Конструкция штыревой антенны. Вертикальная штыревая антенна. Согласование штыревых антенн

В длинноволновом и средневолновом диапазонах невозможно создавать направленные антенны, так как длина ее значительно меньше четверти. В указанных диапазонах применяются антенны в виде штырей.

Распространение тока и напряжения вдоль четвертьволнового штыря. Основным источником потерь у таких антенн являются токи в земле. Поэтому применяют противовесы (заземление) в виде пучка проводов закопанных в землю на глубину 20-40 см. Причем, чем меньше сопротивление заземления, тем больше КПД антенны.

Сопротивление излучения антенны связано с действующей высотой следующим образом:

Входное сопротивление несимметричного вибратора в два раза меньше, чем у эквивалентного симметричного вибратора, поскольку при одинаковых токах питания у первого напряжение питания в два раза меньше (рис.2).

Многих интересует, как влияет высота подъема штыря на его диаграмму направленности и зависит ли его сопротивление от высоты подвеса. В преддверии всего этого я познакомлю вас с важнейшим результатом (6). Он заключается в том, что распределение токов в штыре не зависит от высоты подвеса при наличии идеальной земли- системы противовесов.


Это очень важный результат. Практически это означает, что на какой бы высоте штырь вместе со своей системой “земли” ни находился, его сопротивление будет постоянным.

Но это частный случай более общего решения. Общий результат решения показывает, что если штырь настроен в резонанс, то его нижний конец можно заземлить. При этом его можно питать в любой точке.

На результатах этого важного вывода и созданы штыревые антенны (флаг-антенны, мачты-антенны), нижний конец которых соединен с “землей” и которые питаются через гамма-согласование или каким-либо другим способом, более удобным в данном случае.

Диаграммы направленности l /4-штыря приведены на рис.17. Из этого рисунка видно, что чем больше поднимается антенна, тем более пологий угол излучения к горизонту. Это объясняется тем, что происходит сложение излученной штырем волны и волны, отраженной от земли. Естественно, что если почва обладает плохими проводящими свойствами, то диаграмма направленности будет близка к диаграмме направленности штыря над землей.


Поднимать антенну на высоту более длины волны не имеет смысла, так как при этом уже не происходит уменьшения угла излучения, а только начинают дробиться верхние боковые лепестки. При поднятии на высоту штырей длиной более l /4 результат будет такой же. На рис.17 приведены диаграммы направленности штырей разной длины, размещенных над идеально проводящей землей (5). Следует запомнить еще одну интересную особенность штырей, высота которых равна l и более. Такие антенны в профессиональной связи используются как антифединговые (4). Для радиолюбителей это означает, что такая антенна будет принимать без проблем сигнал, приходящий с замираниями на l /4-штырь или четвертьволновой диполь.


Для успешной работы штыревая антенна должна быть согласована с линией питания и настроена в резонанс с излучаемым ей сигналом. Несмотря на все кажущееся многообразие согласующих устройств и штырей их можно разбить на три группы.

·штырь согласованный, электрическая длина которого равна l /4 (рис.19а)

· штырь с электрической длиной больше l /4 (рис.19б) (эту “лишнюю” длину убирают с помощью емкости);

· штырь с электрической длиной меньше l /4 (рис.19в) (“недостающую” длину добавляют катушкой индуктивности).

Для практики необходимо помнить, что конденсатор и катушка должны иметь максимально возможную добротность, а также, желательно, чтобы ТКЕ и ТКИ были как можно лучше. Обычно емкость укорачивающего конденсатора может быть в пределах 100 пФ на 28-18 и более на НЧ-диапазонах. Параметры удлиняющей катушки - единицы мкГн - до 21 МГц, десятки - до 3,5 МГц. Точно определить теоретическое их значение трудно, так как в этом случае происходит влияние коэффициента укорочения вибратора, торцевых емкостей на землю и массы других параметров. Вследствие этого согласующие реактивности часто подбирают экспериментально. Однако желающие могут воспользоваться работами (3,7,8) для определения точного теоретического значения удлиняющих и укорачивающих реактивностей.


В заключение следует отметить, что подобная практика согласования применима и к штырям длиной, кратной l /4.

Это несимметричный вибратор , который представляет собой жесткий металлический стержень. Штыревая антенна применяется в области радиовещания и радиосвязи.

Штыревые антенны, работающие в диапазонах коротких волн, используются в портативных и носимых комплектах вместе с автоматическим или ручным тюнером. Антенны могут быть различной длины (1-3 м) и могут иметь разное количество секций (2-6). Высокоэффективные штыревые антенны применяются в лесистых и труднопроходимых местностях, где обычные антенны не могут выполнять свою работу эффективно.

Чтобы увеличить диапазон частот, к штыревой антенне присоединяют удлинительную катушку.
Первые коротковолновые штыревые антенны состояли из опорных фарфоровых изоляторов с большими габаритами. При настройке антенны вибраторы удлинялись или укорачивались. Современные антенны легко настраиваются и без громоздких изоляторов получают желаемое согласование антенны с выходом передатчика и фидером.

Штыревая антенна с гамма-согласующим устройством имеет вид вибратора, который вставлен в муфту.
Муфта , в свою очередь, припаивается к краю металлической площадки. В некоторых штыревых антеннах функции вибратора выполняют водопроводные оцинкованные трубы, которые привариваются к двум муфтам с внутренней резьбой. К еще одной муфте крепятся четыре ушка с пучками-противовесами. На концах противовесов находятся орешковые изоляторы. Пучки, кроме функций противовесов, выполняют еще и работу оттяжек мачт первого яруса. С одной стороны площадки располагается вибратор, в противоположной стороне от него крепится опорный изолятор с трубкой гамма-согласователя. Металлическая перемычка, передвигающаяся вверх и вниз, охватывает как трубку гамма-согласователя, так и трубу вибратора. На верхней стороне площадки закрепляется металлическая коробка между гамма-согласователем и вибратором. Коробка содержит в себе разъем с высокой частотой и конденсатор переменной емкости. Параллельно к конденсатору устанавливается конденсатор постоянной емкости. Пластины ротора и статора конденсатора изолируются от металлической коробки. В трубе вибратора делаются четыре отверстия для медного провода, концы которого загибаются через край трубы. К отрезкам медного провода присоединяются антенные изоляторы, а также изоляторы для комнатных антенн.

Таким образом, полученная конструкция образует второй ярус оттяжек штыревой антенны. Отверстие вибратора, расположенное наверху, закрывается деревянной заглушкой, которая не пропускает влагу внутрь вибратора. Верхнее отверстие трубки гамма-согласователя также закрывается подобной деревянной пробкой.

К разъему высокой частоты, находящемуся на металлической коробке, подключается коаксиальный кабель с определенным волновым сопротивлением. Контакты разъема, предварительно изолированные, соединяются с пластинами статора конденсатора. Изолированный отрезок гибкого проводника соединяется с пластинами ротора конденсатора и крепится к основанию трубки гамма-согласователя.

Настраивается штыревая антенна специальным прибором, определяющим индикатор напряженности поля. Самым простым способом настройки считается включение в разрыв провода теплового амперметра . Наибольшее отклонение стрелки амперметра происходит за счет перемещения перемычки вверх и вниз. Разрыв провода располагается от пластин ротора конденсатора до основания трубки гамма-согласователя.

Через высокочастотный разъем к штыревой антенне подключается фидер. Высокочастотное напряжение поступает к антенне через коаксиальный кабель. При настройке штыревой антенны передатчик должен быть нацелен на максимальное излучение при среднем любительском диапазоне. Когда антенна окончательно настроится, будет исходить от нее наибольшее излучение, перемычка твердо крепится на трубе вибратора и трубке гамма-согласователя. Место закрепления обмазывается пластилином для большей надежности.

  1. ГЛАВА 2 ДЕЙСТВИЕ В ВОЕННОЕ ВРЕМЯ

    Документ

    Взрывы объектов дезорганизуют силы противника, несут его тылам разрушения и смерть, впечатляют и устрашают вражеских солдат мощью и технологическими возможностями народного авангарда.

  2. ГЛАВНОЕ УПРАВЛЕНИЕ БОЕВОЙ ПОДГОТОВКИ ВООРУЖЕННЫХ СИЛ РОССИЙСКОЙ ФЕДЕРАЦИИ УЧЕБНИК СЕРЖАНТА МОТОСТРЕЛКОВЫХ ВОЙСК

    Список учебников

    Учебник предназначен для командиров отделений мотострелковых подразделений. В нем изложены материалы в объеме программы боевой подготовки, а также основы воинского воспитания и обучения военнослужащих.

  3. Система военно-спортивных клубов «патриот»

    Учебно-методическое пособие

    История раскладывает святой долг перед Родиной на плечи всех поколений. Это не значит, что бери автомат и иди, погибай. Позиция должна быть иной, выполни поставленную задачу и останься невредимым.

  4. Радиолюбительская телемеханика © издательство «радио и связь » 1986 предисловие

    Документ

    История техники знает много примеров радиоуправления подвижными ме­ханизмами, создававшимися для военных целей и нужд народного хозяйства. В наши дни благодаря прогрессу науки и техники отечественная радиотелемеха­ника достигла больших

  5. РАДИОЛЮБИТЕЛЬСКИЕ КОНСТРУКЦИИ Указатель описаний

    Библиографический указатель

    Вы хотите собрать радиоприемник или несложный телевизор. Ваш друг, опытный радиолюбитель, интересуется электромузы­кальными инструментами. А Ваш сын увлекается радиоспортом и ему нужна схема радиоприемника для «охоты на лис».

В настоящее время среди радиолюбителей широкое распространение получила так называемая штыревая антенна, дающая в горизонтальной плоскости равномерное излучение.

Штыревая антенна

Она проста в изготовлении и хорошо согласуется с кабелем с волновым сопротивлением 72 ом (рис. 1). Для изготовления антенны (на 38—40 Мгц) нужна алюминиевая труба (стакан) длиной в 1,86 м и диаметром от 25 до 40 мм и; штырь (сплошной или полый) такой же длины.

В качестве штыря можно применить алюминиевую трубку диаметром 12 мм. Стакан выполняется из отрезка дюралюминиевой трубы диаметром 30 мм.

Рис. 1. Конструкция штыревой антенны. 1 — штырь; 2 — изолятор (плексиглас); 3 — место соединения оплетки кабеля со стаканом; 4 — стакан; 5 — кабель (R волн 70 — 75 ом); 6 — пробка.

Штырь должен быть, укреплен в пробке из органического стекла, в которой предварительно просверливают отверстие по диаметру штыря. Центральную жилу кабеля прочно припаивают к штырю, а оболочку кабеля надежно соединяют со стаканом в верхней его части.

После того как все необходимые соединения сделаны, «а штырь надевают пробку, которую затем с большим трением вгоняют в трубу.

В целях предохранения от проникновения воды место вокруг штыря должно быть залито смолкой (от гальванических элементов). При этом надо следить за тем, чтобы «поясок» из смолки не был слишком широк, иначе это резко ухудшит изоляционные качества пробки.

Ни в коем случае нельзя заливать смолкой всю площадь поверхности пробки, так как для токов высокой частоты смолка является плохим изолятором. Если штырь выполнен и» трубы, то верхнее отверстие надо плотно закрыть пробкой, лучше всего резиновой.

Четвертьволновая антенна

В случае отсутствия трубы, необходимой для изготовления стакана, можно применить четвертьволновую антенну (штырь) с наклонно расположенными элементами. Конструкция такой антенны понятна из рис. 2.

Наклонные элементы выполняются из возможно более толстой медной проволоки (2,5—3 мм) и являются как бы продолжением оттяжек верхнего яруса, но изолированы от них двумя орешковыми изоляторами. В качестве фидера следует применить коаксиальный кабель с волновым сопротивлением 70— 75 ом.

Рис. 2. Штыревая антенна с наклонными элементами. 1 — изолятор; 2 — труба мачты; 3 — наклонные элементы; 4 — изоляторы.

Согласование антенны с фидером достигается изменением длины штыря и наклонных элементов в пределах от 94 до 100% четверти длины волны.

Следует, однако, заметить, что изменение входного сопротивления антенны, вызываемое изменением длины элементов, незначительно. Поэтому длину элементов можно сразу брать равной 0,97 1/4 лямбда.

Центральную жилу кабеля подсоединяют к штырю, а оболочку—к элементам яруса. Труба мачты электрически с антенной не должна соединяться.

Антенна со шлейфом и заземленным крестом

Из всех штыревых антенн лучшей является антенна со шлейфом и заземленным крестом. Антенна с заземленным крестом излучает под небольшим углом к горизонту, что дает существенный выигрыш в дальности при работе земной волной.

По этой причине она мало пригодна для сзязи на очень большие расстояния, когда имеет место отражение от ионизированного слоя.

На рис. 3 показана схема антенны с размерами всех ее элементов для частоты 39— 144 Мгц. Штырь 1 и крест 2 соединены между собой через шлейф 3, центральный проводник которого на другом его конце соединен с оплеткой шлейфа (точка а). Таким образом, штырь 1 также оказывается заземленным через шлейф.

Рис. 3. Штыревая антенна со шлейфом и заземленным крестом. 1 — штырь; 2 — горизонтальные элементы: 3 — шлейф; 4 — фидер из кабеля с волновым сопротивлением 70 — 75 Ом; 5— труба мачты. Для диапазона 38 — 40 МГц: D - 20 мм, h -1695 мм, l1 — 1830мм, l2 - 550 мм для диапазона 144 — 146 МГц, D - 15 мм, h - 440 мм, І1 = 484 мм, l2 = 142 мм.

Фидер подключается центральной жилой к штырю и одновременно к центральному проводнику шлейфа. Оболочки фидера и шлейфа соединяются между собой в точке Ь.

Антенна укрепляется на хорошо заземленной водопроводной или газовой трубе. Элементы антенны выполняются из металлических прутьев или трубок одного диаметра (например, 12 или 15 мм).

Вертикальная штыревая антенна

Другой тип вертикальной штыревой антенны изображен на рис. 4. Антенна состоит из штыря 1 и манжеты 3, надеваемой поверх трубы мачты 4.

Штырь целесообразно выполнять из меди или алюминия, а манжету — из обычной стальной трубы, имеющей диаметр, несколько больший диаметра мачты.

За неимением подходящей трубы манжету можно выполнить из системы сравнительно тонких проволок, расположенных по поверхности цилиндра вокруг мачты. Концы проволок припаиваются к кольцам.

Рис. 4. Манжетная антенна. 1 — изолятор; 2 — манжета; 3 — изолятор; 4 — труба мачты.

Такая антенна дает усиление в 2 раза (в вертикальной плоскости).

Антенна хорошо согласуется с коаксиальным кабелем с волновым сопротивлением 72—75 ом, при этом длина манжеты должна составлять 0,99 1/4 лямбда а штыря — 0,94 1/4 лямбда.

Для 52-омного кабеля длина манжеты берется равной 0,98 1/4 лямбда, длина штыря — 0,95 1/4 лямбда. Согласование достигается небольшим изменением длины штыря, а главным образом — манжеты. Размеры манжеты весьма критичны.

Давайте начнём издалека. Как вообще можно увеличить дальность радиоуправления или видеотрансляции?
1. Изменить окуржающие условия. Не всё в наших силах, но всё же. Полёт в центре города очень отличается в плане помех от полёта в 10 км от города. Стоять лучше на пригорке крупной поляны, чем возле здания или леса. И т. д.
2. Выбрать погоду. Влажность и т. п. Например, для аппаратуры 5,8 ГГц облака - это очень белокрылые непрозрачные лошадки. Они с таким же успехом могли быть листами металла. Короче: если у вас 5,8 ГГц - летайте в безоблачную погоду или ниже облаков.
3. Увеличить мощность передатчика. Железно помогает, но есть свои проблемы:

  • Замена со 100 мВт на 200мВт не даст увеличиния дальности в 2 раза. Всё очень нелинейно.
  • Чем выше мощность передатчика тем печальнее ситуация для близлежащей аппаратуры. У вас рядом приёмник? Ему станет хуже! У вас 1,5 Ваттный видеопередатчик на борту? Сервомашинки начинают слушаться видео-передатчик, а не РУ-приёмник, к которому они подключены. Требуется разнос аппаратуры, экранирование и т. п. Масса увеличивается, дальность управления снижается и т. д. и т.п.
  • Энергопотребление.
  • Охлаждение.
  • Ограничения законодательства.

4. И наконец самый сложный способ: подбор более выгодной антенны. Тут несколько направлений:

  • Выбор направленой или всенаправленой антенны.
  • Выбор конкретного типа антенны.
  • Выбор способа её установки и механизации.
  • Выбор коэффициента усиления.

Собственно, рассказать я бы хотел именно о выборе коэффициента усиления для всенаправленных штыревых антенн. Они чаще всего оказываются в руках граждан поскольку идут в комплектах с аппаратурой. Кроме того, они самые приемлимые по цене.

Перед дальнейшим объяснением мне нужно понимание трёх вопросов. Постараюсь объясить так, чтобы любой понял.
1. Антенны существуют для радиосвязи. Таких понятий как, антенна для приёма или для передачи - нет. Антенна с одинаковым успехом будет приёмной и передающей. На практике, для конкретных условий, выгодней на передачу поставить такую-то антенну, а на приём другую, но это совсем другая история. Ниже расскажу.
2. Диаграмма направленности антенны - это область в пространстве, в которую уходит сигнал от антенны. Дальше этой области сигнал слишком слаб, чтобы его можно было использовать. Если антенна установлена на на приёмнике - значит область из которой антенна может принимать сигнал. Дальше этой области не примет. Форма этой области бывает очень разной: шары, лепестки, торы, конусы и т. п. Суть в том, что если в пространстве пересеклись диаграммы направлености приёмной и передающей антенны - связь будет. А если не пересеклись - связи не будет.
3. Коэффициент усиления антенны. Очень примитивно - это во сколько раз сильнее антенна излучает/принимает сигнал при прочих равных.

Я, как и многие, считал, что жизнь устроена просто. При прочих равных однотипная антенна на 5dbi лучше чем на 2 dbi. А на 8 dbi ещё лучше! Это ужасно, но это не так. Так получилось, что про этот аспект мне некому было рассказать, и я стал страдать гигантоманией. У меня было 12 dbi на передатчике и 5 dbi на приёмнике. Антенны по длине почти как на мегагерцовой аппаратуре! Но я человек простой: мощности двигателя самолёта хватит чтобы тащить такие вещи? Значит - не проблема.
В теории антенна с 0 dbi даёт диаграмму направленности по типу шара. Размер шара (при отсутствии внешних раздражителей, а ещё лучше в открытом космосе) будет зависить только от мощности передатчика или чувствительности приёмника (смотря, на приём или на передачу работает антенна).

Антенна с коэффициентом усиления в 1 dbi даст при прочих равных шар покрупнее, но он будет немного уже не идеальный шар, а такой... приплюснутый сверху и снизу.


Чем большй коэффициент усиления антенны вы будете использовать, тем больше будет радиус шара, но тем более он будет сплюснут по вертикали. В итоге вы получите этакий блин огромного радиуса, но малой толщины.

Вот диаграмма направлености вертикально установленой на земле антенны с 12dbi. Вид сбоку.

Т. е. антенна, говоря по честному, уже перестанет быть всенаправленной. Например к антенне c 8dbi производетель пишет :

Угол направления по горизонтали = 360 градусов.
Угол направления по вертикали = 15 градусов.

Если вы держите штырь отвесно возле земли (1 м над поверхностью), то из 15 градусов 7,5 уходят под землю. Остальные 7,5 - в вашем полном распоряжении. Вы даже можете целиться боком антенны в самолёт.

Для сравнения маленькая таблица штыревых антенн на 2,4 ГГц по данным нескольких производителей.

КУ вертикальный угол
5 dbi 32-40 градусов
8 dbi 13-30 градусов
12 dbi 6-12 градусов

Напрашиваются выводы:
1. На самом самолёте все приёмные/передающие антенны, если они штыревые, должны быть с минимально разумным коэффициентом усиления. Полагаю, что разумно - это 1-2,5 dbi. Это связано с невозможностью сохранения постоянными крена и тангажа самолёта.
2. На земле антенны с высоким коэффициентом усиления будут очень мешать высоким полётам и проходом над собой. Однако, далеко и невысоко - хорошо. Например, описаный выше угол в 7,5 градусов на расстоянии в 1,5 км предполагает нахождение самолёта не выше 100 м.
3. Тыканье концом антенны в самолёт тем хуже даст эффект, чем выше коэффициент усиления этой антенны.
4. При выборе штыря есть смысл учитывать ещё одну характеристику: вертикальный угол направленности. Для равных по КУ антенн он может различаться.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то