Оптические линии связи. Волоконно-оптические линии связи (волс) - строим сеть предприятия

Волоконно-оптическими называют линии, предназначенные для передачи информации в оптическом диапазоне. Согласно данным советского Информбюро, на конец 80-х темп роста применения волоконно-оптических линий составил 40%. Эксперты Союза предполагали полный отказ некоторых стран от медной жилы. Съезд постановил на 12-ю пятилетку 25% прирост объёма линий связи. Тринадцатая, также призванная развивать волоконную оптику, застала развал СССР, появились первые сотовые операторы. Кстати, прогноз экспертов относительно роста потребности в квалифицированных кадрах провалился…

Принцип действия

Каковы причины резкого роста популярности высокочастотных сигналов? Современные учебники упоминают снижение потребности в регенерации сигнала, стоимости, повышение ёмкости каналов. Советские инженеры вызнали, рассуждая иначе: медный кабель, броня, экран берут 50% мирового производства меди, 25% – свинца. Недостаточно известный факт стал главной причины оставления спонсорами Николы Теслы, проекта башни Ворденклифф (название дала фамилия мецената, пожертвовавшего землю). Известный сербский учёный возжелал передавать информацию, энергию беспроводным путём, напугав немало локальных хозяев медеплавильных заводов. 80 лет спустя картина изменилась кардинально: люди осознали необходимость сбережения цветных металлов.

Материалом изготовления волокна служит… стекло. Обычный силикат, сдобренный изрядной долей модифицирующих свойства полимеров. Советские учебники, помимо указанных причин популярности новой технологии, называют:

  1. Малое затухание сигналов, явившееся причиной снижения потребности в регенерации.
  2. Отсутствие искрения, следовательно, пожаробезопасность, нулевая взрывоопасность.
  3. Невозможность короткого замыкания, пониженная потребность в обслуживании.
  4. Нечувствительность к электромагнитным помехам.
  5. Низкий вес, сравнительно малые габариты.

Первоначально оптоволоконные линии должны были объединить крупные магистрали: меж городами, пригородами, АТС. Эксперты СССР назвали кабельную революцию сродни появлению твердотельной электроники. Развитие технологии позволило построить сети, лишённые токов утечки, перекрёстных помех. Участок длиной сотню км лишён активных методов регенерации сигнала. Бухта одномодового кабеля обычно составляет 12 км, многомодового – 4 км. Последнюю милю чаще покрывают медью. Провайдеры привыкли предназначать оконечные участки индивидуальным пользователям. Отсутствуют высокие скорости, приёмопередатчики дёшевы, возможность подвести одновременно питание устройству, простота использования линейных режимов.

Передатчик

Типичным формирователем луча выступают полупроводниковые светодиоды, включая твердотельные лазеры. Ширина спектра сигнала, излучаемого типичным p-n-переходом, составляет 30-60 нм. КПД первых твердотельных устройств едва достигал 1%. Основой связных светодиодов чаще выступает структура индий-галлий-мышьяк-фосфор. Излучая более низкую частоту (1,3 мкм), приборы обеспечивают значительное рассеивание спектра. Результирующая дисперсия сильно ограничивает битрейт (10-100 Мбит/с). Поэтому светодиоды пригодны для построения локальных сетевых ресурсов (дистанция 2-3 км).

Частотное деление с мультиплексированием осуществляется многочастотными диодами. Сегодня несовершенные полупроводниковые структуры активно вытесняются вертикальными излучающими лазерами, значительно улучшающими спектральные характеристики. повышающими скорость. Цена одного порядка. Технология вынужденного излучения приносит гораздо более высокие мощности (сотни мВт). Когерентное излучение обеспечивает КПД одномодовых линий 50%. Эффект хроматической дисперсии снижается, позволяя повысить битрейт.

Малое время рекомбинации зарядов позволяет легко модулировать излучение высокими частотами питающего тока. Помимо вертикальных применяют:

  1. Лазеры с обратной связью.
  2. Резонаторы Фабри-Перо.

Высокие битрейты дальних линий связи достигаются применением внешних модуляторов: электро-абсорбционные, интерферометры Маха – Цендера. Внешние системы устраняют необходимость применения линейной частотной модуляции напряжением питания. Обрезанный спектр дискретного сигнала передаётся дальше. Дополнительно разработаны другие методики кодирования несущей:

  • Квадратурная фазовая манипуляция.
  • Ортогональное мультиплексирование с частотным разделением.
  • Амплитудная квадратурная модуляция.

Процедуру осуществляют цифровые сигнальные процессоры. Старые методики компенсировали лишь линейную составляющую. Беренджер выразил модулятор рядами Вина, ЦАП и усилитель смоделировал усечёнными, времянезависимыми рядами Вольтерры. Кхана предлагает использовать полиномиальную модель передатчика вдобавок. Каждый раз коэффициенты рядов находят, используя архитектуру непрямого изучения. Дутель записал множество распространённых вариантов. Фазная перекрёстная корреляция и квадратурные поля имитируют несовершенство систем синхронизации. Аналогично компенсируются нелинейные эффекты.

Приёмники

Фотодетектор совершает обратное преобразование свет – электричество. Львиная доля твёрдотельных приёмников использует структуру индий-галлий-мышьяк. Иногда встречаются pin-фотодиоды, лавинные. Структуры металл-полупроводник-металл идеально подходят для встраивания регенераторов, коротковолновых мультиплексоров. Оптикоэлектрические конвертеры часто дополняют трансимпедансными усилителями, ограничителями, производящими цифровой сигнал. Затем практикуют восстановление синхроимпульсов с фазовой автоподстройкой частоты.

Передача света стеклом: история

Явление рефракции, делающее возможной тропосферную связь, нелюбимо учениками. Сложные формулы, неинтересные примеры убивают любовь студента к знаниям. Идею световода родили далёкие 1840-е годы: Дэниэл Колладон, Жак Бабинэ (Париж) пытались приукрасить собственные лекции заманчивыми, наглядными экспериментами. Преподаватели средневековой Европы плохо зарабатывали, поэтому изрядный приток студентов, несущих деньги, выглядел желанной перспективой. Лекторы заманивали публику любыми способами. Некий Джон Тиндал воспользовался идеей 12 лет спустя, гораздо позже выпустив книгу (1870), рассматривающую законы оптики:

  • Свет проходит границу раздела воздух-вода, наблюдается рефракция луча относительно перпендикуляра. Если угол касания луча к ортогональной линии превышает 48 градусов, фотоны перестают покидать жидкость. Энергия полностью отражается назад. Предел назовём лимитирующим углом среды. Водный равен 48 градусов 27 минут, у силикатного стекла – 38 градусов 41 минута, алмаза – 23 градуса 42 минуты.

Зарождение XIX столетия принесло линии Петербург – Варшава световой телеграф протяжённостью 1200 км. Регенерация операторами послания проводилась каждые 40 км. Сообщение шло несколько часов, мешали погода, видимость. Появление радиосвязи вытеснило старые методики. Первые оптические линии датированы концом XIX века. Новинка понравилась… медикам! Гнутое стеклянное волокно позволяло освещать любые полости человеческого тела. Историки предлагают следующую временную шкалу развития событий:


Идею Генри Сэнт-Рене продолжили поселенцы Нового света (1920-е), задумавшие улучшить телевидение. Кларенс Ханселл, Джон Логи Бэйрд стали пионерами. Десять лет спустя (1930) студент-медик Хайнрих Ламм доказал возможность передачи стеклянными направляющими изображения. Ищущий знаний задумал осмотреть внутренности тела. Качество изображения хромало, попытка получить Британский патент провалилась.

Рождение волокна

Независимо голландский учёный Абрахам ван Хил, британец Харольд Хопкинс, Нариндер Сингх Капани изобрели (1954) волокно. Заслуга первого в идее покрыть центральную жилу прозрачной оболочкой, имевшей низкий коэффициент преломления (близкий к воздуху). Защита от царапин поверхности сильно улучшила качество передачи (современники изобретателей видели главное препятствие использования волоконных линий в больших потерях). Британцы тоже внесли серьёзный вклад, собрав пучок волокон численностью 10.000 штук, передали изображение на дистанцию 75 см. Заметка «Гибкий фиброскоп, использующий статическое сканирование» украсила журнал Nature (1954).

Это интересно! Нариндер Сингх Капани ввёл термин фиброволокно заметкой в журнале Американская наука (1960).

1956 год принёс миру новый гибкий гастроскоп, авторы Базиль Хиршовиц, Вильбур Петерс, Лоуренс Кертисс (Университет Мичиган). Особенностью новики являлась стеклянная оболочка волокон. Элиас Снитцер (1961) обнародовал идею создания одномодового волокна. Столь тонкого, что внутри умещалось лишь одно пятнышко интерференционной картины. Идея помогла медикам осмотреть внутренности (живого) человека. Потери составили 1 дБ/м. Потребности коммуникаций простирались гораздо дальше. Требовалось достичь порога 10-20 дБ/км.

1964 год считают переломным: жизненно важную спецификацию опубликовал доктор Као, введя теоретические основы дальней связи. Документ активно использовал приведённую выше цифру. Учёный доказал: снизить потери поможет стекло высшей степени очистки. Германский физик (1965) Манфред Бёрнер (Телефункен Ресёрч Лабс, Ульм) представил первую работоспособную телекоммуникационную линию. NASA немедленно передало вниз лунные снимки, используя новинки (разработки были секретными). Несколько лет спустя (1970) трое работников Корнинг Глэс (см. начало топика) подали патент, реализующий технологический цикл выплавки оксида кремния. Три года бюро оценивало текст. Новая жила увеличила пропускную способность канала в 65000 раз относительно медного кабеля. Команда доктора Као немедля сделала попытку покрыть значительное расстояние.

Это интересно! 45 лет спустя (2009) Као вручили Нобелевскую премию по физике.

Военные компьютеры (1975) противовоздушной обороны США (секция NORAD, Шайенские горы) получили новые коммуникации. Оптический интернет появился очень давно, раньше персональных компьютеров! Двумя годами позже тестовые испытания телефонной линии длиной 1,5 мили (пригород Чикаго) успешно передали 672 голосовых канала. Стеклодувы трудились неустанно: начало 80-х привнесло появление волокна с затуханием 4 дБ/км. Оксид кремния заменили другим полупроводником – германием.

Скорость производства высококачественного кабеля технологической линией составила 2 м/с. Хими Томас Менса разработал технологию, повысившую двадцатикратно указанный лимит. Новинка, наконец, стала дешевле медного кабеля. Дальнейшее изложено выше: последовал всплеск внедрения новой технологии. Шаг расстановки репитеров составил 70-150 км. Волоконный усилитель, легированный ионами Эрбия, резко снизил стоимость возведения линий. Времена тринадцатой пятилетки принесли планете 25 миллионов километров волоконно-оптических сетей.

Новый толчок развитию дало изобретение фотонных кристаллов. Первые коммерческие модели принёс 2000 год. Периодичность структур позволила значительно повысить мощность, конструкция волокна гибко подстраивалась, следуя частоте. В 2012 году Телеграфная и телефонная компания Ниппона достигла скорости 1 петабит/с на дальности 50 км одним-единственным волокном.

Военная промышленность

Достоверно известна история шествия военной промышленности США, опубликованной в Монмаут Месседж. В 1958 году менеджер по кабельному хозяйству форта Монмаут (Сигнал Корпс Лабс армии Соединённых Штатов) рапортовал о вреде молний, осадков. Чиновник потревожил исследователя Сэма Ди Вита, попросив найти замену зеленеющей меди. Ответ содержал предложение попробовать стекло, фибер, световые сигналы. Однако инженеры дяди Сэма того времени оказались бессильны решить задачку.

Жарким сентябрём 1959 Ди Вита спросил лейтенанта второго ранга Ричарда Штурцебехера, известна ли тому формула стекла, способного передавать оптический сигнал. Ответ содержал сведения, касающиеся оксида кремния – пробы на базе Университета Альфреда. Измеряя коэффициент рефракции материалов микроскопом, Ричард нажил головную боль. 60-70% стеклянная пудра свободно пропускала лучезарный свет, раздражая глаза. Держа в уме необходимость получения чистейшего стекла, Штурцебехер изучал современные методики производства при помощи хлорида кремния IV. Ди Вита нашёл материал пригодным, решив предоставить правительству переговоры со стеклодувами компании Корнинг.

Чиновник отлично знал рабочих, однако решил предать дело огласке, дабы завод получил государственный контракт. Между 1961 и 1962 идея использования чистого оксида кремния была передана исследовательским лабораториям. Федеральные ассигнования составили порядка 1 млн. долларов (промежуток 1963-1970). Программа окончилась (1985) развитием многомиллиардной индустрии производства оптоволоконных кабелей, начавших стремительно замещать медные. Ди Вита остался работать, консультируя промышленность, прожив 97 лет (год смерти – 2010).

Разновидности кабелей

Кабель формируют:

  1. Ядро.
  2. Оболочка.
  3. Защитный кожух.

Волокно реализует полное отражение сигнала. Материалом первых двух компонентов традиционно выступает стекло. Иногда находят дешёвую замену – полимер. Оптические кабели объединяют сплавлением. Выравнивание ядра потребует сноровки. Мультимодовый кабель толщиной свыше 50 мкм паять проще. Две глобальные разновидности различаются количеством мод:

  • Мультимодовый снабжён толстым ядром (свыше 50 мкм).
  • Одномодовый значительно тоньше (менее 10 мкм).

Парадокс: кабель меньших размеров обеспечивает дальнюю связь. Стоимость четырёхжильного трансатлантического составляет 300 млн. долларов. Сердцевину покрывают светоустойчивым полимером. Журнал Новый учёный (2013) обнародовал опыты научной группы Университета Саутгемптона, покрывших дальность 310 метров… волноводом! Пассивный диэлектрический элемент показал скорость 77,3 Тбит/с. Стены полой трубки образованы фотонным кристаллом. Информационный поток двигался со скорость 99,7% световой.

Фотонно-кристаллический фибер

Новая разновидность кабелей образована набором трубок, конфигурация напоминает скруглённые пчелиные соты. Фотонные кристаллы, напоминают природный перламутр, образуя периодические конформации, отличающиеся коэффициентом преломления. Некоторые длины волн внутри таких трубок затухают. Кабель демонстрирует полосу пропускания, луч претерпевая брэгговскую рефракцию отражается. Благодаря наличию запрещённых зон когерентный сигнал двигается вдоль световода.

Первая конструкция Йе и Йарива (1978) представлена двумя и более концентрическими слоями разных материалов. Конструкции постоянно дополняются свежими видами. Рассел (1996, автор термина фотонно-кристаллический фибер) представил сотовый набор волокон, двумя годами позже догадались сердцевину заменить пустотой. Достигнутые затухания впечатляют:

  1. Полые – 1,2 дБ/км.
  2. Сплошные – 0,37 дБ/км.

Технология производства сродни традиционной. Сравнительно толстую заготовку постепенно вытягивают. Выходит волос длиной в километры. Материалы проходят стадию исследований.

Частоты

Скорость, дальность передачи ограничены эффектами дисперсии, затуханием. Исследователи нашли длины волн, минимизирующие недостатки. Образовано несколько окон, используемых телекоммуникациями:

  1. О – 1260..1360 нм.
  2. Е – 1360..1460 нм.
  3. S – 1460..1530 нм.
  4. С – 1530..1565 нм.
  5. L – 1565..1625 нм.
  6. U – 1625..1675 нм.

Окна идут непрерывно, существующие системы связи могут состоять одновременно из двух-трёх. Исторически первый промежуток (800-900 нм) сегодня убран, поскольку потери оказались непомерно высокими. Окна О, Е характеризуются нулевой дисперсией. Чаще применяют S, C, демонстрирующие преимущества минимального затухания (максимальная дальность передачи).

В настоящее время в качестве оптических линий связи используют:

а) волоконно-оптические линии связи (ВОЛС);

б) оптические линии связи с использованием лазерной “пушки”;

в) оптические линии связи с использованием инфракрасных излучателей и приемников;

г) оптические линии связи с использованием кремнийорганического оптического волокна.

Структурная схема волоконно-оптической линии связи приведена на рис.4.2.

Рис.4.2. Структурная схема ВОЛС.

Электрический сигнал поступает на передатчик – трансивер, который преобразует электрический сигнал в световой импульс, который через оптический соединитель подается в оптический кабель. В месте приема оптический кабель с помощью оптического соединителя подключатся к приемнику – трансиверу, преобразующему пучок света в электрический сигнал.

В зависимости от назначения ВОЛС, ее протяженности, качества используемых комплектующих структурная схема может изменяться. При значительных расстояниях между пунктами передачи и приема вводится ретранслятор – усилитель сигналов. При малой длине оптического кабеля (если хватает строительной длины оптического кабеля) сварка кабеля не нужна. Под строительной длиной понимают длину цельного куска кабеля, поставляемого заводом – изготовителем.

Волоконно-оптические линии связи имеют следующие достоинства:

1. Высокая помехозащищенность от внешних электромагнитных помех и от межканальных взаимонаводок.

2. Широкий диапазон рабочих частот позволяет по такой линии связи можно передавать информацию со скоростью 10 12 бит/с = Тбит/c.

3. Защищенность от несанкционированного доступа: излучения в окружающее пространство ВОЛС почти не дает, а изготовление отводов оптической энергии без разрушения кабеля практически не возможно. А всякие воздействия на волокно могут быть зарегистрированы с помощью мониторинга (непрерывного контроля) целостности линии.

4. Возможность скрытой передачи информации.

5. Потенциально низкая стоимость, обусловленная заменой дорогостоящих цветных металлов (медь) материалами с неограниченными сырьевыми ресурсами (двуокись кремния).

6. Автоматически обеспечивается гальваническая развязка сегментов линии.

Однако в оптоволоконной технологии имеются и свои недостатки:

1. Высокая стоимость аппаратуры.

2. Требуется дорогое технологическое оборудование, как в процессе монтажа, так и в процессе эксплуатации. При обрыве оптического кабеля затраты на его восстановление значительно выше, чем на восстановление медного кабеля.

3. Относительно малая долговечность. Время жизни + сохранение им своих свойств в определенных допустимых пределах – оптического кабеля 25 лет. Заметим, что до настоящего времени в Москве эксплуатируются телефонные линии проложенные в начале века (см. Hard & Soft,1998,N11).


4. Оптические кабели не стойки к воздействию радиации.

Основу ВОЛС составляют оптические кабели, изготавливаемые из отдельных световодов – оптических волокон.

Передача оптической энергии по оптическому волокну обеспечивается с помощью эффекта полного внутреннего отражения. Оптическое волокно представляет собой двухслойный цилиндрический световод (рис.4.3.)


Рис.4.3. Распространение излучения и изменение и изменение показателя преломления в оптоволокне

Материал внутренней жилы имеет показатель преломления n 1 , а материал внешнего слоя n 2 , при этом n 1 >n 2 , т.е. материал внутренней жилы оптически более плотный, чем материал оболочки. Для излучения, входящего в цилиндр под малыми углами по отношению к оси цилиндра, выполняется условие полного внутреннего отражения: при падении излучения на границу с оболочкой вся энергия излучения отражается внутрь жилы световода. То же самое происходит и при всех последующих отражениях; в результате излучение распространяется вдоль оси световода, не выходя через оболочку. Максимальный угол отклонения от оси, при котором еще имеется полное внутреннее отражение, определяется выражением A 0 =sin y 0 =.

Величина A 0 называется числовой апертурой световода и учитывается при согласовании световода с излучателем. Излучение, падающее на торец под углами y>y­ 0 (внеапертурные лучи), при взаимодействии с оболочкой не только отражаются, но и преломляются; часть оптической энергии уходит из световода. В конечном итоге после многкратных встреч с границей жила-оболочка такое излучение полностью рассеивается из световода.

Излучение распространяется вдоль световода и в том случае, если уменьшение показателя преломления от центра к краю происходит не ступенчато, а постепенно. В таких световодах лучи, входящие в торец, преломляясь, фокусируются вблизи осевой линии (см.рис.4.4).


Рис.4.4. Распространение излучения и изменение показателя преломления в селфоке.

Любой отрезок такого световода действует как короткофокусная линза, вызывая эффект самофокусировки.

Эти световоды называют селфоками (self – сам, focus – фокус).

Промышленность многих стран освоила выпуск широкой номенклатуры изделий и компонентов ВОЛС. Следует заметить, что производство оптического волокна сосредоточено в основном в США. Для передачи сигналов применяются два вида оптоволокна: одномодовое и многомодовое. В одномодовом волокне световодная жила имеет диаметр 8-10 мкм. В многомодовом волокне диаметр световодной жилы составляет 50-60 мкм.

Оптоволокно характеризуется двумя важнейшими параметрами: затуханием и дисперсией.

Количественно затухание определяется по формуле

Pвх – мощность входного оптического сигнала;

Pвых – мощность выходного оптического сигнала;

l – длина световода.

Единицей измерения затухания служит децибелл на километр (дБ/км).

Затухание определяется потерями на поглощение и рассеяние излучения в оптоволокне. Потери на поглощение зависят от частоты материала, а потери на рассеяние – от неоднородности его показателей преломления. Зависит затухание и от длины волны излучения, вводимого в оптоволокно. В настоящее время передача сигналов по волокну осуществляется в трех диапазонах: 0.85 мкм, 1.3 мкм, 1.55 мкм, так как именно в этих диапазонах кварц имеет повышенную прозрачность. Оптоволокно характеризуется очень малым затуханием. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км при длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Оптоволокно фирмы Sumitoto (Япония) имеет затухание 0.154 дБ/км при длине волны 1.55мкм. Имеются сообщения о разработке так называемых фторцирконатных оптоволокон с затуханием порядка 0.02 дБ/км, что позволит обеспечить скорость передачи порядка 1 Гбит/с с регенераторами через 4600 км.

Дисперсия, т.е. зависимость скорости распространения сигнала от длины волны излучения, - другой важнейший параметр оптического волокна. Поскольку при передаче информации светодиод или лазер излучает некоторый спектр длин волн, дисперсия приводит к уширению импульсов при распространении по волокну и тем самым порождает искажения сигналов. При оценке дисперсии пользуются термином “полоса пропускания” - величина, обратная величине уширения импульса при прохождении им по оптическому волокну расстояния в 1 км.

Измеряется полоса пропускания в мегагерцах на километр (МГц * км). Дисперсия накладывает ограничения на дальность передачи и верхнее значение частоты передаваемых сигналов.

Величина затухания и дисперсии различаются для разных типов оптических волокон.

Одномодовые волокна обладают лучшими характеристиками по затуханию и полосе пропускания. Однако одномодовые источники излучения (диодные лазеры, работающие на длине волны 1.55 мкм) в несколько раз дороже многомодовых (светоизлучающий диод, функционирующий на длине волны 0.85 мкм). Сращивание одномодовых волокон, монтаж оптических разъемов на концах одномодовых кабелей обходится дороже. Однако полоса пропускания многомодовых волокон достигает 1000 МГц * км, что приемлемо только для локальных сетей связи.

Для связи приемника и передатчика используется волоконно-оптический кабель (ВОК), в котором оптические волокна дополняются элементами повышающими эластичность и прочность кабеля.

Основными показателями ВОК являются условия эксплуатации и пропускная способность.

Связь корректирующей способности кода с кодовым расстоянием

Степень различия любых двух кодовых комбинаций характеризуется расстоянием между ними по Хэммингу или просто кодовым расстоянием .

Расстояние Хэмминга d выражается числом позиций, в которых кодовые комбинации отличаются одна от другой.

Пример 1. Найти расстояние Хэмминга d между кодовыми комбинациями 10101011 и 11111011.

Волоконно-оптические линии связи - это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием "оптическое волокно". Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации,

а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Основания так считать вытекают из ряда особенностей, присущих оптическим волноводам.

Структура кабеля:

  1. Осевой элемент:
    – стальной канат (стренга, проволока) в полимерном покрытии;
    – стеклопластиковый пруток в полимерном покрытии или без
  2. Оптические волокна
  3. Оптические модули
  4. Внутримодульный гидрофобный заполнитель
  5. Гидроизоляция сердечника
  6. Промежуточная оболочка
    – полиэтилен (отсутствует в ИКБЛ…)
  7. Гидроизоляция бронирующего слоя
    – гидрофобный заполнитель или водоблокирующие элементы
  8. Броня из круглых стальных оцинкованных проволок
  9. Защитная оболочка
    – полиэтилен или полимер, не распространяющий горение (ИКБН…)

1.1 Физические особенности.
1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=10**14 Гц). Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 10**12 бит/с или Терабит/с. Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.

2. Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1.55 мкм имеет затухание 0.154 дБ/км. В оптических лабораториях США разрабатываются еще более "прозрачные", так называемые фторцирконатные волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.
1.2 Технические особенности.
1.Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди.

2. Оптические волокна имеют диаметр около 100 мкм., то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.

3. Стеклянные волокна - не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.

4. Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации.

Существует способ скрытой передачи информации по оптическим линиям связи. При скрытой передаче сигнал от источника излучения модулируется не по амплитуде, как в обычных системах, а по фазе. Затем сигнал смешивается с самим собой, задержанным на некоторое время, большее, чем время когерентности источника излучения.

При таком способе передачи информация не может быть перехвачена амплитудным приемником излучения, так как он зарегистрирует лишь сигнал постоянной интенсивности.

Для обнаружения перехватываемого сигнала понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видность интерференционной картины может быть ослаблена как 1:2N, где N - количество сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.

5.Важное свойство оптического волокна - долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.

Есть в волоконной технологии и свои недостатки:

1. При создании линии связи требуются высоконадежные активные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение. Точность изготовления таких элементов линии связи должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.

2. Другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.

3. Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.

Преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

Преимущества ВОЛС

Передача информации по ВОЛС имеет целый ряд достоинств перед передачей по медному кабелю. Стремительное внедрение в информационные сети Волс является следствием преимуществ, вытекающих из особенностей распространения сигнала в оптическом волокне.

Широкая полоса пропускания - обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому волокну потока информации в несколько терабит в секунду. Большая полоса пропускания - это одно из наиболее важных преимуществ оптического волокна над медной или любой другой средой передачи информации.

Малое затухание светового сигнала в волокне. Выпускаемое в настоящее время отечественными и зарубежными производителями промышленное оптическое волокно имеет затухание 0,2-0,3 дБ на длине волны 1,55 мкм в расчете на один километр. Малое затухание и небольшая дисперсия позволяют строить участки линий без ретрансляции протяженностью до 100 км и более.

Низкий уровень шумов в волоконно-оптическом кабеле позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой ибыточностью кода.

Высокая помехозащищенность . Поскольку волокно изготовлено из диэлектрического материала, оно невосприимчиво к электромагнитным помехам со стороны окружающих медных кабельных систем и электрического оборудования, способного индуцировать электромагнитное излучение (линии электропередачи, электродвигательные установки и т.д.). В многоволоконных кабелях также не возникает проблемы перекрестного влияния электромагнитного излучения, присущей многопарным медным кабелям.

Малый вес и объем. Волоконно-оптические кабели (ВОК) имеют меньший вес и объем по сравнению с медными кабелями в расчете на одну и ту же пропускную способность. Например, 900-парный телефонный кабель диаметром 7,5 см, может быть заменен одним волокном с диаметром 0,1 см. Если волокно "одеть" в множество защитных оболочек и покрыть стальной ленточной броней, диаметр такого ВОК будет 1,5 см, что в несколько раз меньше рассматриваемого телефонного кабеля.

Высокая защищенность от несанкционированного доступа. Поскольку ВОК практически не излучает в радиодиапазоне, то передаваемую по нему информацию трудно подслушать, не нарушая приема-передачи. Системы мониторинга (непрерывного контроля) целостности оптической линии связи, используя свойства высокой чувствительности волокна, могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Сенсорные системы, использующие интерференционные эффекты распространяемых световых сигналов (как по разным волокнам, так и разной поляризации) имеют очень высокую чувствительность к колебаниям, к небольшим перепадам давления. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных.

Гальваническая развязка элементов сети. Данное преимущество оптического волокна заключается в его изолирующем свойстве. Волокно помогает избежать электрических "земельных" петель, которые могут возникать, когда два сетевых устройства неизолированной вычислительной сети, связанные медным кабелем, имеют заземления в разных точках здания, например на разных этажах. При этом может возникнуть большая разность потенциалов, что способно повредить сетевое оборудование. Для волокна этой проблемы просто нет.

Взрыво- и пожаробезопасность. Из-за отсутствия искрообразования оптическое волокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска.

Экономичность ВОК. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличии от меди. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. При этом ВОК позволяет передавать сигналы на значительно большие расстояния без ретрансляции. Количество повторителей на протяженных линиях сокращается при использовании ВОК. При использовании солитонных систем передачи достигнуты дальности в 4000 км без регенерации (то есть только с использованием оптических усилителей на промежуточных узлах) при скорости передачи выше 10 Гбит/с.

Длительный срок эксплуатации. Со временем волокно испытывает деградацию. Это означает, что затухание в проложенном кабеле постепенно возрастает. Однако, благодаря совершенству современных технологий производства оптических волокон, этот процесс значительно замедлен, и срок службы ВОК составляет примерно 25 лет. За это время может смениться несколько поколений/стандартов приемо-передающих систем.

Удаленное электропитание. В некоторых случаях требуется удаленное электропитание узла информационной сети. Оптическое волокно не способно выполнять функции силового кабеля. Однако, в этих случаях можно использовать смешанный кабель, когда наряду с оптическими волокнами кабель оснащается медным проводящим элементом. Такой кабель широко используется как в России, так и за рубежом.

В 1970 году начато строительство волоконно-оптических линий связи компанией Corning, признанное стартом новой отрасли. Сегодня развитие оптоволоконных технологий опережает остальные наращивая объемы выпуска волокна на 40% в год!

Главный разработчик и лицензиар этих технологий - США - за последние годы произвел 10 миллионов километров оптического волокна, что эквивалентно 250 обхватам земного шара по экватору. Волоконно-оптические линии связи - идеальная среда для информационного обмена. Их свойству - разделять сигнал миллионам потребителей - нет альтернативы. Они, словно нервные окончания, передают сигналы между материками, странами, регионами, внутри города, по предприятию, образуя волоконно-оптические линии связи (ВОЛС).

Их активные элементы преобразуют, формируют, усиливают передаваемый световой сигнал. Перечислим их. Источником монохромно-когерентного излучения служит лазер.

Модуляторы создают световую волну, варьируемую соответственно структуре входного электрического сигнала. Мультиплексоры объединяют и разъединяют сигналы. Регенераторы восстанавливают параметры оптического импульса. Фотоприемник производит обратное преобразование: свет - электричество. Волоконно-оптические линии связи имеют существенные достоинства: относительно легко монтируются посредством муфт, способны передавать световой сигнал практически без потерь, надежно защищают информацию.

Среди глобальных волоконно-оптических линий связи наиболее многочисленны трансатлантические. Они соединяют страны Европы с Соединенными Штатами и Канадой.

Наибольшие по длине - транстихоокеанские, сблизившие США с Японией, Китаем, Южной Кореей, Гонконгом, Гавайями. Прокладка волоконно-оптических линий связи осуществляется специализированными судами. Россия также участвует в подобных проектах. В прошлом году начато строительство линии, соединяющей Камчатку, Сахалин и Магадан. Отметим, что для магистральных ВОЛС используется волокно с размерами сердцевина/оболочка - 1,3-1,55 мкм.

Государству важны региональные ВОЛС между центром и районами и внутри городов. Их составляют градиентные волокна - 50/125 мкм. Крупные предприятия используют волоконно-оптические линии связи для совершенствования управления по образцу «электронного офиса», а также - для автоматизации производства.

Характерно, что развитые страны (среди них - Япония, Англия, Италия, Франция) при строительстве используют исключительно оптоволокно. Региональному уровню соответствует более скоростной, обладающий меньшим коэффициентом потерь, одномодовый кабель. Предприятию подходит более дешевый и проще монтируемый многомодовый кабель. Оптоволокно используется как датчик температуры, давления, напряжения. Ему находят применение в гидрофонах, гидролокации, сейсмологии, навигации. Используется в системах охраны, сигнализации.

Подводя итог, следует сделать на том, что данная технология еще далеко себя не исчерпала, находясь на средней точке своего развития. Ведущие фирмы-производители CISCO, 3COM, D-LINK, DELL, ALLIED TELESYN всячески модернизируют оптоэлектронную продукцию. Разработано новое многомодовое (более дешевая технология)

ВОЛС (волоконно-оптические линии связи , оптоволокно) – оптические линии связи , состоящие из пассивных и активных элементов, передающие информацию при помощи светового излучения.

Различают 2 вида оптоволоконного кабеля:

  • одномодовый (обозначается OS1) – диаметр волокна 9/125 мкм. Для формирования сигнала, как правило, используется лазер;
  • многомодовый (обозначается OM1, OM2, OM3, в зависимости от характеристик световодов, центральных жил) – диаметр волокна 50/125 мкм или 62,5/125 мкм. Для формирования сигнала может использоваться лазер или светодиод.

Соединение оптоволоконного кабеля

На сегодняшний момент различают 2 способа соединения: склейкой и сваркой.

Склейка, или оптическая сборка – это соединение с помощью специальных разъёмов, содержащих клей-гель или эпоксидный клей. Данный метод чаще используется в труднодоступных местах или на взрывоопасных производствах, где недопустимо образование искр. Из-за сложности проводимых операций, например, полировка оптического кабеоя под UPC или APC, этот метод оказывается дороже. Для контроля качества выполненных работ используют микроскоп с увеличением в 200 крат, но практика показывает, что при таком способе соединения потери остаются достаточно высокими по сравнению со сваркой.

Сварка – это соединение с использованием специализированного сварочного аппарата, который выполняет все операции автоматически, за счет этого влияние человеческого фактора можно свести к минимуму. В аппарат подаются подготовленные специальным образом концы оптического кабеля (сколотые), которые затем соединяются при помощи электрической дуги. В процессе сварки сварочный аппарат проводит множество проверок (тип волокна, качество свариваемых краев, наличие неоднородностей в месте сварки, механическая прочность места сварки и т.д.), что в свою очередь значительно позволяет снизить расходы и время монтажа.

Тестирование сетей из оптоволокна

После проведенного монтажа все оптические линии необходимо досконально проверить. Для этих целей используется специализированное оборудование – рефлектометр, позволяющий определить следующие параметры:

  • длину и тип оптического кабеля;
  • наличие трещин и скрытых дефектов;
  • расстояние до дефектов;
  • затухание.

Также используется микроскоп с увеличением не ниже 200 крат, через который производится съемка мест сварки. Впоследствии все эти данные попадают в отчет, в котором показывается, как были выполнены работы.

Преимущества оптики перед обычными кабельными сетями

Дальность передачи данных

Дальность передачи данных в оптоволоконных сетях значительно выше, чем в линиях, построенных на основе медных кабелей (LAN).

В зависимости от типа оптоволоконного кабеля, дальность передачи данных без повторителей на скорости 10 Гбит/с возможна:

до 5 км – OS1;

до 33 метров – OM1;

до 82 метров – OM2;

до 300 метров – OM3.

Защищенность сети ВОЛС

Оптическое волокно имеет более совершенную защиту от несанкционированного доступа к информации по сравнению с сетями, передающими посредством электрических импульсов. Стороннее подключение к линии оптоволокна невозможно из-за особенности строения кабеля. При попытке считать информацию нужно разрушить целостность лакового покрытия кабеля, что неминуемо прервет передачу данных в сети и факт подключения будет очевидным.

Особенности монтажа ВОЛС по сравнению с LAN и WI-FI

Медные LAN линии могут влиять:

  • электрические сети;
  • наличие оптических коммуникаций;
  • наличия водопроводных труб и труб пожаротушения;
  • влияние погодных факторов.

На Wi-Fi сети могут влиять:

  • преграды (стены);
  • погодные условия;
  • бытовые приборы;
  • прямая видимость;
  • требования законодательства (если трансляция идет вне помещений, то необходима регистрация такого канала в надзорных органах, что приводит к значительному удорожанию канала).

Рентабельность вложения в оптоволоконные сети

Оборудование для оптоволоконных сетей стоит дороже, чем для медных линий или для точки доступа Wi-Fi. Однако при расчете пропускной способности по отношению к цене, оптика является более выгодным решением.

Учитывая все вышеперечисленные достоинства сетей нового поколения, можно с уверенностью рекомендовать ВОЛС в качестве единственно возможного варианта!

Скорость и безопасность передачи больших объемов данных значительно повысит потенциал вашего бизнеса и позволит вывести его на новый уровень.

Закажите устройство волоконно-оптических линий связи в компании « » по указанным на сайте телефонам!

Почему вам нужно заказать наладку видеонаблюдение в

Почему стоит доверить комплексную работу профессионалам «Терра Ментор»:

  • проведут предпроектное обследование;
  • разработают проект и рабочую документацию;
  • произведут монтаж и пусконаладочные работы пассивных и активных элементов ВОЛС.
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то