Как защитить информацию от несанкционированного доступа. Защита от несанкционированного доступа

Несанкционированный доступ (НД) - это преднамеренное противоправное овладение конфиденциальной информацией лицом, не имеющим права доступа к охраняемым сведениям. Наиболее распространенными путями НД к информации являются:

  • применение подслушивающих устройств;
  • дистанционное фотографирование;
  • хищение носителей информации и документальных отходов;
  • чтение остаточной информации в памяти системы после выполнения санкционированных запросов;
  • незаконное подключение к аппаратуре и линиям связи специально разработанных аппаратных средств, обеспечивающих доступ к информации;
  • злоумышленный вывод из строя механизмов защиты;
  • копирование носителей информации с преодолением мер защиты;
  • маскировка под зарегистрированного пользователя;
  • расшифровка зашифрованной информации;
  • информационные инфекции и др.

Некоторые из перечисленных способов НД требуют достаточно больших технических знаний и соответствующих аппаратных или программных разработок, другие - достаточно примитивны. Независимо от путей утечка информации может привести к значительному ущербу для организации и пользователей.

Большинство из перечисленных технических путей НД поддаются надежной блокировке при правильно разработанной и реализованной на практике системе обеспечения безопасности. Однако зачастую ущерб наносится не из-за «злого умысла», а из-за элементарных ошибок пользователей, которые случайно портят или удаляют жизненно важные данные.

Несмотря на существенное различие размеров наносимого материального ущерба, нельзя не отметить, что проблема защиты информации актуальна не только для юридических лиц. С ней может столкнуться любой пользователь как на работе, так и дома. В связи с этим всем пользователям необходимо осознавать меру ответственности и соблюдать элементарные правила обработки, передачи и использования информации.

К защитным механизмам, направленным на решение проблемы НД к информации, относятся:

  • управление доступом - методы защиты информации регулированием использования всех ресурсов информационной системы;
  • регистрация и учет - ведение журналов и статистики обращений к защищаемым ресурсам;
  • использование различных механизмов шифрования (криптографическое закрытие информации) - эти методы защиты широко применяются при обработке и хранении информации на магнитных носителях, а также ее передаче по каналам связи большой протяженности;
  • законодательные меры - определяются законодательными актами страны, которыми регламентируются правила пользования, обработки и передачи информации ограниченного доступа и устанавливаются меры ответственности за нарушение этих правил;
  • физические меры - включают в себя различные инженерные устройства и сооружения, препятствующие физическому

проникновению злоумышленников на объекты защиты и осуществляющие защиту персонала, материальных средств, информации от противоправных действий.

Управление доступом

Можно выделить три обобщенных механизма управления доступом к данным: идентификация пользователя, непосредственная (физическая) защита данных и поддержка прав доступа пользователя к данным с возможностью их передачи.

Идентификация пользователей определяет шкалу доступа к различным базам данных или частям баз данных (отношениям или атрибутам). Это, по существу, информационный табель о рангах. Физическая защита данных больше относится к организационным мероприятиям, хотя отдельные вопросы могут касаться непосредственно данных, например их кодирование. И, наконец, средства поддержки и передачи прав доступа должны строго задавать характер дифференцированного общения с данными.

Метод защиты при помощи программных паролей. Согласно этому методу, реализуемому программными средствами, процедура общения пользователя с ПК построена так, что запрещается доступ к операционной системе или определенным файлам до тех пор, пока не будет введен пароль. Пароль держится пользователем в тайне и периодически меняется, чтобы предотвратить несанкционированное его использование.

Метод паролей является самым простым и дешевым, однако не обеспечивает надежной защиты. Не секрет, что пароль можно подсмотреть или подобрать, используя метод проб и ошибок или специальные программы, и получить доступ к данным. Более того, основная уязвимость метода паролей заключается в том, что пользователи зачастую выбирают очень простые и легкие для запоминания (и тем самым для разгадывания) пароли, которые не меняются длительное время, а нередко остаются прежними и при смене пользователя. Несмотря на указанные недостатки, применение метода паролей во многих случаях следует считать рациональным даже при наличии других аппаратных и программных методов защиты. Обычно метод программных паролей сочетается с другими программными методами, определяющими ограничения по видам и объектам доступа.

Проблема защиты информации от несанкционированного доступа особо обострилась с широким распространением локальных и, особенно, глобальных компьютерных сетей. В связи с этим, помимо контроля доступа, необходимым элементом защиты информации в компьютерных сетях является разграничение полномочий пользователей.

В компьютерных сетях при организации контроля доступа и разграничения полномочий пользователей чаще всего используются встроенные средства сетевых операционных систем (ОС). Использование защищенных операционных систем является одним из важнейших условий построения современных информационных систем. Например, ОС UNIX позволяет владельцу файлов предоставлять права другим пользователям - только читать или записывать, для каждого из своих файлов. Наибольшее распространение в нашей стране получает ОС Windows NT, в которой появляется все больше возможностей для построения сети, действительно защищенной от НД к информации. ОС NetWare помимо стандартных средств ограничения доступа, таких как система паролей и разграничения полномочий, имеет ряд новых возможностей, обеспечивающих первый класс защиты данных, предусматривает возможность кодирования данных по принципу «открытого ключа» (алгоритм RSA) с формированием электронной подписи для передаваемых по сети пакетов.

В то же время в такой системе организации защиты все равно остается слабое место: уровень доступа и возможность входа в систему определяются паролем. Для исключения возможности неавторизованного входа в компьютерную сеть в последнее время используется комбинированный подход - пароль + идентификация пользователя по персональному «ключу». В качестве «ключа» может использоваться пластиковая карта (магнитная или со встроенной микросхемой - smart-card) или различные устройства для идентификации личности по биометрической информации - по радужной оболочке глаза или отпечатков пальцев, размерам кисти руки и т. д.

Пластиковые карточки с магнитной полосой можно легко подделать. Более высокую степень надежности обеспечивают смарт-карты - так называемые микропроцессорные карточки (МП-кар-точки). Их надежность обусловлена в первую очередь невозможностью копирования или подделки кустарным способом. Кроме того, при производстве карточек в каждую микросхему заносится уникальный код, который невозможно продублировать. При выдаче карточки пользователю на нее наносится один или несколько паролей, известных только ее владельцу. Для некоторых видов МП-карточек попытка несанкционированного использования заканчивается ее автоматическим «закрытием». Чтобы восстановить работоспособность такой карточки, ее необходимо предъявить в соответствующую инстанцию. Кроме того, технология МП-карто-чек обеспечивает шифрование записанных на ней данных в соответствии со стандартом DES. Установка специального считывающего устройства МП - карточек возможна не только на входе в помещения, где расположены компьютеры, но и непосредственно на рабочих станциях и серверах сети.

Этот подход значительно надежнее применения паролей, поскольку, если пароль подглядели, пользователь об этом может не знать, если же пропала карточка, можно принять меры немедленно.

Смарт-карты управления доступом позволяют реализовать, в частности, такие функции, как контроль входа, доступ к устройствам персонального компьютера, доступ к программам, файлам и командам. Кроме того, возможно также осуществление контрольных функций, в частности, регистрация попыток нарушения доступа к ресурсам, использования запрещенных утилит, программ, команд DOS.

По мере расширения деятельности предприятий, роста численности персонала и появления новых филиалов возникает необходимость доступа удаленных пользователей (или групп пользователей) к вычислительным и информационным ресурсам главного офиса компании. Чаще всего для организации удаленного доступа используются кабельные линии (обычные телефонные или выделенные) и радиоканалы. В связи с этим защита информации, передаваемой по каналам удаленного доступа, требует особого подхода.

В частности, в мостах и маршрутизаторах удаленного доступа применяется сегментация пакетов - их разделение и передача параллельно по двум линиям, - что делает невозможным «перехват» данных при незаконном подключении «хакера» к одной из линий. К тому же используемая при передаче данных процедура сжатия передаваемых пакетов гарантирует невозможность расшифровки «перехваченных» данных. Кроме того, мосты и маршрутизаторы удаленного доступа могут быть запрограммированы таким образом, что удаленные пользователи будут ограничены в доступе к отдельным ресурсам сети главного терминала.

Метод автоматического обратного вызова может обеспечивать более надежную защиту системы от несанкционированного доступа, чем простые программные пароли. В данном случае пользователю нет необходимости запоминать пароли и следить за соблюдением их секретности. Идея системы с обратным вызовом достаточно проста. Удаленные от центральной базы пользователи не могут непосредственно с ней обращаться. Вначале они получают доступ к специальной программе, которой сообщают соответствующие идентификационные коды. После этого разрывается связь и производится проверка идентификационных кодов. В случае если код, посланный по каналу связи, правильный, то производится обратный вызов пользователя с одновременной фиксацией даты, времени и номера телефона. К недостатку рассматриваемого метода следует отнести низкую скорость обмена - среднее время задержки может исчисляться десятками секунд.

Метод шифрования данных

В переводе с греческого языка слово криптография означает тайнопись. Это один из наиболее эффективных методов защиты. Он может быть особенно полезен для усложнения процедуры несанкционированного доступа, даже если обычные средства защиты удалось обойти. В отличие от рассмотренных выше методов криптография не прячет передаваемые сообщения, а преобразует их в форму, недоступную для понимания лицами, не имеющими прав доступа к ним, обеспечивает целостность и подлинность информации в процессе информационного взаимодействия.

Готовая к передаче информация зашифровывается при помощи некоторого алгоритма шифрования и ключа шифрования. В результате этих действий она преобразуется в шифрограмму, т. е. закрытый текст или графическое изображение, и в таком виде передается по каналу связи. Получаемые зашифрованные выходные данные не может понять никто, кроме владельца ключа.

Под шифром обычно понимается семейство обратимых преобразований, каждое из которых определяется некоторым параметром, называемым ключом, а также порядком применения данного преобразования, называемым режимом шифрования. Обычно ключ представляет собой некоторую буквенную или числовую последовательность.

Каждое преобразование однозначно определяется ключом и описывается некоторым алгоритмом шифрования. Например, алгоритм шифрования может предусмотреть замену каждой буквы алфавита числом, а ключом при этом может служить порядок номеров букв этого алфавита. Чтобы обмен зашифрованными данными проходил успешно, отправителю и получателю необходимо знать правильный ключ и хранить его в тайне.

Один и тот же алгоритм может применяться для шифрования в различных режимах. Каждый режим шифрования имеет как свои преимущества, так и недостатки. Поэтому выбор режима зависит от конкретной ситуации. При расшифровывании используется криптографический алгоритм, который в общем случае может отличаться от алгоритма, применяемого для шифрования, следовательно, могут различаться и соответствующие ключи. Пару алгоритмов шифрования и расшифрования называют криптосистемой (шифросистемой), а реализующие их устройства - шифротехникой.

Различают симметричные и асимметричные криптосистемы. В симметричных криптосистемах для шифрования и расшифрования используется одинаковый закрытый ключ. В асимметричных криптосистемах ключи для шифрования и расшифрования различны, причем один из них закрытый, а другой открытый (общедоступный).

Существует довольно много различных алгоритмов криптографической защиты информации, например DES, RSA, ГОСТ 28147-89 и др. Выбор способа шифрования зависит от особенностей передаваемой информации, ее объема и требуемой скорости передачи, а также возможностей владельцев (стоимость применяемых технических устройств, надежность функционирования и т. д.).

Шифрование данных традиционно использовалось правительственными и оборонными департаментами, но в связи с изменением потребностей и некоторые наиболее солидные компании начинают использовать возможности, предоставляемые шифрованием для обеспечения конфиденциальности информации. Финансовые службы компаний (прежде всего в США) представляют важную и большую пользовательскую базу, и часто специфические требования предъявляются к алгоритму, используемому в процессе шиф-

рования. Стандарт шифрования данных DES (Data Encryption Standart) был разработан фирмой IBM в начале 1970-х гг. и в настоящее время является правительственным стандартом для шифрования цифровой информации. Он рекомендован Ассоциацией американских банкиров. Сложный алгоритм DES использует ключ длиной 56 битов и 8 битов проверки на четность и требует от злоумышленника перебора 72 квадриллионов возможных ключевых комбинаций, обеспечивая высокую степень защиты при небольших расходах. При частой смене ключей алгоритм удовлетворительно решает проблему превращения конфиденциальной информации в недоступную. В то же время рынок коммерческих систем не всегда требует такой строгой защиты, как правительственные или оборонные ведомства, поэтому возможно применение продуктов и другого типа, например PGP (Pretty Good Privacy). Шифрование данных может осуществляться в режимах On-line (в темпе поступления информации) и Off-line (автономном).

Алгоритм RSA был изобретен Р.Л. Райвестом, А. Шамиром и Л. Альдеманом в 1978 г. и представляет собой значительный шаг в криптографии. Этот алгоритм также был принят в качестве стандарта Национальным бюро стандартов.

DES технически является симметричным алгоритмом, а RSA - асимметричным - это система коллективного пользования, в которой каждый пользователь имеет два ключа, причем только один секретный. Открытый ключ используется для шифрования сообщения пользователем, но только определенный получатель может расшифровать его своим секретным ключом; открытый ключ для этого бесполезен. Это делает ненужными секретные соглашения о передаче ключей между корреспондентами. DES определяет длину данных и ключа в битах, a RSA может быть реализован при любой длине ключа. Чем длиннее ключ, тем выше уровень безопасности (но становится длительнее и процесс шифрования и дешифрования). Если ключи DES можно сгенерировать за микросекунды, то примерное время генерации ключа RSA - десятки секунд. Поэтому открытые ключи RSA предпочитают разработчики программных средств, а секретные ключи DES - разработчики аппаратуры.

При обмене электронной документацией может возникнуть ситуация отказа одной из сторон от своих обязательств (отказ от авторства), а также фальсификация сообщений, полученных от отправителя (приписывание авторства). Основным механизмом решения этой проблемы становится создание аналога рукописной подписи - электронная цифровая подпись (ЦП). К ЦП предъявляют два основных требования: высокая сложность фальсификации и легкость проверки.

Для создания ЦП можно использовать как симметричные, так и асимметричные шифросистемы. В первом случае подписью может служить само зашифрованное на секретном ключе сообщение. Но после каждой проверки секретный ключ становится известным. Для выхода из этой ситуации необходимо введение третьей стороны - посредника, которому доверяют любые стороны, осуществляющего перешифрование сообщений с ключа одного из абонентов на ключ другого.

Асимметричные шифросистемы обладают всеми свойствами, необходимыми для ЦП. В них возможны два подхода к построению ЦП.

  • 1. Преобразование сообщения в форму, по которой можно восстановить само сообщение и, тем самым, проверить правильность самой подписи.
  • 2. Подпись вычисляется и передается вместе с исходным сообщением.

Таким образом, для разных шифров задача дешифрования - расшифровки сообщения, если ключ неизвестен, имеет различную сложность. Уровень сложности этой задачи и определяет главное свойство шифра - способность противостоять попыткам противника завладеть защищаемой информацией. В связи с этим говорят о криптографической стойкости шифра, различая более стойкие и менее стойкие шифры. Характеристики наиболее популярных методов шифрования приведены в табл. 10.1.

Таблица 10.1. Характеристики наиболее распространенных методов шифрования

Руководящий документ

Средства вычислительной техники

Защита от несанкционированного доступа к информации

Показатели защищенности от несанкционированного доступа к
информации

Утверждено решением председателя Государственной технической комиссии при
Президенте Российской Федерации
от 30 марта 1992 г.

Настоящий Руководящий документ устанавливает классификацию средств вычислительной техники по уровню защищенности от несанкционированного доступа к информации на базе перечня показателей защищенности и совокупности описывающих их требований.

Под СВТ понимается совокупность программных и технических элементов систем обработки данных, способных функционировать самостоятельно или в составе других систем.

Принятые сокращения

АС - автоматизированная система

КД - конструкторская документация

КСЗ - комплекс средств защиты

НСД - несанкционированный доступ

ПРД - правила разграничения доступа

СВТ - средства вычислительной техники

1. Общие положения

1.1. Данные показатели содержат требования защищенности СВТ от НСД к информации.

1.2. Показатели защищенности СВТ применяются к общесистемным программным средствам и операционным системам (с учетом архитектуры ЭВМ).

Конкретные перечни показателей определяют классы защищенности СВТ.

Уменьшение или изменение перечня показателей, соответствующего конкретному классу защищенности СВТ, не допускается.

Каждый показатель описывается совокупностью требований.

Дополнительные требования к показателю защищенности СВТ и соответствие этим дополнительным требованиям оговаривается особо.

1.3. Требования к показателям реализуются с помощью программно-технических средств.

Совокупность всех средств защиты составляет комплекс средств защиты.

Документация КСЗ должна быть неотъемлемой частью конструкторской документации на СВТ.

1.4. Устанавливается семь классов защищенности СВТ от НСД к информации. Самый низкий класс - седьмой, самый высокий - первый.

Классы подразделяются на четыре группы, отличающиеся качественным уровнем защиты:

Первая группа содержит только один седьмой класс;

Вторая группа характеризуется дискреционной защитой и содержит шестой и пятый классы;

Третья группа характеризуется мандатной защитой и содержит четвертый, третий и второй классы;

Четвертая группа характеризуется верифицированной защитой и содержит только первый класс.

1.5. Выбор класса защищенности СВТ для автоматизированных систем, создаваемых на базе защищенных СВТ, зависит от грифа секретности обрабатываемой в АС информации, условий эксплуатации и расположения объектов системы.

1.6. Применение в комплекте СВТ средств криптографической защиты информации по ГОСТ 28147-89 может быть использовано для повышения гарантий качества защиты.

2. Требования к показателям защищенности

2.1. Показатели защищенности

2.1.1. Перечень показателей по классам защищенности СВТ приведен в таблице.

Обозначения:

- "-" - нет требований к данному классу;

- "+" - новые или дополнительные требования,

- "=" - требования совпадают с требованиями к СВТ предыдущего класса.

Наименование показателя

Класс защищенности

Дискреционный принцип контроля доступа

Мандатный принцип контроля доступа

Очистка памяти

Изоляция модулей

Маркировка документов

Защита ввода и вывода на отчуждаемый физический носитель информации

Сопоставление пользователя с устройством

Идентификация и аутентификация

Гарантии проектирования

Регистрация

Взаимодействие пользователя с КСЗ

Надежное восстановление

Целостность КСЗ

Контроль модификации

Контроль дистрибуции

Гарантии архитектуры

Тестирование

Руководство для пользователя

Руководство по КСЗ

Тестовая документация

Конструкторская (проектная) документация

2.1.2. Приведенные в данном разделе наборы требований к показателям каждого класса являются минимально необходимыми.

2.1.3. Седьмой класс присваивают СВТ, к которым предъявлялись требования по защите от НСД к информации, но при оценке защищенность СВТ оказалась ниже уровня требований шестого класса.

2.2. Требования к показателям защищенности шестого класса

Дополнительно должны быть предусмотрены средства управления, ограничивающие распространение прав на доступ.

Регистрация событий в соответствии с п. , средства защиты регистрационной информации и возможность санкционированного ознакомления с ней;

Работа механизма, осуществляющего контроль за целостностью КСЗ.

Дополнительно КСЗ должен содержать механизм, претворяющий в жизнь дискреционные ПРД, как для явных действий пользователя, так и для скрытых, обеспечивая тем самым защиту объектов от НСД (т.е. от доступа, не допустимого с точки зрения заданного ПРД). Под "явными" здесь подразумеваются действия, осуществляемые с использованием системных средств - системных макрокоманд, инструкций языков высокого уровня и т.д., а под "скрытыми" - иные действия, в том числе с использованием собственных программ работы с устройствами.

Дискреционные ПРД для систем данного класса являются дополнением мандатных ПРД.

Дополнительно должны тестироваться:

Работа механизма надежного восстановления.

2.5.16 . Руководство по КСЗ.

Документ адресован администратору защиты и должен содержать:

Описание контролируемых функций;

Руководство по генерации КСЗ;

Описание старта СВТ, процедур проверки правильности старта, процедур работы со средствами регистрации;

Руководство по средствам надежного восстановления.

2.5.17 . Тестовая документация

В документации должно быть представлено описание тестов и испытаний, которым подвергалось СВТ (п. ), а также результатов тестирования.

2.5.18 . Конструкторская (проектная) документация.

Требуется такая же документация, что и для СВТ четвертого класса (п. ). Дополнительно необходимы:

Высокоуровневая спецификация КСЗ и его интерфейсов;

Верификация соответствия высокоуровневой спецификации КСЗ модели защиты.

2.6. Требования к показателям второго класса защищенности

2.6.1 . Дискреционный принцип контроля доступа.

Данные требования включают аналогичные требования третьего класса (п. ).

Вопросы информационной безопасности Java занимают умы не только разработчиков JDK, но также и разработчиков приложений. Стопроцентную безопасность не может обеспечить ни один язык программирования. Поэтому обращаемся к известному принципу, который гласит: "Надежная оборона должна быть эшелонированной". С этой точки зрения и в данном разделе будет представлена информация.

Информация относится к наиболее ценным ресурсам любой компании, поэтому обеспечение защиты информации является одной из приоритетных задач. С повышением значимости и ценности информации соответственно растёт и важность её защиты.

Для обеспечения целостности и конфиденциальности информации необходимо обеспечить защиту информации от случайного уничтожения или несанкционированного доступа к ней. Под целостностью понимается невозможность несанкционированного или случайного уничтожения, а также модификации информации. Под конфиденциальностью информации понимается невозможность несанкционированного завладения злоумышленником хранящейся, отправляемой или принимаемой информации.

Несанкционированный доступ относится к противоправным действиям, в результате которых злоумышленник получает доступ к конфиденциальной информации. То есть, несанкционированный доступ - это активные действия по созданию возможности получения доступа к чужой информации без согласия собственника. Взлом – несанкционированное проникновение в компьютерную сеть или в чужой компьютер с целью получения доступа к информации.

Существует достаточно много возможных направлений утечки информации и путей несанкционированного доступа к ней в системах и сетях:

  • перехват информации;
  • модификация информации, т.е. внесение в нее изменений;
  • подмена авторства информации, когда злоумышленник может послать письмо или документ от вашего имени;
  • создание ложных сообщений;
  • несанкционированное получение доступа к конфиденциальной информации;
  • внедрение компьютерных вирусов и так далее.

Данные виды угроз могут возникнуть в связи с несанкционированным доступом к информации.

Защита информации от несанкционированного доступа (аутентификация и авторизация)

Для получения доступа к ресурсам информационной системы необходимо выполнение трех процедур: идентификация, аутентификация и авторизация.

Под идентификацией понимается присвоение пользователям (объектам или субъектам ресурсов) уникальных имен и кодов (идентификаторов).

Аутентификация (authentication) - это процедура установления подлинности пользователя (или объекта), согласно введенному идентификатору. Например: проверка подлинности пользователя путём сравнения введённого им пароля с паролем в базе данных; подтверждение подлинности электронного письма путём проверки цифровой подписи письма; проверка контрольной суммы файла на соответствие сумме, заявленной автором этого файла. В русском языке термин применяется в основном в сфере информационных технологий.

Аутентификацию не следует путать с авторизацией . Под авторизацией понимается проверка полномочий или проверка права пользователя на доступ к конкретным ресурсам и выполнение определенных операций над ними. Авторизация проводится с целью разграничения прав доступа к сетевым и компьютерным ресурсам.

Алгоритм простой аутентификация пользователя состоит из следующих этапов:

  • пользователь вводит параметры своей учетной записи (логин/пароль) и отправляет их на сервер для проверки;
  • сервер аутентификации сравнивает полученные значениями с эталонными, хранящимися, как правило, в базе данных;
  • при совпадении данных с эталонными, аутентификация признается успешной и пользователь получает доступ в информационную систему; при несовпадении данных с эталонными значениями пользователь возвращается к 1-му шагу.

Пароль учетной записи пользователя необходимо хранить на сервере в хешированном виде. В этом случае сервер аутентификации проверяет по базе данных наличие записи с определенным значением логина пользователя и хэш-кодом пароля.

Для идентификации пользователей могут использоваться сложные в плане технической реализации системы, обеспечивающие установление подлинности пользователя на основе анализа его индивидуальных параметров (отпечатков пальцев, рисунка линий руки, радужной оболочки глаз, тембра голоса). Широкое распространение получают физические методы идентификации, связанные с твердыми носителями - пропуск в контрольно-пропускных системах, пассивные пластиковые карты, считываемые специальными устройствами; активные пластиковые карты, содержащие встроенную микросхему.

Электронная цифровая подпись

Одним из наиболее широко спользуемых способов обеспечению безопасности информации является определение подлинности документов на основе электронной цифровой подписи . Для работы с цифровой подписью используются асимметричные ключи. Владелец шифрует свое сообщение/документ закрытым ключом (PrivateKey), а пользователи, имеющие открытые ключи (PublicKey) могут расшифровать и прочитать сообщение/документ. Поскольку закрытым ключом владеет только автор, следовательно зашифровать сообщение мог только он. Этим подтверждается принадлежность сообщения.

Иногда в качестве цифровой подписи используется дайджест сообщения , зашифрованный с помощью PrivateKey. Адресат может извлечь дайджест сообщения, используя PublicKey, сравнить его с дайджестом самого сообщения и убедиться в подлинности сообщения, т.е. в его целостности и принадлежности отправителю.

Защита информации в компьютерных сетях

Локальные сети компаний очень часто подключаются к сети Интернет. Для защиты локальных сетей компаний, как правило, применяются межсетевые экраны – брандмауэры (firewalls). Межсетевой экран (firewall) – это средство разграничения доступа, которое позволяет разделить сеть на две части (граница проходит между локальной сетью и сетью Интернет) и сформировать набор правил, определяющих условия прохождения пакетов из одной части в другую. Экраны могут быть реализованы как аппаратными средствами, так и программными.

Экраны могут обеспечить защиту в компьютерных сетях компании. Но зачастую информация в виде объектов отправляется в незащищенный браузер. В этом случае объекты в виде java-класса должны быть сериализованы. Сериализация объекта не безопасна. Если сериализованный объект представляет определенную ценность компании, то его также можно защитить на этапах сериализации и десериализации. О защите сериализованного объекта подробно с примером рассказано .

Примечание: о защите информации можно говорить очень много. Можно вспомнить и про компьютерные вирусы и антивирусные программы. Но здесь мы пока остановимся только на тех аспектах, которые рассматриваются на сайте и представляют интерес для java-программистов.

Несанкционированный доступ к информации - это незапланированное ознакомление, обработка, копирова­ние, применение различных вирусов, в том числе разру­шающих программные продукты, а также модификация или уничтожение информации в нарушение установлен­ных правил разграничения доступа.

Поэтому, в свою очередь, защита информации от не­санкционированного доступа призвана не допустить зло­умышленника к носителю информации. В защите инфор­мации компьютеров и сетей от НСД можно выделить три основных направления:

– ориентируется на недопущение нарушителя к вычис­лительной среде и основывается на специальных технических средствах опоз­навания пользователя;

– связано с защитой вычислительной среды и основывается на создании специаль­ного программного обеспечения;

– связано с использованием специальных средств защиты информации компьюте­ров от несанкционированного доступа.

Следует иметь в виду, что для решения каждой из задач применяются как различ­ные технологии, так и различные средства. Требования к средствам защиты, их харак­теристики, функции ими выполняемые и их классификация, а также термины и опре­деления по защите от несанкционированного доступа приведены в руководящих документах Государственной технической комиссии:

– «Автоматизированные системы. Защита от несанкционированного доступа к ин­формации. Классификация АС и требования по защите информации»;

– «Средства вычислительной техники. Защита от несанкционированного доступа к информации. Показатели защищенности от несанкционированного доступа к информации»;

– «Защита от несанкционированного доступа к информации. Термины и определения». Технические средства, реализующие функции защиты можно разделить на:

o встроенные;

o внешние.

К встроенным средствам защиты персонального компьютера и программного обес­печения (рис. 3.12) относятся средства парольной защиты BIOS, операционной систе­мы, СУБД. Данные средства могут быть откровенно слабыми - BIOS с паролем су­первизора, парольная защита Win95/98, но могут быть и значительно более стойкими - BIOS без паролей супервизора, парольная защита Windows NT, СУБД ORACLE. Ис­пользование сильных сторон этих средств позволяет значительно усилить систему защиты информации от НСД.

Внешние средства призваны подменить встроенные средства с целью усиления за­щиты, либо дополнить их недостающими функциями.

К ним можно отнести:

– аппаратные средства доверенной загрузки;

– аппаратно-программные комплексы разделения полномочий пользователей на доступ;

– средства усиленной аутентификации сетевых соединений.

Аппаратные средства доверенной загрузки представляют собой изделия, иногда называ­емые «электронным замком», чьи функции заключаются в надежной идентификации пользо­вателя, а также в проверке целостности программного обеспечения компьютера. Обычно это плата расширения персонального компьютера, с необходимым программным обеспече­нием, записанным либо во Flash-память платы, либо на жесткий диск компьютера.

Принцип их действия простой. В процессе загрузки стартует BIOS и платы защиты от НСД. Он запрашивает идентификатор пользователя и сравнивает его с хранимым во Flash-памяти карты. Идентификатор дополнительно можно защищать паролем. Затем стартует встроенная операционная система платы или компьютера (чаще всего это ва­риант MS-DOS), после чего стартует программа проверки целостности программного обеспечения. Как правило, проверяются системные области загрузочного диска, загру­зочные файлы и файлы, задаваемые самим пользователем для проверки. Проверка осу­ществляется либо на основе имитовставки алгоритма ГОСТ 28147-89, либо на основе функции хэширования алгоритма ГОСТ Р 34.11-34 или иного алгоритма. Результат про­верки сравнивается с хранимым во Flash-памяти карты. Если в результате сравнения при проверке идентификатора или целостности системы выявится различие с эталоном, то плата заблокирует дальнейшую работу, и выдаст соответствующее сообщение на эк­ран. Если проверки дали положительный результат, то плата передает управление пер­сональному компьютеру для дальнейшей загрузки операционной системы.

Все процессы идентификации и проверки целостности фиксируются в журнале. Достоинства устройств данного класса - их высокая надежность, простота и невысо­кая цена. При отсутствии многопользовательской работы на компьютере функций за­щиты данного средства обычно достаточно.

Аппаратно-программные комплексы разделения полномочий на доступ используются в случае работы нескольких пользователей на одном компьютере, если встает задача разделе­ния их полномочий на доступ к данным друг друга. Решение данной задачи основано на: 01 запрете пользователям запусков определенных приложений и процессов; Q разрешении пользователям и запускаемым ими приложениям лишь определен­ного типа действия с данными.

Реализация запретов и разрешений достигается различными способами. Как пра­вило, в процессе старта операционной системы запускается и программа защиты от несанкционированного доступа. Она присутствует в памяти компьютера, как резиден­тный модуль и контролирует действия пользователей на запуск приложений и обра­щения к данным. Все действия пользователей фиксируются в журнале, который досту­пен только администратору безопасности. Под средствами этого класса обычно и понимают средства защиты от несанкционированного доступа. Они представляют со­бой аппаратно-программные комплексы, состоящие из аппаратной части - платы до­веренной загрузки компьютера, которая проверяет теперь дополнительно и целост­ность программного обеспечения самой системы защиты от НСД на жестком диске, и программной части - программы администратора, резидентного модуля. Эти про­граммы располагаются в специальном каталоге и доступны лишь администратору. Дан­ные системы можно использовать и в однопользовательской системе для ограничения пользователя по установке и запуску программ, которые ему не нужны в работе.

Средства усиленной аутентификации сетевых соединений применяются в том слу­чае, когда работа рабочих станций в составе сети накладывает требования для защиты ресурсов рабочей станции от угрозы несанкционированного проникновения на рабо­чую станцию со стороны сети и изменения либо информации, либо программного обес­печения, а также запуска несанкционированного процесса. Защита от НСД со сторо­ны сети достигается средствами усиленной аутентификации сетевых соединений. Эта технология получила название технологии виртуальных частных сетей.

Одна из основных задач защиты от несанкционированного доступа - обеспечение на­дежной идентификации пользователя (рис. 3.13) и возможности проверки подлинности лю­бого пользователя сети, которого можно однозначно идентифицировать по тому, что он:

– из себя представляет.

Что знает пользователь? Свое имя и пароль. На этих знаниях основаны схемы па­рольной идентификации. Недостаток этих схем - ему необходимо запоминать слож­ные пароли, чего очень часто не происходит: либо пароль выбирают слабым, либо его просто записывают в записную книжку, на листок бумаги и т. п. В случае использова­ния только парольной защиты принимают надлежащие меры для обеспечения управ­лением создания паролей, их хранением, для слежения за истечением срока их ис­пользования и своевременного удаления. С помощью криптографического закрытия паролей можно в значительной степени решить эту проблему и затруднить злоумыш­леннику преодоление механизма аутентификации.

Что может иметь пользователь? Конечно же, специальный ключ - уникальный идентификатор, такой, например, как таблетка touch memory (I-button), e-token, смарт-карта, или криптографический ключ, на котором зашифрована его запись в базе дан­ных пользователей. Такая система наиболее стойкая, однако, требует, чтобы у пользо­вателя постоянно был при себе идентификатор, который чаще всего присоединяют к брелку с ключами и либо часто забывают дома, либо теряют. Будет правильно, если утром администратор выдаст идентификаторы и запишет об этом в журнале и примет их обратно на хранение вечером, опять же сделав запись в журнале.

Что же представляет собой пользователь? Это те признаки, которые присущи толь­ко этому пользователю, только ему, обеспечивающие биометрическую идентификацию. Идентификатором может быть отпечаток пальца, рисунок радужной оболочки глаз, от­печаток ладони и т. п. В настоящее время - это наиболее перспективное направление развития средств идентификации. Они надежны и в то же время не требуют от пользова­теля дополнительного знания чего-либо или постоянного владения чем-либо. С развити­ем технологи и стоимость этих средств становится доступной каждой организации.

Гарантированная проверка личности пользователя является задачей различных механизмов идентификации и аутентификации.

Каждому пользователю (группе пользователей) сети назначается определенный отличительный признак - идентификатор и он сравнивается с утвержденным переч­нем. Однако только заявленный идентификатор в сети не может обеспечить защиту от несанкционированного подключения без проверки личности пользователя.

Процесс проверки личности пользователя получил название - аутентификации. Он происходит с помощью предъявляемого пользователем особого отличительного при­знака - аутентификатора, присущего именно ему. Эффективность аутентификации оп­ределяется, прежде всего, отличительными особенностями каждого пользователя.

Конкретные механизмы идентификации и аутентификации в сети могут быть реа­лизованы на основе следующих средств и процедур защиты информации:

– пароли;

– технические средства;

– средства биометрии;

– криптография с уникальными ключами для каждого пользователя.

Вопрос о применимости того или иного средства решается в зависимости от выяв­ленных угроз, технических характеристик защищаемого объекта. Нельзя однозначно утверждать, что применение аппаратного средства, использующего криптографию, придаст системе большую надежность, чем использование программного.

Анализ защищенности информационного объекта и выявление угроз его безопас­ности - крайне сложная процедура. Не менее сложная процедура - выбор техноло­гий и средств защиты для ликвидации выявленных угроз. Решение данных задач луч­ше поручить специалистам, имеющим богатый опыт.

Защита от несанкционированного доступа к данным

Несанкционированный доступ (НСД) злоумышленника на компьютер опасен не только возможностью прочтения и/или модификации обрабатываемых электронных документов, но и возможностью внедрения злоумышленником управляемой программной закладки, которая позволит ему предпринимать следующие действия:

2. Осуществлять перехват различной ключевой информации, используемой для защиты электронных документов.

3. Использовать захваченный компьютер в качестве плацдарма для захвата других компьютеров локальной сети.

4. Уничтожить хранящуюся на компьютере информацию или вывести компьютер из строя путем запуска вредоносного программного обеспечения.

Защита компьютеров от НСД является одной из основных проблем защиты информации, поэтому в большинство операционных систем и популярных пакетов программ встроены различные подсистемы защиты от НСД. Например, выполнение аутентификации в пользователей при входе в операционные системы семейства Windows. Однако, не вызывает сомнений тот факт, что для серьезной защиты от НСД встроенных средств операционных систем недостаточно. К сожалению, реализация подсистем защиты большинства операционных систем достаточно часто вызывает нарекания из-за регулярно обнаруживаемых уязвимостей, позволяющих получить доступ к защищаемым объектам в обход правил разграничения доступа. Выпускаемые же производителями программного обеспечения пакеты обновлений и исправлений объективно несколько отстают от информации об обнаруживаемых уязвимостях. Поэтому в дополнение к стандартным средствам защиты необходимо использование специальных средств ограничения или разграничения доступа.
Данные средства можно разделить на две категории:

1. Средства ограничения физического доступа.

2. Средства защиты от несанкционированного доступа по сети.

Средства ограничения физического доступа

Наиболее надежное решение проблемы ограничения физического доступа к компьютеру – использование аппаратных средств защиты информации от НСД, выполняющихся до загрузки операционной системы. Средства защиты данной категории называются «электронными замками». Пример электронного замка представлен на рис. 5.3.

Рисунок 5.3 – Электронный замок для шины PCI

Теоретически, любое программное средство контроля доступа может подвергнуться воздействию злоумышленника с целью искажения алгоритма работы такого средства и последующего получения доступа к системе. Поступить подобным образом с аппаратным средством защиты практически невозможно: все действия по контролю доступа пользователей электронный замок выполняет в собственной доверенной программной среде, которая не подвержена внешним воздействиям.
На подготовительном этапе использования электронного замка выполняется его установка и настройка. Настройка включает в себя следующие действия, обычно выполняемые ответственным лицом – администратором по безопасности:

1. Создание списка пользователей, которым разрешен доступ на защищаемый компьютер. Для каждого пользователя формируется ключевой носитель (в зависимости от поддерживаемых конкретным замком интерфейсов – дискета, электронная таблетка iButton или смарт-карта), по которому будет производиться аутентификация пользователя при входе. Список пользователей сохраняется в энергонезависимой памяти замка.

2. Формирование списка файлов, целостность которых контролируется замком перед загрузкой операционной системы компьютера. Контролю подлежат важные файлы операционной системы, например, следующие:

Системные библиотеки Windows ;

Исполняемые модули используемых приложений;

Шаблоны документов Microsoft Word и т. д.

Контроль целостности файлов представляет собой вычисление их эталонной контрольной суммы, например, хэширование по алгоритму ГОСТ Р 34.11-94, сохранение вычисленных значений в энергонезависимой памяти замка и последующее вычисление реальных контрольных сумм файлов и сравнение с эталонными. В штатном режиме работы электронный замок получает управление от BIOS защищаемого компьютера после включения последнего. На этом этапе и выполняются все действия по контролю доступа на компьютер (см. упрощенную схему алгоритма на рис. 5.4), а именно:

Рисунок 5.4 – Упрощенная схема алгоритма работы электронного замка

1. Замок запрашивает у пользователя носитель с ключевой информацией, необходимой для его аутентификации. Если ключевая информация требуемого формата не предъявляется или если пользователь, идентифицируемый по предъявленной информации, не входит в список пользователей защищаемого компьютера, замок блокирует загрузку компьютера.

2. Если аутентификация пользователя прошла успешно, замок рассчитывает контрольные суммы файлов, содержащихся в списке контролируемых, и сравнивает полученные контрольные суммы с эталонными. В случае, если нарушена целостность хотя бы одного файла из списка, загрузка компьютера блокируется. Для возможности дальнейшей работы на данном компьютере необходимо, чтобы проблема была разрешена Администратором, который должен выяснить причину изменения контролируемого файла и, в зависимости от ситуации, предпринять одно из следующих действий, позволяющих дальнейшую работу с защищаемым компьютером:

Восстановить исходный файл;

Удалить файл из списка контролируемых.

3. Если все проверки пройдены успешно, замок возвращает управление компьютеру для загрузки штатной операционной системы.

Поскольку описанные выше действия выполняются до загрузки операционной системы компьютера, замок обычно загружает собственную операционную систему (находящуюся в его энергонезависимой памяти – обычно это MS-DOS или аналогичная ОС , не предъявляющая больших требований к ресурсам), в которой выполняются аутентификация пользователей и проверка целостности файлов. В этом есть смысл и с точки зрения безопасности – собственная операционная система замка не подвержена каким-либо внешним воздействиям, что не дает возможности злоумышленнику повлиять на описанные выше контролирующие процессы. Информация о входах пользователей на компьютер, а также о попытках несанкционированного доступа сохраняется в журнале, который располагается в энергонезависимой памяти замка. Журнал может быть просмотрен Администратором. При использовании электронных замков существует ряд проблем, в частности:

1. BIOS некоторых современных компьютеров может быть настроен таким образом, что управление при загрузке не передается BIOS’у замка. Для противодействия подобным настройкам замок должен иметь возможность блокировать загрузку компьютера (например, замыканием контактов Reset ) в случае, если в течение определенного интервала времени после включения питания замок не получил управление.

2. Злоумышленник может просто вытащить замок из компьютера. Однако, существует ряд мер противодействия:

Различные организационно-технические меры: пломбирование корпуса компьютера, обеспечение отсутствие физического доступа пользователей к системному блоку компьютера и т. д.

Существуют электронные замки, способные блокировать корпус системного блока компьютера изнутри специальным фиксатором по команде администратора – в этом случае замок не может быть изъят без существенного повреждения компьютера.

Довольно часто электронные замки конструктивно совмещаются с аппаратным шифратором. В этом случае рекомендуемой мерой защиты является использование замка совместно с программным средством прозрачного (автоматического) шифрования логических дисков компьютера. При этом ключи шифрования могут быть производными от ключей, с помощью которых выполняется аутентификация пользователей в электронном замке, или отдельными ключами, но хранящимися на том же носителе, что и ключи пользователя для входа на компьютер. Такое комплексное средство защиты не потребует от пользователя выполнения каких-либо дополнительных действий, но и не позволит злоумышленнику получить доступ к информации даже при вынутой аппаратуре электронного замка.

Средства защиты от НСД по сети

Наиболее действенными методами защиты от несанкционированного доступа по компьютерным сетям являются виртуальные частные сети (VPN – Virtual Private Network ) и межсетевое экранирование. Рассмотрим их подробно.

Виртуальные частные сети

Виртуальные частные сети обеспечивают автоматическую защиту целостности и конфиденциальности сообщений, передаваемых через различные сети общего пользования, прежде всего, через Интернет. Фактически, VPN – это совокупность сетей, на внешнем периметре которых установлены VPN -агенты (рис. 5.5). VPN -агент – это программа (или программно-аппаратный комплекс), собственно обеспечивающая защиту передаваемой информации путем выполнения описанных ниже операций.

Рис. 5.5 ‑ Схема построения VPN

Перед отправкой в сеть любого IP -пакета VPN -агент производит следующее:

1. Из заголовка IP -пакета выделяется информация о его адресате. Согласно этой информации на основе политики безопасности данного VPN -агента выбираются алгоритмы защиты (если VPN -агент поддерживает несколько алгоритмов) и криптографические ключи, с помощью которых будет защищен данный пакет. В том случае, если политикой безопасности VPN -агента не предусмотрена отправка IP -пакета данному адресату или IP -пакета с данными характеристиками, отправка IP -пакета блокируется.

2. С помощью выбранного алгоритма защиты целостности формируется и добавляется в IP -пакет электронная цифровая подпись (ЭЦП), имитоприставка или аналогичная контрольная сумма.

3. С помощью выбранного алгоритма шифрования производится зашифрование IP -пакета.

4. С помощью установленного алгоритма инкапсуляции пакетов зашифрованный IP -пакет помещается в готовый для передачи IP-пакет, заголовок которого вместо исходной информации об адресате и отправителе содержит соответственно информацию о VPN -агенте адресата и VPN -агенте отправителя. Т.е. выполняется трансляция сетевых адресов.

5. Пакет отправляется VPN -агенту адресата. При необходимости, производится его разбиение и поочередная отправка результирующих пакетов.

При приеме IP -пакета VPN -агент производит следующее:

1. Из заголовка IP -пакета выделяется информация о его отправителе. В том случае, если отправитель не входит в число разрешенных (согласно политике безопасности) или неизвестен (например, при приеме пакета с намеренно или случайно поврежденным заголовком), пакет не обрабатывается и отбрасывается.

2. Согласно политике безопасности выбираются алгоритмы защиты данного пакета и ключи, с помощью которых будет выполнено расшифрование пакета и проверка его целостности.

3. Выделяется информационная (инкапсулированная) часть пакета и производится ее расшифрование.

4. Производится контроль целостности пакета на основе выбранного алгоритма. В случае обнаружения нарушения целостности пакет отбрасывается.

5. Пакет отправляется адресату (по внутренней сети) согласно информации, находящейся в его оригинальном заголовке.

VPN -агент может находиться непосредственно на защищаемом компьютере (например, компьютеры «удаленных пользователей» на рис. 5.5). В этом случае с его помощью защищается информационный обмен только того компьютера, на котором он установлен, однако описанные выше принципы его действия остаются неизменными.
Основное правило построения VPN – связь между защищенной ЛВС и открытой сетью должна осуществляться только через VPN -агенты. Категорически не должно быть каких-либо способов связи, минующих защитный барьер в виде VPN -агента. Т.е. должен быть определен защищаемый периметр, связь с которым может осуществляться только через соответствующее средство защиты. Политика безопасности является набором правил, согласно которым устанавливаются защищенные каналы связи между абонентами VPN . Такие каналы обычно называют туннелями , аналогия с которыми просматривается в следующем:

1. Вся передаваемая в рамках одного туннеля информация защищена как от несанкционированного просмотра, так и от модификации.

2. Инкапсуляция IP- пакетов позволяет добиться сокрытия топологии внутренней ЛВС: из Интернет обмен информации между двумя защищенными ЛВС виден как обмен информацией только между их VPN -агентами, поскольку все внутренние IP -адреса в передаваемых через Интернет IP -пакетах в этом случае не фигурируют.

Правила создания туннелей формируются в зависимости от различных характеристик IP -пакетов, например, основной при построении большинства VPN протокол IPSec (Security Architecture for IP) устанавливает следующий набор входных данных, по которым выбираются параметры туннелирования и принимается решение при фильтрации конкретного IP -пакета:

1. IP -адрес источника. Это может быть не только одиночный IP-адрес, но и адрес подсети или диапазон адресов.

2. IP -адрес назначения. Также может быть диапазон адресов, указываемый явно, с помощью маски подсети или шаблона.

3. Идентификатор пользователя (отправителя или получателя).

4. Протокол транспортного уровня (TCP/UDP ).

5. Номер порта, с которого или на который отправлен пакет.

Межсетевой экран представляет собой программное или программно-аппаратное средство, обеспечивающее защиту локальных сетей и отдельных компьютеров от несанкционированного доступа со стороны внешних сетей путем фильтрации двустороннего потока сообщений при обмене информацией. Фактически, межсетевой экран является «урезанным» VPN -агентом, не выполняющим шифрование пакетов и контроль их целостности, но в ряде случаев имеющим ряд дополнительных функций, наиболее часто из которых встречаются следующие:

Антивирусное сканирование;

Контроль корректности пакетов;

Контроль корректности соединений (например, установления, использования и разрыва TCP -сессий);

Контент-контроль.

Межсетевые экраны, не обладающие описанными выше функциями и выполняющими только фильтрацию пакетов, называют пакетными фильтрами . По аналогии с VPN -агентами существуют и персональные межсетевые экраны, защищающие только компьютер, на котором они установлены. Межсетевые экраны также располагаются на периметре защищаемых сетей и фильтруют сетевой трафик согласно настроенной политике безопасности.

Электронный замок может быть разработан на базе аппаратного шифратора. В этом случае получается одно устройство, выполняющее функции шифрования, генерации случайных чисел и защиты от НСД. Такой шифратор способен быть центром безопасности всего компьютера, на его базе можно построить полнофункциональную систему криптографической защиты данных, обеспечивающую, например, следующие возможности:

1. Защита компьютера от физического доступа.

2. Защита компьютера от НСД по сети и организация VPN .

3. Шифрование файлов по требованию.

4. Автоматическое шифрование логических дисков компьютера.

5. Вычисление/проверка ЭЦП.

6. Защита сообщений электронной почты.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то