом (англ. Variable BitRate - VBR) и усереденим битрейтом (англ. Average BitRate - ABR).

Наиболее распространенными форматами сжатия с потерями являются: AAC, ADPCM, ATRAC, Dolby AC-3, MP2, MP3, Musepack Ogg Vorbis, WMA и другие.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то