Основные алгоритмы шифрования. Простейшие методы шифрования с закрытым ключом

Решение задачи определения ключа путем простого перебора всех возможных вариантов, как правило, является непрактичным, за исключением использования очень короткого ключа. Следовательно, если криптоаналитик хочет иметь реальные шансы на вскрытие шифра, он должен отказаться от «лобовых» методов перебора и применить другую стратегию. При раскрытии многих схем шифрования может применяться статистический анализ, использующий частоту появления отдельных символов или их комбинаций. Для усложнения решения задачи вскрытия шифра с использованием статистического анализа К. Шеннон предложил две концепции шифрования, получившие название смешения (confusion ) и диффузии (diffusion ). Смешение – это применение такой подстановки, при которой взаимосвязь между ключом и шифрованным текстом становится как можно более сложной. Применение данной концепции усложняет применение статистического анализа, сужающего область поиска ключа, и дешифрование даже очень короткой последовательности криптограммы требует перебора большого количества ключей. В свою очередь диффузия – это применение таких преобразований, которые сглаживают статистические различия между символами и их комбинациями. В результате использование криптоаналитиком статистического анализа может привести к положительному результату только при перехвате достаточно большого отрезка шифрованного текста.

Реализация целей провозглашаемых данными концепциями достигается путем многократного применения элементарных методов шифрования таких, как метод подстановки, перестановки и скремблирования.

10.4.1. Метод подстановки.

Простейшим и имеющим наибольшую историю является метод подстановки, суть которого заключается в том, что символ исходного текста заменяется другим, выбранным из этого или другого алфавита по правилу, задаваемому ключом шифрования. Местоположение символа в тексте при этом не изменяется. Одним из ранних примеров использования метода постановки является шифр Цезаря , который использовался Гаем Юлием Цезарем во время его Галльских походов. В нем каждая буква открытого текста заменялась другой, взятой из того же алфавита, но циклически сдвинутого на определенное количество символов. Применение данного метода шифрования иллюстрирует пример, представленный на рис.10.3, в котором шифрующее преобразование основано на использовании алфавита с циклическим сдвигом на пять позиций.

Рис. 10.3 , а )

Исходный текст

Криптограмма

Рис. 10.3 , б )

Очевидно, что ключом шифра служит величина циклического сдвига. При выборе другого ключа, чем указано в примере, шифр будет изменяться.

Другим примером классической схемы, основанной на методе подстановки, может служить система шифрования, называемая квадратом Полибиуса . Применительно к русскому алфавиту данная схема может быть описана следующим образом. Первоначально объединяются в одну буквы Е, Ё; И, Й и Ъ, Ь, истинное значение которых в дешифрованном тексте легко восстанавливается из контекста. Затем 30 символов алфавита размещаются в таблицу размером 65, пример заполнения которой представлен на рис. 10.4.

Рис. 10.4.

Шифрование любой буквы открытого текста осуществляется заданием ее адреса (т.е. номера строки и столбца или наоборот) в приведенной таблице. Так, например, слово ЦЕЗАРЬ шифруется с помощью квадрата Полибиуса как 52 21 23 11 41 61. Совершенно ясно, что изменение кода может быть осуществлено в результате перестановок букв в таблице. Следует также заметить, что те, кто посещал экскурсию по казематам Петропавловской крепости, должно быть памятны слова экскурсовода о том, как заключенные перестукивались между собой. Очевидно, что их способ общения полностью подпадает под данный метод шифрования.

Примером полиалфавитного шифра может служить схема, основанная на т.н. прогрессивном ключе Тритемиуса . Основой данного способа шифрования служит таблица, представленная на рис. 10.5, строки которой представляют собой циклически сдвинутые на одну позицию копии исходного алфавита. Так, первая строка имеет нулевой сдвиг, вторая циклически сдвинута на одну позицию влево, третья – на две позиции относительно первой строки и т.д.

Рис. 10.5.

Один из методов шифрования с помощью подобной таблицы состоит в использовании вместо первого символа открытого текста символа из первого циклического сдвига исходного алфавита, стоящего под шифруемым символом, второго символа открытого текста – из строки, соответствующей второму циклическому сдвигу и т.д. Пример шифрования сообщения подобным образом представлен ниже (рис. 10.6).

Открытый текст

Шифрованный текст

Рис. 10.6.

Известны несколько интересных вариантов шифров, основанных на прогрессивном ключе Тритемиуса. В одном из них, называемом методом ключа Вижинера , применяется ключевое слово, которое указывает строки для шифрования и расшифрования каждого последующего символа открытого текста: первая буква ключа указывает строку таблицы на рис. 10.5, с помощью которой шифруется первый символ сообщения, вторая буква ключа определяет строку таблицы, шифрующей второй символ открытого текста и т.д. Пусть в качестве ключа выбрано слово «ТРОМБ», тогда сообщение, зашифрованное с помощью ключа Вижинера, может быть представлено следующим образом (рис. 10.7). Очевидно, что вскрытие ключа возможно осуществить на основе статистического анализа шифрограммы.

Открытый текст

Шифрованный текст

Рис. 10.7.

Разновидностью этого метода является т.н. метод автоматического (открытого ) ключа Вижинера , в котором в качестве образующего ключа используется единственная буква или слово. Этот ключ дает начальную строку или строки для шифрования первого или нескольких первых символов открытого текста аналогично ранее рассмотренному примеру. Затем в качестве ключа для выбора шифрующей строки используются символы открытого текста. В приведенном ниже примере в качестве образующего ключа использована буква «И» (рис. 10.8):

Открытый текст

Шифрованный текст

Рис. 10.8.

Как показывает пример, выбор строк шифрования полностью определяется содержанием открытого текста, т.е. в процесс шифрования вводится обратная связь по открытому тексту.

Еще одной разновидностью метода Вижинера служит метод автоматического (шифрованного ) ключа Вижинера . В нем, подобно шифрованию с открытым ключом, также используется образующий ключ и обратная связь. Отличие состоит в том, что после шифрования с помощью образующего ключа, каждый последующий символ ключа в последовательности берется не из открытого текста, а из получаемой криптограммы. Ниже представлен пример, поясняющий принцип применения данного метода шифрования, в котором, как и ранее, в качестве образующего ключа использована буква «И» (рис. 10.9):

Открытый текст

Шифрованный текст

Рис. 10.9.

Как видно из приведенного примера, хотя каждый последующий символ ключа определяется предшествующим ему символом криптограммы, функционально он зависит от всех предшествующих символов открытого сообщения и образующего ключа. Следовательно, наблюдается эффект рассеивания статистических свойств исходного текста, что затрудняет применение статистического анализа криптоаналитиком. Слабым звеном данного метода является то, что шифрованный текст содержит символы ключа.

По нынешним стандартам шифрование по методу Вижинера не считается защищенным, основным же вкладом является открытие того, что неповторяющиеся ключевые последовательности могут быть образованы с использованием либо самих сообщений, либо функций от сообщений.

Вариантом реализации подстановочной технологии, который в достаточной степени реализует концепцию смешения, служит следующий пример, базирующийся на нелинейном преобразовании. Поток информационных бит предварительно разбивается на блоки длиной m , причем каждый блок представляется одним из различных символов. Затем множество из
символов перемешивается таким образом, чтобы каждый символ заменялся другим символом из этого множества. После операции перемешивания символ вновь превращается вm –битовый блок. Устройство, реализующее описанный алгоритм при
, представлено нарис. 10.10, где в таблице задано правило перемешивания символов множества из
элементов.

Рис. 10.10.

Не составляет труда показать, что существует
различных подстановок или связанных с ними возможных моделей. В связи, с чем при больших значенияхm задача криптоаналитика становится в вычислительном плане практически невозможной. Например, при
число возможных подстановок определяется как
, т.е. представляет собой астрономическое число. Очевидно, что при подобном значенииm данное преобразование с помощью блока подстановки (substitution block , S –блок) можно считать обладающим практической секретностью. Однако его практическая реализация вряд ли возможна, поскольку предполагает существование
соединений.

Убедимся теперь, что S –блок, представленный на рис. 10.10, действительно осуществляет нелинейное преобразование, для чего воспользуемся принципом суперпозиций: преобразование
является линейным, если. Предположим, что
, а
. Тогда, а, откуда следует, чтоS –блок является нелинейным.

10.4.2. Метод перестановки.

При перестановке (или транспозиции ) в соответствии с ключом изменяется порядок следования символов открытого текста, а значение символа при этом сохраняется. Шифры перестановки являются блочными, т. е. исходный текст предварительно разбивается на блоки, в которых и осуществляется заданная ключом перестановка.

Простейшим вариантом реализации данного метода шифрования может служить рассмотренный ранее алгоритм перемежения, суть которого заключается в разбиении потока информационных символов на блоки длиной
, построчной записи его в матрицу памяти размеромстрок истолбцов и считывании по столбцам. Иллюстрацией данному алгоритму служит пример с
на рис. 10.11, в ходе которого производится запись фразыX =«скоро начнется экзаменационная пора». Тогда на выходе устройства перестановки будет получена криптограмма вида

Рис. 10.11.

Рассмотренный вариант метода перестановки может быть усложнен введением ключей
и
, определяющих порядок записи строк и считывания столбцов соответственно, иллюстрацией чему служит таблица на рис. 10.12. Результата преобразования будет иметь следующий вид

Рис. 10.12.

На рис. 10.13 приведен пример бинарной перестановки данных (линейная операция), из которого видно, что данные просто перемешиваются или переставляются. Преобразование осуществляется с помощью блока перестановки (permutation block , P –блок). Технология перестановки, реализуемая этим блоком, имеет один основной недостаток: она уязвима по отношению к обманным сообщениям. Обманное сообщение изображено на рис. 10.13 и заключается в подаче на вход одной единственной единицы при остальных нулях, что позволяет обнаружить одну из внутренних связей. Если криптоаналитику необходимо осуществить анализ подобной схемы с помощью атаки открытого текста, то он отправит последовательность подобных обманных сообщений, смещая при каждой передаче единственную единицу на одну позицию. В результате подобной атаки будут установлены все связи входа и выхода. Данный пример демонстрирует, почему защищенность схемы не должна зависеть от ее архитектуры.

10.4.3. Метод гаммирования .

Попытки приблизиться к совершенной секретности демонстрируют многие современные телекоммуникационные системы, использующие операцию скремблирования. Подскремблированием понимается процесс наложения на коды символов открытого текста кодов случайной последовательности чисел, которую называют также гаммой (по названию буквы  греческого алфавита, используемой в математических формулах для обозначения случайного процесса). Гаммирование относится к поточным методам шифрования, когда следующие друг за другом символы открытого текста последовательно превращаются в символы шифрограммы, что повышает скорость преобразования. Так, например, поток информационных бит поступает на один вход сумматора по модулю 2, изображенного на рис. 10.14, тогда как на второй – скремблирующая двоичная последовательность
. В идеале последовательность
должна быть случайной последовательностью с равновероятными значениями нулей и единиц. Тогда выходной шифрованный поток
будет статистически независимым от информационной последовательности
, а значит, будет выполняться достаточное условие совершенной секретности. В действительности абсолютная случайность
не является необходимой, поскольку в противном случае получатель не сможет восстановить открытый текст. Действительно, восстановление открытого текста на приемной стороне должно производиться по правилу
, так что на приемной стороне должна генерироваться точно такая же скремблирующая последовательность и с той же фазой. Однако вследствие абсолютной случайности
данная процедура становится невозможной.

На практике в качестве скремблирующих широкое применение нашли псевдослучайные последовательности (ПСП), которые могут быть воспроизведены на приемной стороне. В технологии поточного шифрования для формирования ПСП обычно используют генератор на основелинейного регистра сдвига с обратной связью (linear feedback shift register (LFSR)). Типичная структура генератора ПСП, представленная на рис. 10.15, включает регистр сдвига, который состоит из – ичных элементов задержки или разрядов, имеющихвозможных состояний и хранящих некоторый элемент поля
в течение тактового интервала, схема обратной связи, включающей умножители элементов (состояний), хранящихся в разрядах, на константы, и сумматоров. Формирование ПСП описывается рекуррентным соотношением вида

где коэффициенты
– фиксированные константы, принадлежащие
, согласно которому каждый следующий элемент последовательности вычисляется на основанииn предшествующих.

Поскольку число различных состояний регистра конечно (не более ) неизбежна ситуация, когда после некоторого числа тактов состояние повторится в виде одного из ранее случившихся. Однако, стартуя с некоторой начальной загрузки, т.е. фиксированного состояния, схема на рис. 10.15 сформирует только единственную последовательность, определяемую упомянутой рекурсией. Следовательно, повторение состояния регистра ведет к повторению всех последующих генерируемых символов, означающее, что любая ПСП периодична. Более того, в случае нулевого состояния регистра (наличия нулей во всех разрядах) всегда будет формироваться бесконечная вырожденная последовательность, состоящая только из одних нулей. Очевидно, что подобный случай абсолютно бесперспективен, так что нулевое состояние регистра должно быть исключено. В результате остается не более
допустимых состояний регистра, что ограничивает максимально возможный период последовательности величиной, не большей
.

Пример 10.4.1. На рис. 10.16, a , представлена реализация генератора на основе регистра сдвига с линейной обратной связью, формирующего двоичную псевдослучайную последовательность периода
. Отметим, что в случае двоичной ПСП умножение на единицу эквивалентно простому соединению выхода разряда с сумматором. Рис. 10.16,b , иллюстрирует следующие друг за другом содержания регистра (состояния разрядов), а также состояния выхода обратной связи (точка ОС на схеме) при подаче тактовых импульсов. Последовательность считывается в виде последовательных состояний крайнего правого разряда. Считывание состояний других разрядов приводит к копиям той же самой последовательности, сдвинутой на один или два такта.

На первый взгляд можно предположить, что использование ПСП большого периода может обеспечить достаточно высокую защищенность. Так, например, в сотовой системе мобильной связи стандарта IS-95 в качестве скремблирующей используется ПСП периода
в числе элементарных чипов. При чиповой скорости 1.228810 6 симв/сек ее период составляет:

Следовательно, можно предполагать, что поскольку последовательность не повторяется в течение такого длительного периода, то она может рассматриваться случайной и обеспечивать совершенную секретность. Однако существует коренное отличие псевдослучайной последовательности от действительно случайной последовательности: псевдослучайная последовательность формируется согласно некоторому алгоритму. Таким образом, если известен алгоритм, то будет известна и сама последовательность. В результате этой особенности схема шифрования, использующая линейный регистр сдвига с обратной связью, оказывается уязвимой к атаке известного открытого текста.

Для определения отводов обратной связи, начального состояния регистра и всей последовательности криптоаналитику достаточно иметь всего
бит открытого текста и соответствующий им шифрованный текст. Очевидно, что величина 2n значительно меньше периода ПСП, равного
. Проиллюстрируем упомянутую уязвимость на примере.

Пример 10.4.2. Пусть в качестве скремблирующей используется ПСП периода
, генерируемая с помощью рекурсии вида

при начальном состоянии регистра 0001. В результате будет сформирована последовательность . Предположим, что криптоаналитику, которому ничего неизвестно о структуре обратной связи генератора ПСП, удалось получить
бит криптограммы и ее открытого эквивалента:

Тогда, сложив обе последовательности по модулю 2, криптоаналитик получает в свое распоряжение фрагмент скремблирующей последовательности, который показывает состояние регистра сдвига в различные моменты времени. Так, например, первые четыре бита ключевой последовательности отвечают состоянию регистра в некоторый момент времени . Если теперь сдвигать окно, выделяющее четверку битов на одну позицию вправо, то будут получены состояния регистра сдвига в последовательные моменты времени
. Учитывая линейную структуру схемы обратной связи, можно записать, что

где символ ПСП, который вырабатывается схемой обратной связи и подается на вход первого разряда регистра, а
определяет отсутствие или наличиеi –го соединения между выходом разряда регистра сдвига и сумматором, т.е. схему обратной связи.

Анализируя состояния регистра сдвига в четыре последовательные момента времени можно составить следующую систему четырех уравнений с четырьмя неизвестными:

Решение данной системы уравнений дает следующие значения коэффициентов:

Таким образом, определив схему соединений обратной связи линейного регистра и зная его состояние в момент времени , криптоаналитик способен воспроизвести скремблирующую последовательность в произвольный момент времени, а значит, способен дешифровать перехваченную криптограмму.

Обобщив рассмотренный пример на случай произвольного регистра сдвига памяти n , исходное уравнение может быть представлено в виде

,

а система уравнений записана в следующей матричной форме

,

где
, а
.

Можно показать, что столбцы матрицы линейно независимы и, значит, существует обратная матрица
. Следовательно

.

Обращение матрицы требует порядка операций, так что при
имеем
, что для компьютера со скоростью работы одна операция за 1мкс потребует 1 сек на обращение матрицы. Очевидно, что слабость регистра сдвига обусловлена линейностью обратной связи.

Чтобы затруднить аналитику вычисление элементов ПСП при сопоставлении фрагментов открытого текста и шифровки, применяется обратная связь по выходу и шифротексту. На рис. 10.17 поясняется принцип введения обратной связи по шифротексту.

Рис. 10.17. Поточное шифрование с обратной связью.

Сначала передается преамбула, в которой содержится информация о параметрах генерируемой ПСП, в том числе и о значении начальной фазы Z 00 . По каждым n сформированным символам шифрограммы вычисляется и устанавливается в генераторе новое значение фазы
. Обратная связь делает метод гаммирования чувствительным к искажениям криптограммы. Так, из-за помех в канале связи могут исказиться некоторые принятые символы, что приведет к вычислению ошибочного значения фазы ПСП и затруднит дальнейшую расшифровку, но после полученияn правильных символов шифрованного текста система восстанавливается. В то же время такое искажение можно объяснить попыткой злоумышленника навязать ложные данные.

Сергей Панасенко ,
начальник отдела разработки программного обеспечения фирмы «Анкад»,
[email protected]

Основные понятия

Процесс преобразования открытых данных в зашифрованные и наоборот принято называть шифрованием, причем две составляющие этого процесса называют соответственно зашифрованием и расшифрованием. Математически данное преобразование представляется следующими зависимостями, описывающими действия с исходной информацией:

С = Ek1(M)

M" = Dk2(C),

где M (message) - открытая информация (в литературе по защите информации часто носит название "исходный текст");
C (cipher text) - полученный в результате зашифрования шифртекст (или криптограмма);
E (encryption) - функция зашифрования, выполняющая криптографические преобразования над исходным текстом;
k1 (key) - параметр функции E, называемый ключом зашифрования;
M" - информация, полученная в результате расшифрования;
D (decryption) - функция расшифрования, выполняющая обратные зашифрованию криптографические преобразования над шифртекстом;
k2 - ключ, с помощью которого выполняется расшифрование информации.

Понятие "ключ" в стандарте ГОСТ 28147-89 (алгоритм симметричного шифрования) определено следующим образом: "конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования, обеспечивающее выбор одного преобразования из совокупности всевозможных для данного алгоритма преобразований". Иными словами, ключ представляет собой уникальный элемент, с помощью которого можно изменять результаты работы алгоритма шифрования: один и тот же исходный текст при использовании различных ключей будет зашифрован по-разному.

Для того, чтобы результат расшифрования совпал с исходным сообщением (т. е. чтобы M" = M), необходимо одновременное выполнение двух условий. Во-первых, функция расшифрования D должна соответствовать функции зашифрования E. Во-вторых, ключ расшифрования k2 должен соответствовать ключу зашифрования k1.

Если для зашифрования использовался криптостойкий алгоритм шифрования, то при отсутствии правильного ключа k2 получить M" = M невозможно. Криптостойкость - основная характеристика алгоритмов шифрования и указывает прежде всего на степень сложности получения исходного текста из зашифрованного без ключа k2.

Алгоритмы шифрования можно разделить на две категории: симметричного и асимметричного шифрования. Для первых соотношение ключей зашифрования и расшифрования определяется как k1 = k2 = k (т. е. функции E и D используют один и тот же ключ шифрования). При асимметричном шифровании ключ зашифрования k1 вычисляется по ключу k2 таким образом, что обратное преобразование невозможно, например, по формуле k1 = ak2 mod p (a и p - параметры используемого алгоритма).

Симметричное шифрование

Свою историю алгоритмы симметричного шифрования ведут с древности: именно этим способом сокрытия информации пользовался римский император Гай Юлий Цезарь в I веке до н. э., а изобретенный им алгоритм известен как "криптосистема Цезаря".

В настоящее время наиболее известен алгоритм симметричного шифрования DES (Data Encryption Standard), разработанный в 1977 г. До недавнего времени он был "стандартом США", поскольку правительство этой страны рекомендовало применять его для реализации различных систем шифрования данных. Несмотря на то, что изначально DES планировалось использовать не более 10-15 лет, попытки его замены начались только в 1997 г.

Мы не будем рассматривать DES подробно (почти во всех книгах из списка дополнительных материалов есть его подробнейшее описание), а обратимся к более современным алгоритмам шифрования. Стоит только отметить, что основная причина изменения стандарта шифрования - его относительно слабая криптостойкость, причина которой в том, что длина ключа DES составляет всего 56 значащих бит. Известно, что любой криптостойкий алгоритм можно взломать, перебрав все возможные варианты ключей шифрования (так называемый метод грубой силы - brute force attack). Легко подсчитать, что кластер из 1 млн процессоров, каждый из которых вычисляет 1 млн ключей в секунду, проверит 256 вариантов ключей DES почти за 20 ч. А поскольку по нынешним меркам такие вычислительные мощности вполне реальны, ясно, что 56-бит ключ слишком короток и алгоритм DES необходимо заменить на более "сильный".

Сегодня все шире используются два современных криптостойких алгоритма шифрования: отечественный стандарт ГОСТ 28147-89 и новый криптостандарт США - AES (Advanced Encryption Standard).

Стандарт ГОСТ 28147-89

Алгоритм, определяемый ГОСТ 28147-89 (рис. 1), имеет длину ключа шифрования 256 бит. Он шифрует информацию блоками по 64 бит (такие алгоритмы называются блочными), которые затем разбиваются на два субблока по 32 бит (N1 и N2). Субблок N1 обрабатывается определенным образом, после чего его значение складывается со значением субблока N2 (сложение выполняется по модулю 2, т. е. применяется логическая операция XOR - "исключающее или"), а затем субблоки меняются местами. Данное преобразование выполняется определенное число раз ("раундов"): 16 или 32 в зависимости от режима работы алгоритма. В каждом раунде выполняются две операции.

Первая - наложение ключа. Содержимое субблока N1 складывается по модулю 2 с 32-бит частью ключа Kx. Полный ключ шифрования представляется в виде конкатенации 32-бит подключей: K0, K1, K2, K3, K4, K5, K6, K7. В процессе шифрования используется один из этих подключей - в зависимости от номера раунда и режима работы алгоритма.

Вторая операция - табличная замена. После наложения ключа субблок N1 разбивается на 8 частей по 4 бит, значение каждой из которых заменяется в соответствии с таблицей замены для данной части субблока. Затем выполняется побитовый циклический сдвиг субблока влево на 11 бит.

Табличные замены (Substitution box - S-box) часто используются в современных алгоритмах шифрования, поэтому стоит пояснить, как организуется подобная операция. В таблицу записываются выходные значения блоков. Блок данных определенной размерности (в нашем случае - 4-бит) имеет свое числовое представление, которое определяет номер выходного значения. Например, если S-box имеет вид 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 и на вход пришел 4-бит блок "0100" (значение 4), то, согласно таблице, выходное значение будет равно 15, т. е. "1111" (0 а 4, 1 а 11, 2 а 2 ...).

Алгоритм, определяемый ГОСТ 28147-89, предусматривает четыре режима работы: простой замены, гаммирования, гаммирования с обратной связью и генерации имитоприставок. В них используется одно и то же описанное выше шифрующее преобразование, но, поскольку назначение режимов различно, осуществляется это преобразование в каждом из них по-разному.

В режиме простой замены для зашифрования каждого 64-бит блока информации выполняются 32 описанных выше раунда. При этом 32-бит подключи используются в следующей последовательности:

K0, K1, K2, K3, K4, K5, K6, K7, K0, K1 и т. д. - в раундах с 1-го по 24-й;

K7, K6, K5, K4, K3, K2, K1, K0 - в раундах с 25-го по 32-й.

Расшифрование в данном режиме проводится точно так же, но с несколько другой последовательностью применения подключей:

K0, K1, K2, K3, K4, K5, K6, K7 - в раундах с 1-го по 8-й;

K7, K6, K5, K4, K3, K2, K1, K0, K7, K6 и т. д. - в раундах с 9-го по 32-й.

Все блоки шифруются независимо друг от друга, т. е. результат зашифрования каждого блока зависит только от его содержимого (соответствующего блока исходного текста). При наличии нескольких одинаковых блоков исходного (открытого) текста соответствующие им блоки шифртекста тоже будут одинаковы, что дает дополнительную полезную информацию для пытающегося вскрыть шифр криптоаналитика. Поэтому данный режим применяется в основном для шифрования самих ключей шифрования (очень часто реализуются многоключевые схемы, в которых по ряду соображений ключи шифруются друг на друге). Для шифрования собственно информации предназначены два других режима работы - гаммирования и гаммирования с обратной связью.

В режиме гаммирования каждый блок открытого текста побитно складывается по модулю 2 с блоком гаммы шифра размером 64 бит. Гамма шифра - это специальная последовательность, которая получается в результате определенных операций с регистрами N1 и N2 (см. рис. 1).

1. В регистры N1 и N2 записывается их начальное заполнение - 64-бит величина, называемая синхропосылкой.

2. Выполняется зашифрование содержимого регистров N1 и N2 (в данном случае - синхропосылки) в режиме простой замены.

3. Содержимое регистра N1 складывается по модулю (232 - 1) с константой C1 = 224 + 216 + 28 + 24, а результат сложения записывается в регистр N1.

4. Содержимое регистра N2 складывается по модулю 232 с константой C2 = 224 + 216 + 28 + 1, а результат сложения записывается в регистр N2.

5. Содержимое регистров N1 и N2 подается на выход в качестве 64-бит блока гаммы шифра (в данном случае N1 и N2 образуют первый блок гаммы).

Если необходим следующий блок гаммы (т. е. необходимо продолжить зашифрование или расшифрование), выполняется возврат к операции 2.

Для расшифрования гамма вырабатывается аналогичным образом, а затем к битам зашифрованного текста и гаммы снова применяется операция XOR. Поскольку эта операция обратима, в случае правильно выработанной гаммы получается исходный текст (таблица).

Зашифрование и расшифрование в режиме гаммирования

Для выработки нужной для расшифровки гаммы шифра у пользователя, расшифровывающего криптограмму, должен быть тот же ключ и то же значение синхропосылки, которые применялись при зашифровании информации. В противном случае получить исходный текст из зашифрованного не удастся.

В большинстве реализаций алгоритма ГОСТ 28147-89 синхропосылка не секретна, однако есть системы, где синхропосылка - такой же секретный элемент, как и ключ шифрования. Для таких систем эффективная длина ключа алгоритма (256 бит) увеличивается еще на 64 бит секретной синхропосылки, которую также можно рассматривать как ключевой элемент.

В режиме гаммирования с обратной связью для заполнения регистров N1 и N2, начиная со 2-го блока, используется не предыдущий блок гаммы, а результат зашифрования предыдущего блока открытого текста (рис. 2). Первый же блок в данном режиме генерируется полностью аналогично предыдущему.

Рис. 2. Выработка гаммы шифра в режиме гаммирования с обратной связью.

Рассматривая режим генерации имитоприставок , следует определить понятие предмета генерации. Имитоприставка - это криптографическая контрольная сумма, вычисляемая с использованием ключа шифрования и предназначенная для проверки целостности сообщений. При генерации имитоприставки выполняются следующие операции: первый 64-бит блок массива информации, для которого вычисляется имитоприставка, записывается в регистры N1 и N2 и зашифровывается в сокращенном режиме простой замены (выполняются первые 16 раундов из 32). Полученный результат суммируется по модулю 2 со следующим блоком информации с сохранением результата в N1 и N2.

Цикл повторяется до последнего блока информации. Получившееся в результате этих преобразований 64-бит содержимое регистров N1 и N2 или его часть и называется имитоприставкой. Размер имитоприставки выбирается, исходя из требуемой достоверности сообщений: при длине имитоприставки r бит вероятность, что изменение сообщения останется незамеченным, равна 2-r.Чаще всего используется 32-бит имитоприставка, т. е. половина содержимого регистров. Этого достаточно, поскольку, как любая контрольная сумма, имитоприставка предназначена прежде всего для защиты от случайных искажений информации. Для защиты же от преднамеренной модификации данных применяются другие криптографические методы - в первую очередь электронная цифровая подпись.

При обмене информацией имитоприставка служит своего рода дополнительным средством контроля. Она вычисляется для открытого текста при зашифровании какой-либо информации и посылается вместе с шифртекстом. После расшифрования вычисляется новое значение имитоприставки, которое сравнивается с присланной. Если значения не совпадают - значит, шифртекст был искажен при передаче или при расшифровании использовались неверные ключи. Особенно полезна имитоприставка для проверки правильности расшифрования ключевой информации при использовании многоключевых схем.

Алгоритм ГОСТ 28147-89 считается очень сильным алгоритмом - в настоящее время для его раскрытия не предложено более эффективных методов, чем упомянутый выше метод "грубой силы". Его высокая стойкость достигается в первую очередь за счет большой длины ключа - 256 бит. При использовании секретной синхропосылки эффективная длина ключа увеличивается до 320 бит, а засекречивание таблицы замен прибавляет дополнительные биты. Кроме того, криптостойкость зависит от количества раундов преобразований, которых по ГОСТ 28147-89 должно быть 32 (полный эффект рассеивания входных данных достигается уже после 8 раундов).

Стандарт AES

В отличие от алгоритма ГОСТ 28147-89, который долгое время оставался секретным, американский стандарт шифрования AES, призванный заменить DES, выбирался на открытом конкурсе, где все заинтересованные организации и частные лица могли изучать и комментировать алгоритмы-претенденты.

Конкурс на замену DES был объявлен в 1997 г. Национальным институтом стандартов и технологий США (NIST - National Institute of Standards and Technology). На конкурс было представлено 15 алгоритмов-претендентов, разработанных как известными в области криптографии организациями (RSA Security, Counterpane и т. д.), так и частными лицами. Итоги конкурса были подведены в октябре 2000 г.: победителем был объявлен алгоритм Rijndael, разработанный двумя криптографами из Бельгии, Винсентом Риджменом (Vincent Rijmen) и Джоан Даймен (Joan Daemen).

Алгоритм Rijndael не похож на большинство известных алгоритмов симметричного шифрования, структура которых носит название "сеть Фейстеля" и аналогична российскому ГОСТ 28147-89. Особенность сети Фейстеля состоит в том, что входное значение разбивается на два и более субблоков, часть из которых в каждом раунде обрабатывается по определенному закону, после чего накладывается на необрабатываемые субблоки (см. рис. 1).

В отличие от отечественного стандарта шифрования, алгоритм Rijndael представляет блок данных в виде двухмерного байтового массива размером 4X4, 4X6 или 4X8 (допускается использование нескольких фиксированных размеров шифруемого блока информации). Все операции выполняются с отдельными байтами массива, а также с независимыми столбцами и строками.

Алгоритм Rijndael выполняет четыре преобразования: BS (ByteSub) - табличная замена каждого байта массива (рис. 3); SR (ShiftRow) - сдвиг строк массива (рис. 4). При этой операции первая строка остается без изменений, а остальные циклически побайтно сдвигаются влево на фиксированное число байт, зависящее от размера массива. Например, для массива размером 4X4 строки 2, 3 и 4 сдвигаются соответственно на 1, 2 и 3 байта. Далее идет MC (MixColumn) - операция над независимыми столбцами массива (рис. 5), когда каждый столбец по определенному правилу умножается на фиксированную матрицу c(x). И, наконец, AK (AddRoundKey) - добавление ключа. Каждый бит массива складывается по модулю 2 с соответствующим битом ключа раунда, который, в свою очередь, определенным образом вычисляется из ключа шифрования (рис. 6).


Рис. 3. Операция BS.

Рис. 4. Операция SR.

Рис. 5. Операция MC.

Количество раундов шифрования (R) в алгоритме Rijndael переменное (10, 12 или 14 раундов) и зависит от размеров блока и ключа шифрования (для ключа также предусмотрено несколько фиксированных размеров).

Расшифрование выполняется с помощью следующих обратных операций. Выполняется обращение таблицы и табличная замена на инверсной таблице (относительно применяемой при зашифровании). Обратная операция к SR - это циклический сдвиг строк вправо, а не влево. Обратная операция для MC - умножение по тем же правилам на другую матрицу d(x), удовлетворяющую условию: c(x) * d(x) = 1. Добавление ключа AK является обратным самому себе, поскольку в нем используется только операция XOR. Эти обратные операции применяются при расшифровании в последовательности, обратной той, что использовалась при зашифровании.

Rijndael стал новым стандартом шифрования данных благодаря целому ряду преимуществ перед другими алгоритмами. Прежде всего он обеспечивает высокую скорость шифрования на всех платформах: как при программной, так и при аппаратной реализации. Его отличают несравнимо лучшие возможности распараллеливания вычислений по сравнению с другими алгоритмами, представленными на конкурс. Кроме того, требования к ресурсам для его работы минимальны, что важно при его использовании в устройствах, обладающих ограниченными вычислительными возможностями.

Недостатком же алгоритма можно считать лишь свойственную ему нетрадиционную схему. Дело в том, что свойства алгоритмов, основанных на сети Фейстеля, хорошо исследованы, а Rijndael, в отличие от них, может содержать скрытые уязвимости, которые могут обнаружиться только по прошествии какого-то времени с момента начала его широкого распространения.

Асимметричное шифрование

Алгоритмы асимметричного шифрования, как уже отмечалось, используют два ключа: k1 - ключ зашифрования, или открытый, и k2 - ключ расшифрования, или секретный. Открытый ключ вычисляется из секретного: k1 = f(k2).

Асимметричные алгоритмы шифрования основаны на применении однонаправленных функций. Согласно определению, функция y = f(x) является однонаправленной, если: ее легко вычислить для всех возможных вариантов x и для большинства возможных значений y достаточно сложно вычислить такое значение x, при котором y = f(x).

Примером однонаправленной функции может служить умножение двух больших чисел: N = P*Q. Само по себе такое умножение - простая операция. Однако обратная функция (разложение N на два больших множителя), называемая факторизацией, по современным временным оценкам представляет собой достаточно сложную математическую задачу. Например, разложение на множители N размерностью 664 бит при P ? Q потребует выполнения примерно 1023 операций, а для обратного вычисления х для модульной экспоненты y = ax mod p при известных a, p и y (при такой же размерности a и p) нужно выполнить примерно 1026 операций. Последний из приведенных примеров носит название - "Проблема дискретного логарифма" (DLP - Discrete Logarithm Problem), и такого рода функции часто используются в алгоритмах асимметричного шифрования, а также в алгоритмах, используемых для создания электронной цифровой подписи.

Еще один важный класс функций, используемых в асимметричном шифровании, - однонаправленные функции с потайным ходом. Их определение гласит, что функция является однонаправленной с потайным ходом, если она является однонаправленной и существует возможность эффективного вычисления обратной функции x = f-1(y), т. е. если известен "потайной ход" (некое секретное число, в применении к алгоритмам асимметричного шифрования - значение секретного ключа).

Однонаправленные функции с потайным ходом используются в широко распространенном алгоритме асимметричного шифрования RSA.

Алгоритм RSA

Разработанный в 1978 г. тремя авторами (Rivest, Shamir, Adleman), он получил свое название по первым буквам фамилий разработчиков. Надежность алгоритма основывается на сложности факторизации больших чисел и вычисления дискретных логарифмов. Основной параметр алгоритма RSA - модуль системы N, по которому проводятся все вычисления в системе, а N = P*Q (P и Q - секретные случайные простые большие числа, обычно одинаковой размерности).

Секретный ключ k2 выбирается случайным образом и должен соответствовать следующим условиям:

1

где НОД - наибольший общий делитель, т. е. k1 должен быть взаимно простым со значением функции Эйлера F(N), причем последнее равно количеству положительных целых чисел в диапазоне от 1 до N, взаимно простых с N, и вычисляется как F(N) = (P - 1)*(Q - 1) .

Открытый ключ k1 вычисляется из соотношения (k2*k1) = 1 mod F(N) , и для этого используется обобщенный алгоритм Евклида (алгоритм вычисления наибольшего общего делителя). Зашифрование блока данных M по алгоритму RSA выполняется следующим образом: C = M[в степени k1] mod N . Заметим, что, поскольку в реальной криптосистеме с использованием RSA число k1 весьма велико (в настоящее время его размерность может доходить до 2048 бит), прямое вычисление M[в степени k1] нереально. Для его получения применяется комбинация многократного возведения M в квадрат с перемножением результатов.

Обращение данной функции при больших размерностях неосуществимо; иными словами, невозможно найти M по известным C, N и k1. Однако, имея секретный ключ k2, при помощи несложных преобразований можно вычислить M = Ck2 mod N. Очевидно, что, помимо собственно секретного ключа, необходимо обеспечивать секретность параметров P и Q. Если злоумышленник добудет их значения, то сможет вычислить и секретный ключ k2.

Какое шифрование лучше?

Основной недостаток симметричного шифрования - необходимость передачи ключей "из рук в руки". Недостаток этот весьма серьезен, поскольку делает невозможным использование симметричного шифрования в системах с неограниченным числом участников. Однако в остальном симметричное шифрование имеет одни достоинства, которые хорошо видны на фоне серьезных недостатков шифрования асимметричного.

Первый из них - низкая скорость выполнения операций зашифрования и расшифрования, обусловленная наличием ресурсоемких операций. Другой недостаток "теоретический" - математически криптостойкость алгоритмов асимметричного шифрования не доказана. Это связано прежде всего с задачей дискретного логарифма - пока не удалось доказать, что ее решение за приемлемое время невозможно. Излишние трудности создает и необходимость защиты открытых ключей от подмены - подменив открытый ключ легального пользователя, злоумышленник сможет обеспечить зашифрование важного сообщения на своем открытом ключе и впоследствии легко расшифровать его своим секретным ключом.

Тем не менее эти недостатки не препятствуют широкому применению алгоритмов асимметричного шифрования. Сегодня существуют криптосистемы, поддерживающие сертификацию открытых ключей, а также сочетающие алгоритмы симметричного и асимметричного шифрования. Но это уже тема для отдельной статьи.

Дополнительные источники информации

Тем читателям, которые непраздно интересуются шифрованием, автор рекомендует расширить свой кругозор с помощью следующих книг.

  1. Брассар Ж. "Современная криптология".
  2. Петров А. А. "Компьютерная безопасность: криптографические методы защиты".
  3. Романец Ю. В., Тимофеев П. А., Шаньгин В. Ф. "Защита информации в современных компьютерных системах".
  4. Соколов А. В., Шаньгин В. Ф. "Защита информации в распределенных корпоративных сетях и системах".

Полное описание алгоритмов шифрования можно найти в следующих документах:

  1. ГОСТ 28147-89. Система обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. - М.: Госстандарт СССР, 1989.
  2. Алгоритм AES: http://www.nist.gov/ae .
  3. Алгоритм RSA: http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1 .

В некоторых источниках стеганография, кодирование и сжатие информации относятся к отраслям знаний, смежных с криптографией, но не входящих в нее.

К традиционным (классическим) методам шифрования относятся шифры перестановки, шифры простой и сложной замены, а также некоторые их модификации и комбинации. Комбинации шифров перестановок и шифров замены образуют все многообразие применяемых на практике симметричных шифров.

Шифры перестановки. При шифровании перестановкой символы шифруемого текста переставляются по определенному правилу в пределах блока этого текста. Шифры перестановки являются самыми простыми и, вероятно, самыми древними шифрами.

Шифрующие таблицы. В качестве ключа в шифрующих таблицах используются: размер таблицы, слово или фраза, задающие перестановку, особенности структуры таблицы.

Одним из самых примитивных табличных шифров перестановки является простая перестановка, для которой ключом служит размер таблицы. Естественно, отправитель и получатель сообщения должны заранее условиться об общем ключе в виде размера таблицы. Следует заметить, что объединение букв шифротекста в 8-буквенные группы не входит в ключ шифра и осуществляется для удобства записи несмыслового текста. При расшифровании действия выполняют в обратном порядке.


Несколько большей стойкостью к раскрытию обладает метод шифрования, называемый одиночной перестановкой по ключу. Этот метод отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

Для обеспечения дополнительной скрытности можно повторно зашифровать сообщение, которое уже было зашифровано. Такой метод шифрования называется двойной перестановкой. В случае двойной перестановки столбцов и строк таблицы перестановки определяются отдельно для столбцов и для строк. Сначала в таблицу записывается текст сообщения по столбцам, а потом поочередно переставляются столбцы, а затем строки.

Число вариантов двойной перестановки быстро возрастает при увеличении размера таблицы: для таблицы 3×3 - 36 вариантов, для таблицы 4×4 - 576 вариантов, для таблицы 5×5 - 14400 вариантов. Однако двойная перестановка не отличается высокой стойкостью и сравнительно просто "взламывается" при любом размере таблицы шифрования.

Шифры простой замены. При шифровании заменой (подстановкой) символы шифруемого текста заменяются символами того же или другого алфавита с заранее установленным правилом замены. В шифре простой замены каждый символ исходного текста заменяется символами того же алфавита по одному правилу на всем протяжении текста. Часто шифры простой замены называют шифрами одноалфавитной подстановки.

Система шифрования Цезаря . Шифр Цезаря является частным случаем шифра простой замены (одноалфавитной подстановки). Свое название этот шифр получил по имени римского императора Гая Юлия Цезаря, который использовал этот шифр при переписке.

При шифровании исходного текста каждая буква заменялась на другую букву того же алфавита по следующему правилу. Заменяющая буква определялась путем смещения по алфавиту m от исходной буквы на k букв. При достижении конца алфавита выполнялся циклический переход к его началу. Цезарь использовал латинский алфавит m = 26 и шифр замены при смещении k = 3. Такой шифр замены можно задать таблицей подстановок, содержащей соответствующие пары букв открытого текста и шифротекста. Совокупность возможных подстановок для k = 3 показана в таблице 6.1.

Таблица 6.1 - Одноалфавитные подстановки (k = 3, m = 26)

Система шифрования Цезаря образует, по существу, семейство одноалфавитных подстановок для выбираемых значений ключа k , причем 0 £ k < m . Достоинством системы шифрования Цезаря является простота шифрования и расшифрования.

К недостаткам системы Цезаря можно отнести следующее:

Подстановки, выполняемые в соответствии с системой Цезаря, не маскируют частот появления различных букв исходного открытого текста;

Сохраняется алфавитный порядок в последовательности заменяющих букв; при изменении значения k изменяются только начальные позиции такой последовательности;

Число возможных ключей k мало;

Шифр Цезаря легко вскрывается на основе анализа частот появления букв в шифротексте.

Криптоаналитическая атака против системы одноалфавитной замены начинается с подсчета частот появления символов: определяется число появлений каждой буквы в шифротексте. Затем полученное распределение частот букв в шифротексте сравнивается с распределением частот букв в алфавите исходных сообщений. Буква с наивысшей частотой появления в шифротексте заменяется на букву с наивысшей частотой появления в алфавите и т. д. Вероятность успешного вскрытия системы шифрования повышается с увеличением длины шифротекста. Вместе с тем идеи, заложенные в системе шифрования Цезаря, оказались весьма плодотворными, о чем свидетельствуют их многочисленные модификации.

Аффинная система подстановок Цезаря. В данном преобразовании буква, соответствующая числу t , заменяeтся на букву, соответствующую числовому значению (at + b ) по модулю m . Такое преобразование является взаимно однозначным отображением на алфавите тогда и только тогда, когда НОД (a , m ) - наибольший общий делитель чисел a и m равен единице, т. e. если a и m - взаимно простые числа.

Достоинством аффинной системы является удобное управление ключами: ключи шифрования и дешифрования представляются в компактной форме в виде пары чисел (a , b ). Недостатки аффинной системы аналогичны недостаткам системы шифрования Цезаря. На практике аффинная система использовалась несколько веков назад.

Шифры сложной замены . Шифры сложной замены называют многоалфавитными, так как для шифрования каждого символа исходного сообщения применяют свой шифр простой замены. Многоалфавитная подстановка последовательно и циклически меняет используемые алфавиты. При r -алфавитной подстановке символ x 0 исходного сообщения заменяется символом y 0 из алфавита B 0 , символ x 1 - символом y 1 из алфавита B 1 , и т. д.; символ x r -1 заменяется символом y r -1 из алфавита B r -1 , символ x r заменяется символом y r снова из алфавита B 0 , и т. д.

Эффект использования многоалфавитной подстановки заключается в том, что обеспечивается маскировка естественной статистики исходного языка, так как конкретный символ из исходного алфавита A может быть преобразован в несколько различных символов шифровальных алфавитов B j . Степень обеспечиваемой защиты теоретически пропорциональна длине периода r в последовательности используемых алфавитов B j .

Система шифрования Вижинера . Система Вижинера подобна такой системе шифрования Цезаря, у которой ключ подстановки меняется от буквы к букве. Этот шифр многоалфавитной замены можно описать таблицей шифрования, называемой таблицей (квадратом) Вижинера. Таблица Вижинера используется как для шифрования, так и для расшифрования.

Она имеет два входа:

Верхнюю строку подчеркнутых символов, используемую для считывания очередной буквы исходного открытого текста;

Крайний левый столбец ключа.

Последовательность ключей обычно получают из числовых значений букв ключевого слова. При шифровании исходного сообщения его выписывают в строку, а под ним записывают ключевое слово (или фразу).

Если ключ оказался короче сообщения, то его циклически повторяют. В процессе шифрования находят в верхней строке таблицы очередную букву исходного текста и в левом столбце очередное значение ключа. Очередная буква шифротекста находится на пересечении столбца, определяемого шифруемой буквой, и строки, определяемой числовым значением ключа.

Одноразовые шифры. Почти все применяемые на практике шифры характеризуются как условно надежные, поскольку они могут быть в принципе раскрыты при наличии неограниченных вычислительных возможностей. Абсолютно надежные шифры нельзя разрушить даже при использовании неограниченных вычислительных возможностей. Существует единственный такой шифр, применяемый на практике, - одноразовая система шифрования. Характерной особенностью одноразовой системы шифрования является одноразовое использование ключевой последовательности.

Этот шифр абсолютно надежен, если набор ключей K i действительно случаен и непредсказуем. Если криптоаналитик попытается использовать для заданного шифротекста все возможные наборы ключей и восстановить все возможные варианты исходного текста, то они все окажутся равновероятными. Не существует способа выбрать исходный текст, который был действительно послан. Теоретически доказано, что одноразовые системы являются недешифрируемыми системами, поскольку их шифротекст не содержит достаточной информации для восстановления открытого текста.

Возможности применения одноразовой системы ограничены чисто практическими аспектами. Существенным моментом является требование одноразового использования случайной ключевой последовательности. Ключевая последовательность с длиной, не меньшей длины сообщения, должна передаваться получателю сообщения заранее или отдельно по некоторому секретному каналу. Такое требование практически сложно осуществимо для современных систем обработки информации, где требуется шифровать многие миллионы символов, однако в обоснованных случаях построение систем с одноразовыми шифрами является наиболее целесообразным.

Исторически различают шифраторы с внешней и внутренней гаммами. В шифраторах с внешней гаммой в качестве ключа используется случайная последовательность однократного использования, длина которой равна длине шифруемого сообщения. В шифраторах с внутренней гаммой в качестве ключа применяется многократно используемая случайная последовательность длиной, много меньшей длины шифруемого текста, на основе которой формируется гамма шифра. Шифраторы с внутренней гаммой, т. е. обладающие свойством практической стойкости, в настоящее время являются преобладающими при построении систем шифрованной связи. Основным их достоинством является простота в управлении ключами, т. е. их заготовка, распределение, доставка и уничтожение. Данное преимущество позволяет на основе шифраторов с внутренней гаммой создавать системы шифрованной связи практически любых размеров, не ограничивая их географию и количество абонентов.

Современное развитие информационных технологий позволяет концентрировать значительное количество информации на физических носителях небольшого размера, что также обусловливает практическую применимость данного подхода.

Задача построения системы шифрованной связи на основе шифраторов с внешней гаммой может иметь несколько подходов к ее решению. Например, исходя из установленного граничного значения объема ключевого документа, определяются оптимальное количество абонентов системы и допустимая нагрузка. С другой стороны, можно, исходя из требуемого количества абонентов и нагрузки на них, рассчитать необходимый объем ключевого документа.

Шифрование методом гаммирования . Под гаммированием понимают процесс наложения по определенному закону гаммы шифра на открытые данные. Гамма шифра - это псевдослучайная последовательность, выработанная по заданному алгоритму для шифрования открытых данных и расшифрования принятых данных.

Процесс шифрования заключается в генерации гаммы шифра и наложении полученной гаммы на исходный открытый текст обратимым образом, например, с использованием операции сложения по модулю 2.

Перед шифрованием открытые данные разбивают на блоки одинаковой длины, обычно по 64 бита. Гамма шифра вырабатывается в виде последовательности аналогичной длины. Процесс расшифрования сводится к повторной генерации гаммы шифра и наложению этой гаммы на принятые данные.

Получаемый этим методом шифротекст достаточно труден для раскрытия, поскольку теперь ключ является переменным. По сути дела, гамма шифра должна изменяться случайным образом для каждого шифруемого блока. Если период гаммы превышает длину всего шифруемого текста и злоумышленнику неизвестна никакая часть исходного текста, то такой шифр можно раскрыть только прямым перебором всех вариантов ключа. В этом случае криптостойкость шифра определяется длиной ключа.

Шифрование информации

Основным видом криптографического преобразования информации в КС является шифрование и дешифрование. Шифрование – это преобразование информации из открытой формы в закрытую (зашифрованную). Существует и обратный процесс - расшифрование.

За многовековую историю использования шифрования информации человечеством изобретено множество методов шифрования, или шифров. Методом шифрования, или шифром , называется совокупность обратимых преобразований открытой информации в закрытую в соответствии с алгоритмом шифрования. Появление ЭВМ и КС инициировало процесс разработки новых шифров, учитывающих возможности использования ЭВМ как для шифрования/расшифрования информации, так и для атак на шифр. Атака на шифр (криптоанализ) – это процесс расшифрования закрытой информации без знания ключа и, возможно, при отсутствии сведений об алгоритме шифрования.

Криптостойкость шифра является основным показателем его эффективности. Она измеряется временем или стоимостью средств, необходимых криптоаналитику для получения исходной информации по шифротексту, при условии, что ему неизвестен ключ.

Сохранить в секрете широко используемый алгоритм шифрования практически невозможно. Поэтому алгоритм не должен иметь скрытых слабых мест, которыми могли бы воспользоваться криптоаналитики. Если это условие выполняется, то криптостойкость шифра определяется длиной ключа, т.к. единственный путь вскрытия зашифрованной информации – перебор комбинаций ключа и выполнения алгоритма расшифрования. Таким образом, время и средства, затрачиваемые на криптоанализ, зависят от длины ключа и сложности алгоритма шифрования.

В качестве примера удачного метода шифрования можно привести шифр DES (DataEncryptionStandard), применяемый в США с 1978 г. в качестве государственного стандарта. Алгоритм шифрования не является секретным и был опубликован в открытой печати. За время своего использования этого шифра не было обнародовано ни одного случая обнаружения слабых мест в алгоритме шифрования.

Методы шифрования-дешифрования подразделяются на две группы: методы шифрования с симметричными ключами и системы шифрования с открытыми ключами.

В конце 1970-х гг. использование ключа длиной в 56 бит гарантировало, что для раскрытия шифра потребуется несколько лет непрерывной работы самых мощных по тем временам компьютеров. Прогресс в области вычислительной техники позволил значительно сократить время определения ключа путем полного перебора. При затратах в 300 млн. долл. 56-битные ключи могут быть найдены за 12 с. Расчеты показывают, что в настоящее время для надежного закрытия информации длина ключа должна быть не менее 90 бит.

К методам шифрования с симметричными ключами относятся:

· методы замены;

· методы перестановки;

· аналитические методы;

· аддитивные методы (гаммирование);

· комбинированные методы.

К системам шифрования с открытыми ключами относятся:

· системаRSA (Rivest, Shamir and Aldeman – изобретателиалгоритма);

· система Эль-Гамаля;

· криптосистема Мак-Элиса.

Математически процесс шифрования сообщения М с помощью алгоритма шифрования Е выглядит так:

С=Е к1 (М), где

С – полученное в результате шифрования сообщение;

к1 – ключ шифрования.

Обычно алгоритмы шифрования не являются секретными. Например, современный российский алгоритм шифрования ГОСТ 28147-89 опубликован как стандарт.

Ключ – самый секретный элемент, который позволяет зашифровать сообщение так, чтобы никто другой, не имеющий ключа, не смог его прочитать.

Ключ шифрования обычно представляет собой просто набор цифр, который получают со специальных датчиков случайных чисел, чтобы ключ был абсолютно случайным, и ни один из злоумышленников не смог его спрогнозировать и вычислить. Такой ключ может храниться, например, в файле на диске, на смарт-карте и другом съемном носителе. Главное, никто не должен получить ваш персональный ключ, кроме тех, кому вы сами его дадите.

Формула для расшифрования

М=D к2 (С), где

D – алгоритм расшифрования, которым ваш адресат обрабатывает сообщение с целью получить посланное ему сообщение М;

к2 – ключ для расшифрования.

Если система построена верно и ключи не перепутаны, то адресат примет именно то, что вы передали. При этом никто другой не может это сообщение подсмотреть, поскольку по Интернету оно пересылается в виде нечитаемой шифровки.

Алгоритмы шифрования делятся на два вида:

1. Симметричные ;

2. Асимметричные .

В наш компьютерный век человечество все больше отказывается от хранения информации в рукописном или печатном виде, предпочитая для документы. И если раньше крали просто бумаги или пергаменты, то сейчас взламывают именно электронную информацию. Сами же алгоритмы шифрования данных были известны еще с незапамятных времен. Многие цивилизации предпочитали зашифровывать свои уникальные знания, чтобы они могли достаться только человеку сведущему. Но давайте посмотрим, как все это отображается на нашем мире.

Что собой представляет система шифрования данных?

Для начала следует определиться с тем, что собой представляют криптографические системы вообще. Грубо говоря, это некий специальный алгоритм записи информации, который был бы понятен только определенному кругу людей.

В этом смысле постороннему человеку все, что он видит, должно (а в принципе, так и есть) казаться бессмысленным набором символов. Прочесть такую последовательность сможет только тот, кто знает правила их расположения. В качестве самого простого примера можно определить алгоритм шифрования с написанием слов, скажем, задом наперед. Конечно, это самое примитивное, что можно придумать. Подразумевается, что если знать правила записи, восстановить исходный текст труда не составит.

Зачем это нужно?

Для чего все это придумывалось, наверное, объяснять не стоит. Посмотрите, ведь какие объемы знаний, оставшиеся от древних цивилизаций, сегодня находятся в зашифрованном виде. То ли древние не хотели, чтобы мы это узнали, то ли все это было сделано, чтобы человек смог ними воспользоваться только тогда, когда достигнет нужного уровня развития - пока что об этом можно только гадать.

Впрочем, если говорить о сегодняшнем мире, защита информации становится одной из самых больших проблем. Посудите сами, ведь сколько имеется документов в тех же архивах, о которых правительства некоторых стран не хотели бы распространяться, сколько секретных разработок, сколько новых технологий. А ведь все это, по большому счету, и является первоочередной целью так называемых хакеров в классическом понимании этого термина.

На ум приходит только одна фраза, ставшая классикой принципов деятельности Натана Ротшильда: «Кто владеет информацией, тот владеет миром». И именно поэтому информацию приходится защищать от посторонних глаз, дабы ей не воспользовался кто-то еще в своих корыстных целях.

Криптография: точка отсчета

Теперь, прежде чем рассматривать саму структуру, которую имеет любой алгоритм шифрования, немного окунемся в историю, в те далекие времена, когда эта наука только зарождалась.

Считается, что искусство сокрытия данных активно начало развиваться несколько тысячелетий назад до нашей эры. Первенство приписывают древним шумерам, царю Соломону и египетским жрецам. Только много позже появились те же рунические знаки и символы, им подобные. Но вот что интересно: иногда алгоритм шифрования текстов (а в то время шифровались именно они) был таков, что в той же один символ мог означать не только одну букву, но и целое слово, понятие или даже предложение. Из-за этого расшифровка таких текстов даже при наличии современных криптографических систем, позволяющих восстановить исходный вид любого текста, становится абсолютно невозможной. Если говорить современным языком, это достаточно продвинутые, как принято сейчас выражаться, симметричные алгоритмы шифрования. На них остановимся отдельно.

Современный мир: виды алгоритмов шифрования

Что касается защиты конфиденциальных данных в современно мире, отдельно стоит остановиться еще на тех временах, когда компьютеры были человечеству неизвестны. Не говоря уже о том, сколько бумаги перевели алхимики или те же тамплиеры, пытаясь скрыть истинные тексты об известных им знаниях, стоит вспомнить, что со времени возникновения связи проблема только усугубилась.

И тут, пожалуй, самым знаменитым устройством можно назвать немецкую шифровальную машину времен Второй мировой под названием «Энигма», что в переводе с английского означает «загадка». Опять же, это пример того, как используются симметричные алгоритмы шифрования, суть которых состоит в том, что шифровщик и дешифровальщик знают ключ (алгоритм), изначально примененный для сокрытия данных.

Сегодня такие криптосистемы используются повсеместно. Самым ярким примером можно считать, скажем, алгоритм являющийся международным стандартом. С точки зрения компьютерной терминологии, он позволяет использовать ключ длиной 256 бит. Вообще современные алгоритмы шифрования достаточно разнообразны, а разделить их условно можно на два больших класса: симметричные и асимметричные. Они, в зависимости от области назначения, сегодня применяются очень широко. И выбор алгоритма шифрования напрямую зависит от поставленных задач и метода восстановления информации в исходном виде. Но в чем же состоит разница между ними?

Симметричные и асимметричные алгоритмы шифрования: в чем разница

Теперь посмотрим, какое же кардинальное различие между такими системами, и на каких принципах строится их применение на практике. Как уже понятно, алгоритмы шифрования бывают связаны с геометрическими понятиями симметрии и асимметрии. Что это значит, сейчас и будет выяснено.

Симметричный алгоритм шифрования DES, разработанный еще в 1977 году, подразумевает наличие единого ключа, который, предположительно, известен двум заинтересованным сторонам. Зная такой ключ, нетрудно применить его на практике, чтобы прочитать тот же бессмысленный набор символов, приведя его, так сказать, в читабельный вид.

А что представляют собой асимметричные алгоритмы шифрования? Здесь применяются два ключа, то есть для кодирования исходной информации использует один, для расшифровки содержимого - другой, причем совершенно необязательно, чтобы они совпадали или одновременно находились у кодирующей и декодирующей стороны. Для каждой из них достаточно одного. Таким образом, в очень высокой степени исключается попадание обоих ключей в третьи руки. Однако, исходя из современной ситуации, для многих злоумышленников кражи такого типа особо проблемой и не являются. Другое дело - поиск именно того ключа (грубо говоря, пароля), который подойдет для расшифровки данных. А тут вариантов может быть столько, что даже самый современный компьютер будет обрабатывать их в течение нескольких десятков лет. Как было заявлено, ни одна из имеющихся в мире компьютерных систем взломать доступ к нему и получить то, что называется «прослушкой», не может и не сможет в течение ближайших десятилетий.

Наиболее известные и часто применяемые алгоритмы шифрования

Но вернемся в мир компьютерный. Что на сегодня предлагают основные алгоритмы шифрования, предназначенные для защиты информации на современном этапе развития компьютерной и мобильной техники?

В большинстве стран стандартом де-факто является криптографическая система AES на основе 128-битного ключа. Однако параллельно с ней иногда используется и алгоритм который хоть и относится к шифрованию с использованием открытого (публичного) ключа, тем не менее является одним из самых надежных. Это, кстати, доказано всеми ведущими специалистами, поскольку сама система определяется не только степенью шифрования данных, но и сохранением целостности информации. Что касается ранних разработок, к коим относится алгоритм шифрования DES, то он безнадежно устарел, а попытки его замены начали проводиться еще в 1997 году. Вот тогда-то на его основе и возник новый расширенный (Advanced) стандарт шифрования AES (сначала с ключом 128 бит, потом - с ключом 256 бит).

Шифрование RSA

Теперь остановимся на технологии RSA которая относится к системе асимметричного шифрования. Предположим, один абонент отправляет другому информацию, зашифрованную при помощи этого алгоритма.

Для шифрования берутся два достаточно больших числа X и Y, после чего вычисляется их произведение Z, называемое модулем. Далее выбирается некое постороннее число A, удовлетворяющее условию: 1< A < (X - 1) * (Y - 1). Оно обязательно должно быть простым, то есть не иметь общих делителей с произведением (X - 1) * (Y - 1), равным Z. Затем происходит вычисление числа B, но только так, что (A * B - 1) делится на (X - 1) * (Y - 1). В данном примере A - открытый показатель, B - секретный показатель, (Z; A) - открытый ключ, (Z; B) - секретный ключ.

Что происходит при пересылке? Отправитель создает зашифрованный текст, обозначенный как F, с начальным сообщением M, после чего следует A и умножение на модуль Z: F = M**A*(mod Z). Получателю остается вычислить несложный пример: M = F**B*(mod Z). Грубо говоря, все эти действия сводятся исключительно к возведению в степень. По тому же принципу работает и вариант с создание цифровой подписи, но уравнения тут несколько сложнее. Чтобы не забивать пользователю голову алгеброй, такой материал приводиться не будет.

Что же касается взлома, то алгоритм шифрования RSA ставит перед злоумышленником практически нерешаемую задачу: вычислить ключ B. Это теоретически можно было бы сделать с применением доступных средств факторинга (разложением на сомножители исходных чисел X и Y), однако на сегодняшний день таких средств нет, поэтому сама задача становится не то что трудной - она вообще невыполнима.

Шифрование DES

Перед нами еще один, в прошлом достаточно эффективный алгоритм шифрования с максимальной длиной блока 64 бита (символа), из которой значащими являются только 56. Как уже было сказано выше, эта методика уже устарела, хотя достаточно долго продержалась в качестве стандарта криптосистем, применяемых в США даже для оборонной промышленности.

Суть его симметричного шифрования заключается в том, что для этого применяется некая последовательность из 48 бит. При этом для операций используется 16 циклов из выборки ключей в 48 бит. Но! Все циклы по принципу действия аналогичны, поэтому на данный момент вычислить искомый ключ труда не составляет. К примеру, один из самых мощных компьютеров в США стоимостью более миллиона долларов «ломает» шифрование в течение примерно трех с половиной часов. Для машин рангом ниже на то, чтобы вычислить даже последовательность в максимальном ее проявлении, требуется не более 20 часов.

Шифрование AES

Наконец, перед нами самая распространенная и, как считалось до недавнего времени, неуязвимая система - алгоритм шифрования AES. Он сегодня представлен в трех модификациях - AES128, AES192 и AES256. Первый вариант применяется больше для обеспечения информационной безопасности мобильных устройств, второй задействован на более высоком уровне. Как стандарт, эта система была официально внедрена в 2002 году, причем сразу же ее поддержка была заявлена со стороны корпорации Intel, производящей процессорные чипы.

Суть ее, в отличие от любой другой симметричной системы шифрования, сводится к вычислениям на основе полиноминального представления кодов и операций вычисления с двумерными массивами. Как утверждает правительство Соединенных Штатов, для взлома ключа длиной 128 бит дешифратору, пусть даже самому современному, потребуется порядка 149 триллионов лет. Позволим себе не согласиться с таким компетентным источником. Компьютерная техника за последние сто лет сделала скачок, соизмеримый с так что особо обольщаться не стоит, тем более что сегодня, как оказалось, существуют системы шифрования и покруче, чем те, которые США объявили совершенно стойкими ко взлому.

Проблемы с вирусами и дешифровкой

Конечно же, речь идет о вирусах. В последнее время появились довольно специфичные вирусы-вымогатели, которые шифруют все содержимое жесткого диска и логических разделов на зараженном компьютере, после чего жертва получает письмо с уведомлением о том, что все файлы зашифрованы, а расшифровать их может только указанный источник после оплаты кругленькой суммы.

При этом, что самое важное, указывается, что при шифровании данных была применена система AES1024, то есть длина ключа в четыре раза больше ныне существующей AES256, а количество вариантов при поиске соответствующего дешифратора возрастает просто неимоверно.

А если исходить из заявления правительства США о сроке, отводимом для дешифрования ключа длиной 128 бит, то что можно сказать о времени, которое потребуется на поиск решения для случая с ключом и его вариантами длиной 1024 бита? Вот тут-то США и прокололись. Они ведь считали, что их система компьютерной криптографии совершенна. Увы, нашлись какие-то спецы (судя по всему, на постсоветском пространстве), которые превзошли «незыблемые» американские постулаты по всем параметрам.

При всем этом даже ведущие разработчики антивирусного ПО, в том числе «Лаборатория Касперского», специалисты, создавшие «Доктора Веба», корпорация ESET и многие другие мировые лидеры просто разводят руками, дескать, на расшифровку такого алгоритма попросту нет средств, умалчивая при этом о том, что и времени не хватит. Конечно, при обращении в службу поддержки предлагается отправить зашифрованный файл и, если есть, желательно его оригинал - в том виде, в каком он был до начала шифрования. Увы, даже сравнительный анализ пока не дал ощутимых результатов.

Мир, которого мы не знаем

Да что там говорить, если мы гонимся за будущим, не имея возможности расшифровать прошлое. Если посмотреть на мир нашего тысячелетия, можно заметить, что тот же римский император Гай Юлий Цезарь в некоторых своих посланиях использовал симметричные алгоритмы шифрования. Ну а если взглянуть на Леонардо да Винчи, так вообще становится как-то не по себе от одного осознания того, что в области криптографии этот человек, чья жизнь покрыта неким флером тайны, на века превзошел свою современность.

До сих пор многим не дает покоя так называемая «улыбка Джоконды», в которой есть что-то такое притягательное, чего современный человек понять не способен. Кстати сказать, на картине относительно недавно были найдены некие символы (в глазу, на платье и т. д.), которые явно свидетельствуют о том, что во всем этом содержится какая-то зашифрованная великим гением информация, которую сегодня, увы, извлечь мы не в состоянии. А ведь мы даже не упомянули о разного рода масштабных конструкциях, которые способны были перевернуть понимание физики того времени.

Конечно, некоторые умы склоняются исключительно к тому, что в большинстве случаев было использовано так называемое «золотое сечение», однако и оно не дает ключа ко всему тому огромному хранилищу знаний, которое, как считается, либо нам непонятно, либо потеряно навеки. По всей видимости, криптографам предстоит проделать еще неимоверную кучу работы, чтобы понять, что современные алгоритмы шифрования порой не идут ни в какое сравнение с наработками древних цивилизаций. К тому же, если сегодня существуют общепринятые принципы защиты информации, то те, которые использовались в древности, к сожалению, нам совершенно недоступны и непонятны.

И еще одно. Существует негласное мнение, что большинство древних текстов невозможно перевести только потому, что ключи к их дешифровке тщательно охраняются тайными обществами вроде масонов, иллюминатов и т. д. Даже тамплиеры оставили тут свой след. Что уж говорить о том, что до сих пор абсолютно недоступной остается библиотека Ватикана? Не там ли хранятся основные ключи к пониманию древности? Многие специалисты склоняются именно к этой версии, считая, что Ватикан намеренно утаивает эту информацию от общества. Так это или нет, пока не знает никто. Но одно можно утверждать совершенно точно - древние системы криптографии ни в чем не уступали (а может, и превосходили) тем, что используются в современном компьютерном мире.

Вместо послесловия

Напоследок стоит сказать, что здесь были рассмотрены далеко не все аспекты, связанные с нынешними криптографическими системами и методиками, которые они используют. Дело в том, что в большинстве случаев пришлось бы приводить сложные математические формулы и представлять вычисления, от которых у большинства пользователей просто голова кругом пойдет. Достаточно взглянуть на пример с описанием алгоритма RSA, чтобы сообразить, что все остальное будет выглядеть намного сложнее.

Тут главное - понять и вникнуть, так сказать, в суть вопроса. Ну а если говорить о том, что представляют собой современные системы, предлагающие хранить конфиденциальную информацию таким образом, чтобы она была доступна ограниченному кругу пользователей, здесь выбор невелик. Несмотря на наличие множества криптографических систем, те же алгоритмы RSA и DES явно проигрывают специфике AES. Впрочем, и большинство современных приложений, разработанных для совершенно разнящихся между собой операционных систем, используют именно AES (естественно, в зависимости от области применения и устройства). Но вот «несанкционированная» эволюция этой криптосистемы, мягко говоря, многих, особенно ее создателей, повергла в шок. Но в целом, исходя из того, что имеется на сегодняшний день, многим пользователям нетрудно будет понять, что такое криптографические системы шифрования данных, зачем они нужны и как работают.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то