Как устроен экран телефона. История создания сенсорного экрана. Так какой экран лучше: резистивный или емкостный

Экраны современных устройств могут не только выводить изображение, но и позволяют взаимодействовать с устройством посредством сенсоров.

Изначально сенсорные экраны применялись в некоторых карманных компьютерах, а на сегодняшний день сенсорные экраны находят широкое применение в мобильных устройствах, плеерах, фото и видеокамерах, информационных киосках и так далее. При этом в каждом из перечисленных устройств может применяться тот или иной тип сенсорного экрана. В настоящее время разработано несколько типов сенсорных панелей, и, соответственно, каждая из них обладает своими достоинствами и недостатками. В данной статье мы как раз и рассмотрим, какие же бывают типы сенсорных экранов, их достоинства и недостатки, какой тип сенсорного экрана лучше.

Существует четыре основных типа сенсорных экранов: резистивные, емкостные, с определением поверхностно-акустических волн и инфракрасные . В мобильных же устройствах наибольшее распространение получили только два: резистивные и емкостные . Основным их отличием является тот факт, что резистивные экраны распознают нажатие, а емкостные – касание.

Резистивные сенсорные экраны

Данная технология получила наибольшее распространение среди мобильных устройств, что объясняется простотой технологии и низкой себестоимостью производства. Резистивный экран представляет собой LCD дисплей, на который наложены две прозрачные пластины, разделенные слоем диэлектрика. Верхняя пластина гибкая, так как на нее нажимает пользователь, нижняя же жестко закреплена на экране. На обращенные друг другу поверхности нанесены проводники.

Резистивный сенсорный экран

Микроконтроллер подает напряжение последовательно на электроды верхней и нижней пластины. При нажатии на экран гибкий верхний слой прогибается, и его внутренняя проводящая поверхность касается нижнего проводящего слоя, изменяя тем самым сопротивление всей системы. Изменение сопротивления фиксируется микроконтроллером и таким образом определяются координаты точки касания.

Из плюсов резистивных экранов можно отметить простоту и малую стоимость, неплохую чувствительность, а также возможность нажимать на экран как пальцем, так и любым предметом. Из минусов необходимо отметить плохое светопропускание (в результате приходится использовать более яркую подсветку), плохая поддержка множественных нажатий (multi-touch), не могут определять силу нажатия, а также довольно быстрый механический износ, хотя в сравнении со временем жизни телефона, этот недостаток не так уж и важен, так как обычно быстрее телефон выходит из строя, чем сенсорный экран.

Применение : сотовые телефоны, КПК, смартфоны, коммуникаторы, POS-терминалы, TabletPC, медицинское оборудование.

Емкостные сенсорные экраны

Емкостные сенсорные экраны делятся на два типа: поверхностно-емкостные и проекционно-емкостные . Поверхностно-емкостные сенсорные экраны представляют собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие, поверх которого нанесено защитное покрытие. По краям стекла расположены печатные электроды, которые подают на проводящее покрытие низковольтное переменное напряжение.

Поверхностно-емкостной сенсорный экран

При касании экрана образуется импульс тока в точке контакта, величина которого пропорциональна расстоянию из каждого угла экрана до точки касания, таким образом, вычислить координаты места касания контроллеру достаточно просто, сравнить эти токи. Из достоинств поверхностно-емкостных экранов можно отметить: хорошее светопропускание, малое время отклика и большой ресурс касаний. Из недостатков: размещенные по бокам электроды плохо подходят для мобильных устройств, требовательны к внешней температуре, не поддерживают multi-touch, касаться можно пальцами или специальным стилусом, не могут определять силу нажатия.

Применение : информационные киоски в охраняемых помещениях, в некоторых банкоматах.

Проекционно-емкостные сенсорные экраны представляют собой стекло с нанесенными на него горизонтальными ведущими линиями проводящего материала и вертикальными определяющими линиями проводящего материала, разделенные слоем диэлектрика.

Проекционно-емкостной сенсорный экран

Работает такой экран следующим образом: на каждый из электродов в проводящем материале микроконтроллером последовательно подается напряжение и измеряется амплитуда возникающего в результате импульса тока. По мере приближения пальца к экрану емкость электродов, находящихся под пальцем, изменяется, и таким образом контроллер определяет место касания, то есть координаты касания – это пересекающиеся электроды с возросшей емкостью.

Достоинством проекционно-емкостных сенсорных экранов является быстрая скорость отклика на касание, поддержка multi-touch, более точное определение координат по сравнению с резистивными экранами и определение силы нажатия. Поэтому эти экраны в большей степени используются в таких устройствах, как iPhone и iPad. Также стоит отметить большую надежность этих экранов и, как следствие, больший срок работы. Из недостатков можно отметить, что на таких экранах касаться можно только пальцами (рисовать или писать от руки пальцами очень неудобно) или специальным стилусом.

Применение : платежные терминалы, банкоматы, электронные киоски на улицах, touchpads ноутбуков, iPhone, iPad, коммуникаторы и так далее.

Сенсорные экраны ПАВ (поверхностно-акустические волны)

Состав и принцип работы данного типа экранов следующий: по углам экрана размещены пьезоэлементы, которые преобразуют подаваемый на них электрический сигнал в ультразвуковые волны и направляют эти волны вдоль поверхности экрана. Вдоль краев одной стороны экрана распределены отражатели, которые распределяют ультразвуковые волны по всему экрану. На противоположных от отражателей краях экрана расположены сенсоры, которые фокусируют ультразвуковые волны и передают их далее на преобразователь, который в свою очередь преобразует ультразвуковую волну обратно в электрический сигнал. Таким образом, для контроллера экран представляется в виде цифровой матрицы, каждое значение которой соответствует определенной точке поверхности экрана. При касании пальцем экрана в любой точке происходит поглощение волн, и в результате общая картина распространения ультразвуковых волн изменяется и в результате преобразователь выдает более слабый электрический сигнал, который сравнивается с хранящейся в памяти цифровой матрицей экрана, и таким образом вычисляются координаты касания экрана.

Сенсорный экран ПАВ

Из достоинств можно отметить высокую прозрачность, так как экран не содержит проводящих поверхностей, долговечность (до 50 млн. касаний), а также сенсорные экраны ПАВ позволяют определять не только координаты нажатия, но и силу нажатия.

Из недостатков можно отметить более низкую точность определения координат, чем у емкостных, то есть рисовать на таких экранах не получится. Большим недостатком являются сбои в работе при воздействии акустических шумов, вибраций или при загрязнении экрана, т.е. любая грязь на экране блокирует его работу. Также данные экраны корректно работают только с предметами, поглощающими акустические волны.

Применение : сенсорные экраны ПАВ в основном в охраняемых информационных киосках, в образовательных учреждениях, в игровых автоматах и так далее.

Инфракрасные сенсорные экраны

Устройство и принцип работы инфракрасных сенсорных экранов довольно простой. Вдоль двух прилегающих друг к другу сторон сенсорного экрана расположены светодиоды, излучающие инфракрасные лучи. А на противоположной стороне экрана расположены фототранзисторы, которые принимают инфракрасные лучи. Таким образом, весь экран покрыт невидимой сеткой пересекающихся инфракрасных лучей, и если коснуться экрана пальцем, то лучи перекрываются и не попадают на фототранзисторы, что немедленно регистрируется контроллером, и таким образом определяются координаты касания.

Инфракрасный сенсорный экран

Применение : инфракрасные сенсорные экраны используются в основном в информационных киосках, торговых автоматах, в медицинском оборудовании и т.д.

Из достоинств можно отметить высокую прозрачность экрана, долговечность, простоту и ремонтопригодность схемы. Из недостатков: боятся грязи (поэтому используются только в помещении), не могут определять силу нажатия, средняя точность определения координат.

P.S. Итак, мы рассмотрели основные типы наиболее распространенных сенсорных технологий (хотя есть еще и менее распространенные, такие, как оптические, тензометрические, индукционные и так далее). Из всех этих технологий наибольшее распространение в мобильных устройствах получили резистивные и емкостные, так как обладают высокой точностью определения точки касания. Из них наилучшими характеристиками обладают проекционно-емкостные сенсорные экраны.

Текст подготовлен по материалам из открытых источников методистами по Технологии Карабиным А.С., Л.В. Гаврик, С.В. Усачёвым

В наше время ни у кого не возникает сомнений в том, что сенсорный экран на вашем телефоне - штука удобная. Такие дисплеи используются для создания множества устройств - планшетов, мобильных телефонов, ридеров, справочных устройств и кучи другой периферии. Сенсорный экран позволяет заменить многочисленные механические кнопки, и это очень удобно, поскольку в этом случае они объединяют и дисплей, и высококачественное устройство ввода. Уровень надежности устройств значительно повышается, ведь механические части отсутствуют. В настоящее время сенсорные экраны принято подразделять на несколько видов: резистивные (бывают четырех-, пяти-, восьмипроводными), проекционно-емкостные, матрично-емкостные, оптические и тензометрические. Кроме того, дисплеи могут создаваться на основе поверхностно-акустических волн либо инфракрасных лучей. Насчитывается уже несколько десятков запатентованных технологий. В наше время чаще всего используются емкостные и резистивные экраны. Их и рассмотрим подробнее.

Резистивный экран.

Самый простой вид – это четырехпроводной, который состоит из специальной стеклянной панели, а также пластиковой мембраны. Пространство между стеклом и пластиковой мембраной обязательно должно заполняться микроизоляторами, которые могут надежно изолировать токопроводящие поверхности друг от друга. По всей поверхности слоев установлены электроды, являющиеся тонкими пластинками, сделанными из металла. В заднем слое электроды находятся в вертикальном положении, а в переднем слое – в горизонтальном для того, чтобы могло производиться вычисление координат. Если на дисплей нажать, то панель и мембрана автоматически замкнутся, а специальный датчик будет воспринимать нажатие, преобразовывая его в сигнал. Наиболее усовершенствованным видом считаются восьмипроводные дисплеи, которые отличаются высоким уровнем точности. Однако данные экраны отличаются низким уровнем надежности и недолговечностью. Если же важно, чтобы дисплей был надежным, необходимо остановить выбор на пятипроводном его виде.

1 - стеклянная панель, 2 - резистивное покрытие, 3 - микроизоляторы, 4 - пленка с проводящим покрытием

Матричные экраны.

Конструкция похожа на резистивный дисплей, хотя она и была упрощена. На мембрану специально нанесли вертикальные проводники, а на стекло – горизонтальные. Если нажать на дисплей, то проводники обязательно соприкоснутся, замкнутся крест-накрест. Процессор может отследить, какие проводники замкнулись, и это помогает обнаружить координаты нажатия. Матричные экраны нельзя назвать высокоточными, поэтому их уже продолжительное время не используют.


Емкостные экраны.

Конструкция емкостных экранов является достаточно сложной, и основана она на том, что тело человека и дисплей вместе образуют конденсатор, проводящий переменный ток. Подобные экраны выполняются в виде стеклянной панели, которую покрывают резистивным материалом для того, чтобы электрический контакт не затруднялся. Электроды располагаются по четырем углам дисплея, и на них подано переменное напряжение. Если же коснуться поверхности дисплея, то будет происходить утечка переменного тока через вышеупомянутый \"конденсатор\". Это регистрируется датчиками, после чего информацию обрабатывает микропроцессор устройства. Емкостные дисплеи могут выдержать до 200 миллионов нажатий, они отличаются средним уровнем точности, но, увы, они боятся любого влияния жидкостей.

Проекционно-емкостные экраны.

Проекционно-емкостные экраны могут, в отличие от предыдущих рассмотренных типов, способны определить сразу несколько нажатий. На внутренней стороне всегда есть специальная сетка элетродов, и во время соприкосновения с ними обязательно будет образован конденсатор. В данном месте будет изменена электрическая емкость. Контроллер сможет определить точку, в которой пересеклись электроды. Затем происходят вычисления. Если сразу нажать экран в нескольких местах, то будет образован не один конденсатор, а несколько.


Экран с сеткой инфракрасных лучей.

Принцип работы подобных дисплеев является простым, и он в какой-то степени похож на матричный. В этом случае проводники заменяют специальными инфракрасными лучами. Вокруг данного экрана проходит рамка, в которой есть встроенные излучатели, а также приемники. Если нажать на экран, то некоторые лучи будут перекрываться, и они не могут достигнуть собственного пункта назначения, а именно приемника. В итоге контроллер вычисляет место контакта. Подобные экраны могут пропускать свет, они долговечны, поскольку чувствительного покрытия нет и механического касания не происходит вообще. Однако такие дисплеи в настоящий момент не отвечают высокой точности и боятся любых загрязнения. Зато время диагональ рамки такого дисплея может достигать 150 дюймов.


Сенсорные экраны на поверхностно-акустических волнах.

Данный дисплей всегда выполняется в виде стеклянной панели, в которую встроены пьезоэлектрические преобразователи, расположенные по разным углам. По периметру также находятся отражающие, приемные датчики. Контроллер отвечает за формирование сигналов, частота которых является высокой. После этого сигналы всегда посылаются на пьезоэлектрические преобразователя, которые могут преобразовывать поступившие сигналы в акустические колебания, отражающиеся впоследствии от отражающих датчиков. Затем волны могут улавливаться приемниками, повторно посылаться на пьезоэлектрические преобразователи, после чего превращаются в электрический сигнал. Если нажать на дисплей, то энергия акустических волн будет частично поглощена. Приемники отличаются восприимчивостью к подобным изменениям, а процессор может вычислить точки касания. Основным преимуществом является то, что сенсорные экраны на поверхностно-акустических волнах отслеживают координаты точки нажатия, силу нажатия. Дисплеи данного вида отличаются долговечностью, ведь они могут выдержать 50 миллионов касаний. Чаще всего их используют для игровых автоматов, справочных системах. Следует учитывать то, что работа такого дисплея может быть неточной в условии окружающих шумов, вибрации, акустического загрязнения.

Планшеты, очень многие смартфоны, а также мониторы, дисплеи на бытовой технике оснащены сенсорными экранами. Эта технология радует, во-первых, своим привлекательным дизайном, во-вторых, своей функциональностью и простотой. К тому же, теперь нет необходимости расходовать пространство на размещение кнопок, что тоже очень удобно. О разновидностях экранов, их строении, принципах работы, плюсах и минусах читайте в нашей статье.

Самые популярные виды сенсоров

Резистивные сенсоры

Резистивный сенсор состоит из пластиковой мембраны (идет первой) и панели, изготовленной из стекла (идет вторым слоем). Между этими слоями прокладывается микроизолятор, призванный обезопасить друг от друга токопроводящие поверхности. На поверхностях слоев располагаются электроды (в первом слое они идут горизонтально, во втором - вертикально). Нажимая на экран, вы провоцируете замыкание слоев, специальный датчик считывает ваше нажатие и преобразовывает его в сигнал, который передается в процессор. В итоге экран реагирует на поставленную вашим касанием задачу - например, запускает видео, открывает документ и проч.

Данная технология считается достаточно простой, а потому на изготовление резистивных экранов тратится не слишком много средств. В итоге продукция с ними часто оказывается в бюджетном ценовом сегменте, что является главным достоинством техники с резистивными экранами. Техника с резистивными дисплеями представлена в большом количестве и ассортименте. В числе минусов этого типа сенсоров - отсутствие поддержки мультижестов, плохая видимость на солнце/при ярком свете, низкая износостойкость, невысокая точность.

Емкостные сенсоры

Данная технология является более совершенной - она поддерживает мультитач, отличается приличной видимостью при ярком свете и лучшей износостойкостью, более высоким уровнем точности. В числе недостатков - более значительная цена устройств с емкостными экранами, негативная реакция на воздействие жидкостей.

Как работает сенсорный экран данного типа? Ключевую роль здесь выполняют электроды, располагающиеся в углах дисплея и передающие друг другу переменные потоки электричества. В итоге образуется своеобразная сетка тока. Нажимая на экран, человек смещает направление тока, что позволяет системе определить место нажатия и соответственно вычислить и выполнить требующуюся команду. Тело человека в этом случае вместе с самим экраном выступают проводниками тока. Дисплей состоит из стекла, покрытого резистивным материалом, обеспечивающим эффективный электрический контакт.

Инфракрасные сенсоры

Рамка экрана (выполнен из стекла) включает приемники и излучатели инфракрасных лучей. Работая, они образуют на поверхности дисплея инфракрасную сетку. Нажав на экран, мы перекроем доступ определенным лучам - система вычислит это место и считает соответствующую задачу, которую ей нужно будет выполнить.

В числе недостатков - не очень высокая точность (особенно при ярком свете), «боязнь» загрязнений и высокая стоимость изделий с инфракрасными дисплеями. В числе плюсов - хорошая видимость на солнце, долговечность.

Менее популярные виды сенсоров

Матричные сенсоры

Матричная система подобна тому, как работает сенсор в резистивных моделях дисплеев. Только на мембрану наносятся вертикальные проводники тока, а на стекло - горизонтальные. Нажатие вызывает замыкание, которое система вычисляет и далее преобразует в выполнение той или иной задачи.

Матричные экраны сегодня редко где используются, поскольку они считаются очень неточными, а потому непродуктивными.

Экраны на поверхностно-акустических волнах

В разные углы стеклянной панели встраиваются пьезоэлектрические преобразователи. По периметру же дисплея находятся датчики, принимающие и отражающие сигналы. Специальный контроллер обеспечивает высокую частотность формирования сигналов. Нажатие на дисплей провоцирует выполнение какой-либо задачи.

В настоящее время уже никого не удивишь сенсорным экраном. Более того, уже странно видеть устройства без сенсора, особенно, когда речь идет о мобильных гаджетах. Это обусловлено стремлением увеличить площадь рабочей поверхности. Но часто ли мы задумываемся о том, какой тип дисплея используется в том или ином устройстве? Случалось ли такое, что, купив новый планшет или смартфон, мы пытаемся управлять им с помощью привычно цифрового пера, но вот незадача, устройство попросту не реагирует на его прикосновение. Видимо, экран выполнен по другой технологии, емкостной, которая постепенно начинает вытеснять своего предшественника, дисплей резистивного типа.

Можно встретить большое количество сенсорных дисплеев, отличающихся не только конструктивными особенностями, но и принципом работы. На сегодняшний день существуют следующие типы сенсорных экранов: резистивный, емкостной, проекционно-емкостной, матричный, сенсорный экран на поверхностно-акустических волнах, инфракрасный, тензометрический, индуктивный.

В настоящий момент в электронной технике используются два основных типа сенсорных экранов: резистивный и емкостной. О них мы и поговорим подробней, а также попытаемся выделить сильные и слабые стороны каждого.

Вначале рассмотрим принцип работы резистивного сенсорного экрана. Он состоит из стеклянной панели и гибкой пластиковой мембраны, на которые нанесено резистивное покрытие. Пространство между стеклом и мембраной заполнено микроизоляторами, которые в свою очередь надежно изолируют проводящие поверхности, равномерно распределившись по активной области экрана. При нажатии на дисплей, панель и мембрана замыкаются, а контроллер с помощью аналогово-цифрового преобразователя регистрирует изменение сопротивления, преобразовывая его в координаты касания. Именно по этой причине на такой экран можно нажимать любым твердым предметом, это может быть, как ноготь, так и специальный стилус, и даже обычный карандаш. Как следствие такого строения, резистивные экраны постепенно изнашиваются, из-за чего и возникает необходимость в периодической калибровке экрана, чтобы при нажатии на дисплей происходила правильная обработка координат точки касания.

Бывают четырех-, восьми-, пяти-, шести- или семиэлектродные экраны. Самыми простыми в изготовлении, следовательно, и самыми дешевыми, являются четырехэлектродные. Они выдерживают всего 3 миллиона нажатий в одну точку. Пятипроводные уже будут значительно надежнее - до 35 миллионов нажатий, в них четыре электрода расположены на панели, а пятый находится на мембране, которая покрыта токопроводящим составом. Стоит отметить, что пятипроводные и последующие версии шести- и семипроводные экраны продолжают работать даже при повреждении части мембраны.

Преимущества

К достоинствам резистивного экрана можно отнести невысокую стоимость его производства, а, следовательно, и устройства, в котором он используется. Кроме этого, стоит отметить, что отзыв сенсора здесь не зависит от состояния поверхности экрана, даже в случае загрязнения, тачскрин остается таким же чувствительным. Следует также выделить точность попадания в нужную точку, т.к. используется густая решетка резистивных элементов.

Недостатки

В качестве недостатков резистивных экранов выделим низкое светопропускание, не более 70% или 85%, поэтому требуется повышенная яркость подсветки. Также это низкая чувствительность, т.е. просто прикасаться пальцем не достаточно, требуется надавливание, так что без цифрового пера или длинных ногтей не обойтись. Данный тип в большинстве случаев не поддерживает мультитач, т. е. экран понимает лишь одно касание. При взаимодействии с экраном нужно прилагать определенные усилия, чтобы передать какую-либо команду, а переусердствовав можно не только поцарапать, но и повредить дисплей. Как уже было сказано выше, для правильного функционирования периодически необходимо производить калибровку экрана.

Емкостной сенсорный экран

Емкостной экран представляет собой стеклянную панель, которая покрыта прозрачным резистивным материалом, в котором, как правило, используется сплав оксида индия и оксида олова. По углам панели установлены электроды, подающие на проводящий слой низковольтное переменное напряжение, они следят за течением зарядов в экране, и передают данные в контроллер, определяя, таким образом, координаты точки касания. До прикосновения экран обладает некоторым электрическим зарядом; при касании пальцем на проводящем слое появляется точка, потенциал которой меньше, чем потенциалы электрода, т. к. тело человека обладает способностью проводить электрический ток и имеет некоторую емкость. На экране нет никаких гибких мембран, что обеспечивает высокую надежность и позволяет снизить яркость подсветки. Данный тип экрана способен одновременно определять координаты двух и более точек касания, что и означает поддержку мультитач.

Подвидом емкостных стали проекционно-емкостные экраны. Работают они по схожему принципу. Отличие заключается в том, что базовые элементы в них расположены не на внешней стороне экрана, а на внутренней, благодаря чему сенсор получается более защищенным. В основном дисплеи такого типа используются в современных мобильных устройствах.

Взаимодействие с емкостным экраном должно осуществляться только проводящим предметом, голым пальцем или специальным стилусом, который обладает электрической емкостью. Количество нажатий до выхода сенсорных элементов из строя достигает более 200 млн раз.

Преимущества

Из плюсов емкостных экранов выделим, что даже на ярком солнце видимость остается достаточно хорошей, чего нельзя сказать о резистивном экране, т. к. он отражает много окружающего света. Преимуществом также стала возможность быстрого и точного распознавания касания без использования дополнительных аксессуаров. Несомненным достоинством экранов этого типа является более длительное время службы сенсора, по сравнению с предыдущим типом. Также появился «многопальцевый» интерфейс или мультитач, хотя далеко не во всех устройствах с экраном такого типа он реализован в полной мере.

Недостатки

К негативным сторонам использования емкостного сенсорного экрана можем отнести более высокую стоимость по причине сложности производства. Взаимодействие с дисплеем возможно только при касании с материалом, который является проводником. По этой причине для работы с ним приобретаются специальные емкостные стилусы или перчатки, особенно это становится актуальным в холодную погоду, а это еще одна статья расходов.

Подводя итог, напомним, что резистивные экраны чувствительны к нажатию, а емкостные реагируют на касание. Точность емкостных дисплеев сравнима с точностью резистивных, но емкостной тип отличается более высокой надежностью за счет отсутствия гибкой мембраны, а меньшее количество слоев делает их более прозрачными.

Бытует мнение, что резистивные дисплеи уже отжили свое, а будущее - за емкостными. Действительно, переход от механико-электрического ввода к электрическому уже много значит, т. к. возросла точность определения координат, и появился мультитач.

Тем не менее, сегодня на рынке электронной техники еще остается большое количество устройств с резистивными экранами, но они потихоньку начинают вытесняться гаджетами с емкостными сенсорами. Наблюдая эту тенденцию, можно предположить, что первые в скором времени и вовсе исчезнут.

Нечасто мы задумываемся о том, как работает дисплей устройства лежащего у нас в руках. Но иногда бывают случаи, когда недавно купленный телефон или планшет отказывается реагировать на привычное цифровое перо от старого девайса. В этом случае, становится очевидным, что экран новинки собран по какой-то другой технологии. Тут уже вспоминается, что есть резистивные экраны и емкостные, последние из которых постепенно вытесняют первых.

Стоит заметить, что мало кто знает о различии между поверхностно- и проекционно-емкостными дисплеями. А ведь экраны почти всех современных планшетов, смартфонов с Android или iOS от Apple относятся именно к проекционно-емкостным, благодаря которым и возможна такая уже необходимая функция, как мультитач.

Поверхностно-емкостные экраны

Все емкостные скрины при работе используют тот факт, что все предметы, обладающие электрической емкостью, тело человека в том числе, хорошо проводят переменный ток.

Первые экземпляры емкостных тач-скринов работали на постоянном токе, что упрощало устройство электроники, аналого-цифрового преобразователя в частности, но загрязненность экрана или рук часто приводила к сбоям. Для постоянного тока даже ничтожное емкостное сопротивление является непреодолимой преградой.

Емкостные экраны так же, как и резистивные собраны в простейшем случае из LCD или AMOLED экрана, дающего изображение в самом низу и сенсорной активной панели поверху .

Активная часть поверхностно-емкостных экранов представляет собой кусок стекла, покрытый на одной стороне прозрачным, с высоким сопротивлением материалом. В качестве этого электропроводящего вещества применяется оксид индия или оксид олова.

По углам экрана расположены четыре электрода, через которые подается небольшое переменное напряжение, одинаковое со всех сторон. При касании поверхности экрана электропроводящим предметом или напрямую пальцем появляется утечка тока через тело человека. Протекание ничтожно малых токов регистрируется одновременно во всех четырех углах датчиками, а микропроцессор по разности величин токов определяет координаты места касания.

Поверхностно-емкостной экран всё ещё хрупок, так как его проводящее покрытие нанесено на внешнюю поверхность и ничем не защищено. Но не такой нежный, как резистивный, поскольку на его поверхности нет тонкой мягкой мембраны. Отсутствие мембраны улучшает прозрачность дисплея, и позволяет применять менее яркую и энергоэкономную подсветку.

Проекционно-ёмкостные экраны

Этот тип сенсорного экрана способен определять одновременно координаты двух и более точек прикосновения, то есть поддерживает функцию мультитач. Именно этого типа дисплеи устанавливаются на все современные мобильные устройства.

Работают они по схожему с поверхностно-емкостными экранами принципу, отличие заключается в том, что активный проводящий слой у них нанесен внутри, а не на внешней поверхности. Благодаря чему активная панель получается значительно более защищенной. Можно закрыть её стеклом толщиной вплоть до 18 мм, таким образом, сделав сенсорный экран крайне вандалоустойчивым.

При прикосновении к сенсорному экрану, между пальцем человека и одним из электродов за стеклом образуется небольшая ёмкость. Микроконтроллер прощупывает импульсным током, в каком именно месте на сетке электродов возросло напряжение из-за внезапно образовавшейся ёмкости. На стекающие капли воды экран не реагирует, так как такие проводящие помехи легко подавляются программным методом.

Общим недостатком для всех емкостных экранов является невозможность работать с ними любыми изолирующими предметами. Можно только специальным стилусом или голым пальцем. На удобное пластмассовое перо или руку в теплой перчатке они не среагируют.

Травление печатных плат Самодельный миниатюрный низковольтный паяльник Хитрый способ распайки плат

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то