Квадратурная фазовая модуляция. Цифровая фазовая модуляция: BPSK, QPSK, DQPSK. Фазовая модулящия BPSK и QPSK

Квадратурная модуляция и ее характеристики (QPSK, QAM)

Рассмотрим квадратурную фазовую манипуляцию (QPSK). Исходный поток данных dk(t)=d0, d1, d2,… состоит из биполярных импульсов, т.е. dk принимают значения +1 или -1 (рис. 3.5.а)), представляющие двоичную единицу и двоичный нуль. Этот поток импульсов разделяется на синфазный поток dI(t) и квадратурный - dQ(t), как показано на рис. 3.5.б).

dI(t)=d0, d2, d4,… (четные биты)

dQ(t)=d1, d3, d5,… (нечетные биты)

Удобную ортогональную реализацию сигнала QPSK можно получить, используя амплитудную модуляцию синфазного и квадратурного потоков на синусной и косинусной функциях несущей.

С помощью тригонометрических тождеств s(t) можно представить в следующем виде: s(t)=cos(2рf0t+и(t)). Модулятор QPSK, показанный на рис. 3.5.в), использует сумму синусоидального и косинусоидального слагаемых. Поток импульсов dI(t) используется для амплитудной модуляции (с амплитудой +1 или -1) косинусоиды.

Это равноценно сдвигу фазы косинусоиды на 0 или р; следовательно, в результате получаем сигнал BPSK. Аналогично поток импульсов dQ(t) модулирует синусоиду, что дает сигнал BPSK, ортогональный предыдущему. При суммировании этих двух ортогональных компонентов несущей получается сигнал QPSK. Величина и(t) будет соответствовать одному из четырех возможных сочетаний dI(t) и dQ(t) в выражении для s(t): и(t)=00, ±900 или 1800; результирующие векторы сигналов показаны в сигнальном пространстве на рис. 3.6. Так как cos(2рf0t) и sin(2рf0t) ортогональны, два сигнала BPSK можно обнаруживать раздельно. QPSK обладает рядом преимуществ перед BPSK: т.к. при модуляции QPSK один импульс передает два бита, то в два раза повышается скорость передачи данных или при той же скорости передачи данных, что и в схеме BPSK, используется в два раза меньшая полоса частот; а так же повышается помехоустойчивость, т.к. импульсы в два раза длиннее, а следовательно и больше по мощности, чем импульсы BPSK.



Рис. 3.5.

Рис. 3.6.

Квадратурную амплитудную модуляцию (KAM, QAM) можно считать логическим продолжением QPSK, поскольку сигнал QAM также состоит из двух независимых амплитудно-модулированных несущих.

При квадратурной амплитудной модуляции изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество кодируемых бит и при этом существенно повысить помехоустойчивость. Квадратурное представление сигналов является удобным и достаточно универсальным средством их описания. Квадратурное представление заключается в выражении колебания линейной комбинацией двух ортогональных составляющих - синусоидальной и косинусоидальной (синфазной и квадратурной):

s(t)=A(t)cos(щt + ц(t))=x(t)sinщt + y(t)cosщt, где

x(t)=A(t)(-sinц(t)),y(t)=A(t)cosц(t)

Такая дискретная модуляция (манипуляция) осуществляется по двум каналам, на несущих, сдвинутых на 900 друг относительно друга, т.е. находящихся в квадратуре (отсюда и название).

Поясним работу квадратурной схемы на примере формирования сигналов четырехфазной ФМ (ФМ-4) (рис. 3.7).


Рис. 3.7.

Рис. 3.8. 16

Исходная последовательность двоичных символов длительностью Т при помощи регистра сдвига разделяется на нечетные импульсы y, которые подаются в квадратурный канал (cosщt), и четные - x, поступающие в синфазный канал (sinщt). Обе последовательности импульсов поступают на входы соответствующих формирователей манипулированных импульсов, на выходах которых образуются последовательности биполярных импульсов x(t) и y(t) с амплитудой ±Um и длительностью 2T. Импульсы x(t) и y(t) поступают на входы канальных перемножителей, на выходах которых формируются двухфазные (0, р) ФМ колебания. После суммирования они образуют сигнал ФМ-4.

На рис. 3.8. показано двухмерное пространство сигналов и набор векторов сигналов, модулированных 16-ричной QAM и изображенных точками, которые расположены в виде прямоугольной совокупности.

Из рис. 3.8. видно, что расстояние между векторами сигналов в сигнальном пространстве при QAM больше, чем при QPSK, следовательно, QAM является более помехоустойчивой по сравнению с QPSK,

11 мая 2011 в 19:42

Модуляция радиосигнала

  • Блог компании Yota

В комментариях к статье посетовал на отсутствие статей описывающей физическую сторону передачи информации по радио каналу.
Мы решили исправить это упущение и написать цикл постов о беспроводной передаче данных.
В первом из них мы расскажем о главном аспекте передачи информации посредством радиосигнала – модуляции.


Модуля́ция (лат. modulatio - размерность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала.
Передаваемая информация заложена в управляющем сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим.
Модуляция может осуществляться изменением амплитуды, фазы или частоты высокочастотной несущей.
Эта техника дает несколько важных преимуществ:

  1. Позволяет сформировать радиосигнал, который будет обладать свойствами соответствующими свойствам несущей частоты. О свойствах волн разных частотных диапазонов можно почитать, например, .
  2. Позволяет использовать антенны малого размера, ведь размер антенны должен быть пропорционален длине волны.
  3. Позволяет избежать интерференции с другими радиосигналами.
Передаваемый в сетях WiMax поток данных соответствует частоте в районе 11 кГц. Если мы попробуем передавать этот низкочастотный сигнал по воздуху, нам понадобится антенна следующих размеров:


Антенна длинной 24 километра не кажется достаточно удобной в использовании.
Если же мы будем передавать этот сигнал наложенным на несущую частоту в 2.5 ГГц (частота используемая в Yota WiMax), то нам понадобится антенна длиной 12 см.

Аналоговая модуляция.

Прежде чем перейти непосредственно к цифровой модуляции, приведу картинку, иллюстрирующую аналоговую AM (амплитудную) и FM (частотную) модуляцию, которая освежит у многих школные познания:


исходный сигнал


AM (амплитудная модуляция)


FM (частотная модуляция)

Цифровая модуляция и ее типы.

В цифровой модуляции аналоговый несущий сигнал модулируется цифровым битовым потоком.
Существуют три фундаментальных типа цифровой модуляции (или шифтинга) и один гибридный:
  1. ASK – Amplitude shift keying (Амплитудная двоичная модуляция).
  2. FSK – Frequency shift keying (Частотая двоичная модуляция).
  3. PSK – Phase shift keying (Фазовая двоичная модуляция).
  4. ASK/PSK.
Упомяну, что существует традиция в русской терминологии радиосвязи использовать для модуляции цифровым сигналом термин «манипуляция».

В случае амплитудного шифтинга амплитуда сигнала для логического нуля может быть (например) в два раза меньше логической и единицы.
Частотная модуляция похожим образом представляет логическую единицу интервалом с большей частотой, чем ноль.
Фазовый шифтинг представляет «0» как сигнал без сдвига, а «1» как сигнал со сдвигом.
Да, тут мы как раз имеем дело со «сдвигом по фазе»:)
Каждая из схем имеет свои сильные и слабые стороны.
  • ASK хороша с точки зрения эффективности использования полосы частот, но подвержена искажениям при наличии шума и недостаточно эффективна с точки зрения потребляемой мощности.
  • FSK – с точностью до наоборот, энергетически эффективна, но не эффективно использует полосу частот.
  • PSK – хороша в обоих аспектах.
  • ASK/PSK – комбинация двух схем. Она позволяет еще лучше использовать полосу частот.
Самая простая PSK схема (показанная на рисунке) имеет собственное название - Binary phase-shift keying. Используется единственный сдвиг фазы между «0» и «1» - 180 градусов, половина периода.
Существуют также QPSK и 8-PSK:
QPSK использует 4 различных сдвига фазы (по четверти периода) и может кодировать 2 бита в символе (01, 11, 00, 10). 8-PSK использует 8 разных сдвигов фаз и может кодировать 3 бита в символе.

Одна из частных реализаций схемы ASK/PSK которая называется QAM - Quadrature Amplitude Modulation (квадратурная амплитудная модуляция (КАМ). Это метод объединения двух AM-сигналов в одном канале. Он позваляет удвоить эффективную пропускную способность. В QAM используется две несущих с одинаковой частотой но с разницей в фазе на четверть периода (отсюда и возникает слово квадратура). Более высокие уровни QAM строятся по тому же принципы, что и PSK. Если вас интересуют детали, вы без труда можете их найти в сети.
Теоретическая эффективность использования полосы пропускания:
Формат Эффективность (бит/с/Гц)
BPSK 1
QPSK 2
8-PSK 3
16-QAM 4
32-QAM 5
64-QAM 6
256-QAM 8

Чем сложнее схема модуляции, тем более пагубное воздействие на нее оказывают искажения при передаче, и тем меньше расстояние от базовой станции, на котором сигнал может быть успешно принят.
Теоретически возможны PSK и QAM схемы еще более высокого уровня, но на практике при их использовании возникает слишком большое количество ошибок.
Теперь, когда мы рассмотрели основные моменты, можно написать какие схемы модуляции применяются в сетях WiMax.

Модуляция сигнала в сетях WiMax.

В WiMax используется «динамическая адаптивная модуляция», которая позволяет базовой станции делать выбор между пропускной способностью и максимальным расстоянием до приемника. Чтобы увеличить дальность, базовая станция может переключиться между 64-QAM, 16-QAM и QPSK.

Заключение.

Я надеюсь, что у меня получилось соблюсти баланс между популярностью изложения и техничностью содержания. Если данная статья окажется востребованной, я продолжу работать в этом направлении. Технология WiMax имеет множество нюансов, о которых можно рассказать.

Из теории связи известно, что наивысшей помехоустойчивостью обладает двоичная фазовая модуляция BPSK. Однако в ряде случаев за счет уменьшения помехоустойчивости канала связи можно увеличить его пропускную способность. Более того, при применении помехоустойчивого кодирования можно более точно планировать зону, охватываемую системой мобильной связи.

В четырехпозиционной фазовой модуляции используются четыре значения фазы несущего колебания. В этом случае фаза y(t) сигнала, описываемого выражением (25) должна принимать четыре значения: 0°, 90°, 180° и 270°. Однако чаще используются другие значения фаз: 45°, 135°, 225° и 315°. Такой вид представления квадратурной фазовой модуляции приведен на рисунке 1.


Рисунок 1. Полярная диаграмма сигнала четырехпозиционной фазовой модуляции QPSK

На этом же рисунке представлены значения бит, передаваемых каждым состоянием фазы несущего колебания. Каждое состояние осуществляет передачу сразу двух бит полезной информации. При этом содержимое бит выбрано таким образом, чтобы переход к соседнему состоянию фазы несущего колебания за счет ошибки приема приводил не более чем к одиночной битовой ошибке.

Обычно для формирования сигнала QPSK модуляции используется квадратурный модулятор. Для реализации квадратурного модулятора потребуется два умножителя и . На входы умножителей можно подавать входные битовые потоки непосредственно в коде NRZ. такого модулятора приведена на рисунке 2.



Рисунок 2. Структурная схема модулятора QPSK – NRZ

Так как при этом в течение одного символьного интервала передается сразу два бита входного битового потока, то символьная скорость этого вида модуляции составляет 2 бита на символ. Это означает, что при реализации модулятора следует разделять входной поток на две составляющих — синфазную составляющую I и квадратурную составляющую Q. Синхронизацию последующих блоков следует вести с символьной скоростью.

При такой реализации спектр сигнала на выходе модулятора получается ничем не ограниченный и его примерный вид приведен на рисунке 3.



Рисунок 3. Спектр сигнала четырехпозиционной фазовой модуляции QPSK, модулированного сигналом NRZ

Естественно, этот сигнал можно ограничить по спектру при помощи полосового фильтра, включенного на выходе модулятора, однако так никогда не делают. Намного эффективнее работает фильтр Найквиста. Структурная схема квадратурного модулятора сигнала QPSK, построенная с использованием фильтра Найквиста приведена на рисунке 4.



Рисунок 4. Структурная схема модулятора QPSK с использованием фильтра Найквиста

Фильтр Найквиста можно реализовать только с использованием цифровой техники, поэтому в схеме, приведенной на рисунке 4, перед квадратурным модулятором предусмотрен цифро-аналоговый преобразователь (ЦАП). Особенностью работы фильтра Найквиста является то, что в промежутках между отсчетными точками сигнал на его входе должен отсутствовать, поэтому на его входе стоит формирователь импульсов, выдающий сигнал на свой выход только в момент отсчетных точек. Все остальное время на его выходе присутствует нулевой сигнал.

Пример формы передаваемого цифрового сигнала на выходе фильтра Найквиста приведен на рисунке 5. Сигнал на графике выглядит непрерывным благодаря достаточно высокой частоте дискретизации.



Рисунок 5. Пример временной диаграммы сигнала Q при четырехпозиционной фазовой модуляции QPSK

Так как для сужения спектра радиосигнала в передающем устройстве используется фильтр Найквиста, то межсимвольные искажения в сигнале отсутствуют только в сигнальных точках. Это отчетливо видно по глазковой диаграмме сигнала Q, приведенной на рисунке 6.



Рисунок 6. глазковая диаграмма сигнала на входе Q модулятора

Кроме сужения спектра сигнала, применение фильтра Найквиста приводит к изменению амплитуды формируемого сигнала. В промежутках между отсчетными точками сигнала амплитуда может, как возрастать по отношению к номинальному значению, так и уменьшаться почти до нулевого значения.

Для того чтобы отследить изменения, как амплитуды сигнала QPSK, так и его фазы лучше воспользоваться векторной диаграммой. Векторная диаграмма того же самого сигнала, что приведен на рисунках 5 и 6, показана на рисунке 7.


Рисунок 7 векторная диаграмма QPSK сигнала c α = 0.6

Изменение амплитуды сигнала QPSK видно и на осциллограмме сигнала QPSK на выходе модулятора. Наиболее характерный участок временной диаграммы сигнала, приведенного на рисунках 6 и 7, показан на рисунке 8. На этом рисунке отчетливо видны как провалы амплитуды несущей модулированного сигнала, так и увеличение ее значения относительно номинального уровня.



Рисунок 8. временная диаграмма QPSK сигнала c α = 0.6

Сигналы на рисунках 5 ... 8 приведены для случая использования фильтра Найквиста с коэффициентом скругления a = 0.6 . При использовании фильтра Найквиста с меньшим значением этого коэффициента влияние боковых лепестков импульсной характеристики фильтра Найквиста будет сказываться сильнее и явно прослеживающиеся на рисунках 6 и 7 четыре пути прохождения сигналов сольются в одну непрерывную зону. Кроме того, возрастут выбросы амплитуды сигнала относительно номинального значения.



Рисунок 9 – спектрограмма QPSK сигнала c α = 0.6

Присутствие амплитудной модуляции сигнала приводит к тому, что в системах связи, использующих этот вид модуляции, приходится использовать высоколинейный усилитель мощности. К сожалению, такие усилители мощности обладают низким кпд.

Частотная модуляция с минимальным разносом частот позволяет уменьшить ширину полосы частот, занимаемых цифровым радиосигналом в эфире. Однако даже этот вид модуляции не удовлетворяет всем требованиям, предъявляемым к современным радиосистемам мобильной связи. Обычно сигнал MSK в радиопередатчике дофильтровывают обычным фильтром. Именно поэтому появился еще один вид модуляции с еще более узким спектром радиочастот в эфире.

Литература:

  1. "Проектирование радиоприемных устройств" под ред. А.П. Сиверса - М.: "Высшая школа" 1976 стр. 6
  2. Палшков В.В. "Радиоприемные устройства" - М.: "Радио и связь" 1984 стр. 32

Вместе со статьей "Четырехпозиционная фазовая модуляция (QPSK)" читают:


http://сайт/UGFSvSPS/modul/DQPSK/


http://сайт/UGFSvSPS/modul/BPSK/


http://сайт/UGFSvSPS/modul/GMSK/


http://сайт/UGFSvSPS/modul/FFSK/

Как следует из названия, quadrature phase shift keying (QPSK) – квадратурная фазовая манипуляция является модификацией двоичной фазовой манипуляции - binary phase shift keying (BPSK). Вспомните, что метод BPSK на самом деле представляет собой DSBSC модуляцию с цифровым сообщением в качестве модулирующего сигнала. Важно отметить, что при BPSK модуляции информация передается последовательно бит за битом. QPSK также является разновидностью DSBSC модуляции, однако здесь передаются по два бита в течение каждого интервала времени, не используя другую несущую частоту.

В связи с тем, что при QPSK биты передаются парами, может возникнуть иллюзия, что скорость передачи в два раза выше, чем при BPSK. На самом деле, преобразование последовательности одиночных бит в последовательность сдвоенных бит обязательно снижает скорость передачи в два раза, что не позволяет получить выигрыш в скорости.

Тогда зачем этот метод модуляции нужен? Снижение в два раза скорости передачи сигналов методом QPSK позволяет занимать в два раз меньший участок радиочастотного спектра, чем BPSK сигнал. Это дает возможность увеличить количество абонентов в канале связи.

На рисунке 1 приведена блок-схема реализации математической модели QPSK модулятора.

На входе модулятора четные биты (с номерами 0, 2, 4 и т.д.) выделяются с помощью “расщепителя бит” из потока данных и перемножаются с несущей, формируя BPSK сигнал, обозначенный как PSKI. В то же время, нечетные биты (с номерами 1, 3, 5 и т.д.) также выделяются из потока данных и перемножаются с той же несущей, сдвинутой на 90°, формируя второй BPSK сигнал, обозначенный PSK Q . В этом и заключается принцип работы QPSK модулятора.

Перед передачей QPSK сигнала два BPSK сигнала просто складываются и, поскольку они имеют одну и ту же несущую частоту, эти сигналы занимают один и тот же участок спектра. Однако, для того чтобы разделить сигналы, несущие которых сдвинуты на 90º, требуется приемник с фазовым дискриминатором.

На рисунке 2 приведена блок-схема реализации математической модели QPSK демодулятора.

В приведенной схеме демодуляцию двух BPSK сигналов независимо и одновременно осуществляют два детектора на основе умножителей. На выходах детекторов появляются пары битов исходных данных, которые с помощью компаратора очищаются от искажений, и собираются в исходную последовательность с помощью 2-разрядного параллельно-последовательного преобразователя.

Чтобы понять, каким образом каждый детектор выделяет только один BPSK сигнал, а не оба вместе, вспомните, что детектирование DSBSC сигналов обладает “чувствительностью” к фазовому сдвигу. Таким образом, прием сообщения будет оптимальным, только в том случае, если несущие колебания передатчика и приемника будут точно совпадать по фазе. Важно отметить, что при фазовом рассогласовании 90º прием сообщения становится невозможным, т.к. амплитуда восстановленного сигнала становится равной нулю. Другими словами, сообщение полностью подавляется.

QPSK демодулятор данное обстоятельство превращает в преимущество. Обратите внимание, что детекторы произведения на рисунке 2 используют одну несущую, но для одного из детекторов несущая сдвинута на 90°. В этом случае один детектор восстанавливает данные из одного BPSK сигнала, одновременно подавляя другой BPSK сигнал, а второй детектор восстанавливает второй BPSK сигнал, подавляя первый BPSK сигнал.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то