Основные характеристики классификация каналов передачи и электросвязи по видам сообщений. Объем сигнала и объем канала. Обобщенные характеристики сигналов и каналов. Применение цифрового сигнала

Каналом связи называется совокупность технических средств и физической среды, способной к передаче посылаемых сигналов, которая обеспечивает передачу сообщений от источника информации к получателю.

Кодер-источник должен обеспечивать такое преобразование сообщений источника, при котором сигналы на его выходе, обладали бы минимальной избыточностью и позволяли бы приблизить скорость передачи к максимально возможному значению, то есть пропускной способности канала. Однако, так как в реальных каналах неизбежны помехи, то для борьбы с ними приходится дополнительно вводить кодер – канала, который обеспечивает перекодирование поступающих сообщений, чтобы повысить помехоустойчивость сообщений. На выходе линий связи (канала) должно быть предусмотрено устройство для обратного преобразования (декодирования ) сигналов, поступивших с линий связи – декодер канала , после которого должно быть предусмотрено устройство для декодирования сигналов с источника – декодер источника .

Вопросы для самопроверки

1. Какие элементы каналов передачи данных в информационных сетях являются основными?

2. Что такое оконечное оборудование данных и для чего используется?

3. Что такое среда передачи данных?

4. Для чего служит аппаратура передачи данных?

5. Для чего служит промежуточное оборудование сети?

6. Какие каналы связи по типу среды передачи Вы знаете?

7. Какими показателями характеризуются каналы связи?

8. Чем определяется удобство подключения канала связи?

9. Чем определяется пропускная способность канала связи?

10. Что характеризует закрытость передачи данных?

Основные характеристики каналов связи

Цель лекции – изучение основных характеристик каналов связи.

Задачи лекции:

Изучить

Изучить разновидности, основные характеристики каналов связи.

Вопросы, рассматриваемые на лекции:

2. Разновидности, основные характеристики каналов связи.

Основными элементами каналов передачи данных в информационных сетях являются:

    Оконечное оборудование данных (ООД), которое представляет собой информационный блок осуществляющий подготовку данных, предназначенную для передачи по каналу и служащий в одном случае источником данных, в другом – приемником.

    Среда передачи данных (СПД), то есть любая физическая среда, способная передавать информацию с помощью соответствующих сигналов. Может представлять электрический или оптический кабель, или открытое пространство (физическое).

    Аппаратура передачи данных (АПД) которую называют аппаратурой окончания передачи данных. Представляет аппаратуру, непосредственно связывающую оконечное оборудование данных со средой передачи данных, являющееся пограничным оборудованием передачи данных. К аппаратуре передачи данных относятся модемы, сетевые адаптеры и так далее.

4. Промежуточное оборудование сети (ПОС) представляет аппаратуру, применяемую на линиях связи большой протяженностью, которая позволяет решать следующие задачи:

Улучшение качества сигнала;

Обеспечение постоянства структуры канала связи между соседними узлами сети

(мультиплексоры, повторители, трансляторы и так далее.)

Совокупность оконченного оборудования данных (ООД) и аппаратуры передачи данных (АПД) называется станцией.

Каналы принято делить на непрерывные и дискретные.

В наиболее общем случае всякий дискретный канал включает в себя непрерывный как составную часть.

Если влиянием мешающих факторов на передачу сообщений в канале можно пренебречь, то такой идеализированный канал называется каналом без помех . В таком канале каждому сообщению на входе однозначно соответствовало определенное сообщение на выходе и наоборот.

Если влиянием помех в канале пренебречь нельзя, то имеет место канал при наличии помех.

Под моделью канала понимается математическое описание канала, позволяющее оценить его характеристики, используемое при построении систем связи без проведения экспериментальных исследований.

Канал, в котором вероятности отождествления первого сигнала со вторым и второго с первым одинаковы, называется симметричным .

Каналом со стиранием называется канал, алфавит сигналов на входе которого отличается от алфавита сигналов на его выходе.

Каналом обратной связи называется дополнительный обратный канал, вводимый в СПД для повышения достоверности передачи.

Канал связи считается заданным , если известны данные по сообщению на его входе, а также ограничения, которые накладываются на входные сообщения физическими характеристиками каналов.

Для каналов передачи информации используют характеристику, называемую скоростью передачи информации по каналам, которая характеризует среднее количество информации, которое может быть передано по каналу связи в единицу времени.

Для характеристики каналов связи могут использоваться два варианта понятия скорости передачи:

техническая скорость передачи (скорость манипуляции), характеризуется числом элементарных сигналов, передаваемых по каналу в единицу времени. Она зависит от свойств линий связи и быстродействия аппаратуры каналов. Единицей измерениятехнической скорости служит 1 Бод=1 симв/1 сек.

информационная скорость передачи определяется средним количеством информации, передающейся в единицу времени. Эта скорость зависит как от характеристик данного канала, так и от характеристик используемых сигналов [бит/с];

Среднее количество информации, выдаваемое источником сообщений в единицу времени называется производительностью источника.

Пропускной способностью канала связи называется наибольшая скорость передачи информации по этому каналу, достигаемая при самых совершенных способах передачи информации и приема.

Пропускная способность, как и скорость передачи информации, измеряется количеством передаваемой информации в единицу времени.

В телекоммуникационных системах (ТКС) находят наиболее широкое распространение виды каналов связи:

    Симплексные каналы связи (КС) представляет такое представление обмена информацией между передатчиком и приемником, когда по одиночной линии связи (каналу) передаются сообщения только в одном направлении. Такой канал называется симплексным или невзаимные системы .

    Полудуплексные каналы связи (режимы работы) в этом случае 2 узла связи соединены одним каналом связи (линией связи), но по этому каналу происходит передача информации поочередно (попеременно) в противоположных направлениях – так организован режим работы.

    Дуплексный канал связи предполагает - одновременно два узла связи соединены двумя каналами (прямым и обратным), по которым информация передается одновременно в противоположных направлениях.

Симплексный тип канала связи используется в теле – и радиосетях.

Полудуплексный метод используется в информационно – справочных и запросо-ответных системах.

Дуплексный канал связи используется в системах с РОС и ИОС.

В телекоммуникационных системах различают выделенные (некоммутируемые) и коммутируемые на время передачи канала связи.

В выделенных каналах связи приемо – передающая аппаратура узлов связи постоянно соединена между собой. Это обеспечивает высокую степень готовности, более высокое качество передачи (связи) и поддержка большого объема трафика.

В силу относительно более высоких расходов на эксплуатацию сетей с выделенными каналами связи их рентабельность достигается при достаточно полной загрузки каналов связи.

Коммутируемые каналы связи организуются только на время передачи некоторого фиксированного объема информации. Для таких каналов характерна высокая гибкость и сравнительно небольшая стоимость (при малом объеме трафика).

Системы передачи данных (СПД) без канала обратной связи позволяют в принципе достигать желаемой верности передачи информации путем использования соответствующих корректирующих кодов. Платой за обеспечение желаемой достоверности служит существенное увеличение длины комбинаций, а также существенное усложнение аппаратуры.

Недостатком систем без обратной связи является также и то, что источник не получает никаких подтверждений о том как принята информация в приемнике . Поэтому в таких системах предъявляются очень высокие требования к надежности используемой аппаратуры. Исходя из этого, системы без обратной связи применяются, в первую очередь, тогда, когда невозможно организовать канал обратной связи или недопустимы задержки при передаче информации . В силу указанных обстоятельств широкое распространение получили системы с обратной связью (адаптивное управление), в которых достоверность передачи повышается за счет обнаружения ошибок на приемной стороне и с повторением только неправильно принятых кодовых комбинаций. При этом избыточность будет минимальной при отсутствии ошибок и будет увеличиваться с ростом их числа. Системы с обратной связью, в зависимости от способа организации обратной связи, делятся на системы с информационной обратной связью и с решающей обратной связью.

Как уже отмечалось выше, передаваемые сигналы однозначно связаны с передаваемыми сообщениями. Математическим описанием сигнала является некоторая функция времени s (t ). Сигналы связи можно классифицировать по нескольким признакам.

В теории сообщений сигналы в первую очередь принято делить на детерминированные (регулярные) и случайные. Сигнал называется детерминированным, если он может быть описан известной функцией времени. Следовательно, под детерминированным понимается такой сигнал, который соответствует известному передаваемому сообщению и который можно точно предсказать заранее за сколь угодно большой промежуток времени. Детерминированные сигналы принято подразделять на периодические, почти периодические и непериодические.

В реальных условиях сигнал в месте приема заранее неизвестен и не может быть описан определенной функцией времени. Принимаемые сигналы имеют непредсказуемый, случайный характер вследствие нескольких причин. Во-первых, потому, что регулярный сигнал не может нести информации. Действительно, если бы о передаваемом сигнале было известно все, то его незачем было бы передавать. Обычно на приемной стороне известны лишь некоторые параметры сигнала. Во-вторых, сигналы имеют случайный характер вследствие различного рода помех как внешних (космических, атмосферных, индустриальных и др.), так и внутренних (шумы ламп, сопротивлений и т.д.). Принимаемый сигнал искажается также вследствие прохождения через линию связи, параметры которой часто являются случайной функцией времени.

Моделью сигнала связи является не одна функция времени s (t ) , а набор некоторых функций, представляющих собой случайный процесс. Каждый конкретный сигнал является однойизреализаций случайного процесса, которую можно описать детерминированной функцией времени. Часто ансамбль возможных сообщений (сигналов) получателю известен. Задача состоит в том, чтобы по принятой реализации смеси сигнала с помехами определить, какое сообщение из заданного ансамбля было передано.

Таким образом, передаваемый сигнал необходимо рассматривать как множество функций, являющихся реализациями случайного процесса. Статистические характеристики этого процесса полностью описывают свойства сигнала. Однако решение многих конкретных задач становится в этом случае затруднительным. Поэтому изучение сигналов и их прохождение через различные цепи целесообразно начинать с отдельных реализации как детерминированных функций.

Полное описание сигнала не всегда необходимо. Иногда для анализа бывает достаточно нескольких обобщенных характеристик, наиболее полно отражающих свойства сигнала. Одной из важнейших характеристик сигнала является его длительность Т, которая определяет необходимое время работы канала и просто связана с количеством сведений, передаваемых этим сигналом. Второй характеристикой является ширина спектра сигнала F , которая характеризует поведение сигнала на протяжении его длительности, скорость его изменения. В качестве третьей характеристики можно было бы ввести такую, которая определяла бы амплитуду сигнала на протяжении его существования, например, мощность. Однако мощность сигнала Р с сама по себе не определяет условия его передачи по реальным каналам связи с помехами. Поэтому сигнал принято характеризовать отношением мощностей сигнала и помехи:

которое называют превышением сигнала над помехой или отношением сигнал/шум.

Часто используется также характеристика сигнала, называемая динамическим диапазоном ,

которая определяет интервал изменения уровней сигнала (например, громкости при передаче телефонных сообщения) и предъявляет соответствующее требования к линейности тракта. С этой стороны сигнал можно охарактеризовать так называемым пикфактором

представляющим собой отношение максимального значения сигнала к действующему. Чем больше пикфактор сигнала, тем хуже будут энергетические показатели радиотехнического устройства.

С точки зрения произведенных над сообщениями преобразований сигналы принято делить на видеосигналы (немодулированные) и радиосигналы (модулированные). Обычно спектр видеосигнал сосредоточен в низкочастотной области. При использовании модуляции видеосигнал называют модулирующим. Спектр радиосигнала сосредоточен около некоторой средней частоты в области высоких частот. Радиосигналы могут передаваться в виде электромагнитных волн.

В заключение параграфа коротко охарактеризуем сигналы, используемые при различных видах связи. На рис. 1.2 показан видеосигнал в виде непрерывной импульсной последовательности. Такой сигнал формируется при телеграфных видах работы с использованием пятизначного двоичного кода. Ширина полосы частот, используемая для передачи таких сигналов, зависит от скорости телеграфирования и равна, например, 150-200 Гц при использовании телеграфного аппарата СТ-35 и передаче 50 знаков в секунду. При передаче телефонных сообщений сигнал представляет собой непрерывную ф
ункцию времена, как это показано на рис. 1.2 б.

В
коммерческой телефонии сигнал обычно передается в полосе частот от 300 Гц до 3400 Гц. В вещании для качественной передачи речи и музыки требуется полоса частот примерно от 40 Гц до 10 кГц. При передаче неподвижных изображений с помощью фототелеграфа сигнал имеет вид, показанный на рис. 1.З а.

Он представляет собой ступенчатую функцию. Число возможных уровней равно числу передаваемых томов и полутонов. Для передачи используют один или несколько стандартных телефонных каналов. При передаче подвижных изображений в телевидении с использованием 625 строк разложения требуется полоса частот от 50 Гц до 6 МГц. Сигнал при этом имеет сложную дискретно – непрерывную структуру. Модулированные сигналы имеют вид, показанный на рис.1.3 б (при амплитудной модуляции).

5.1 Система связи

Под системой связи понимают совокупность устройств и сред, обеспечивающих передачу сообщений от отправителя к получателю. В общем случае обобщённую систему связи представляют блок-схемой.

Рисунок 1– Обобщённая система связи

Передатчик – устройство, которое определяет и вырабатывает сигнал связи. Приёмник – устройство, которое преобразовывает принятый сигнал связи и восстанавливает первоначальное сообщение. Воздействия помех на полезный сигнал проявляется в том, что принятое сообщение на выходе приёмника не тождественно переданному.

Под каналом связи понимают совокупность технических устройств, обеспечивающих независимую передачу данного сообщения по общей линии связи в виде соответствующих сигналов связи. Сигнал связи – это электрическое возмущение, однозначно отображающее сообщение.

По своей форме сигналы связи весьма разнообразны и представляют собой изменяющиеся во времени напряжение или ток.

При решении практических задач в теории связи сигнал характеризуют объёмом , равным произведению трёх его характеристик: длительности сигнала , ширины спектра и превышения средней мощности сигнала над помехой . В таком случае . Если эти характеристики разложить параллельно осям декартовой системы, то получится объём параллелепипеда. Поэтому произведение называется объёмом сигнала.

Длительность сигнала определяет интервал времени его существования.

Ширина спектра сигнала – это интервал частот, в котором размещается ограниченный спектр частот сигнала, т.е. .

Канал связи по своей физической природе в состоянии пропустить эффективно лишь сигналы, спектр которых лежит в ограниченной полосе частот при допустимом диапазоне изменения мощности .

Кроме того, канал связи предоставляется отправителю сообщения на вполне определённое время . Следовательно, по аналогии с сигналом в теории связи введено понятие ёмкости канала , которая определяется: ; .

Необходимым условием передачи сигнала с объёмом по каналу связи, ёмкость которого равна , есть или . Физические характеристики сигнала могут быть изменены, но при этом уменьшение одной из них сопровождается увеличением другой.

5.2.2 Пропускная способность и скорость передачи

Пропускная способность – предельно возможная скорость передачи информации. Предельная пропускная способность зависит от ширины полосы пропускания канала, а также от отношения и определяется по формуле . Это формула Шеннона, которая справедлива для любой системы связи при наличии флуктуационной помехи.

5.2.3 Частотная характеристика канала

Частотной характеристикой канала связи называется зависимость остаточного затухания от частоты. Остаточным затуханием называется разность уровней на входе и выходе канала связи. Если в начале линии имеется мощность , а на её конце – , то затухание в неперах:

.

Аналогично для напряжений и токов:

; .

Методы и модели анализа непрерывных каналов разрабатывают на основании изучения физических и статистических характеристик реальных каналов. Так как непрерывные каналы являются основной составной частью всех других каналов, результаты анализа непрерывных каналов широко используют для решения задач анализа и синтеза систем, сетей связи и других объектов информационной техники. Основными задачами анализа непрерывных каналов являются анализ линейных и нелинейных искажений сигналов в каналах и анализ влияния ттомех (в каналах.

4.1.1. Анализ искажений сигналов. Для анализа искажений сигналов в каналах необходимо располагать сведениями о характеристиках входных сигналов, структуре и параметрах операторов преобразования сигналов в канале и изучать характеристики выходных сигналов. Характеристики входных сигналов определяют как характеристики модулированных сигналов (см. § 3.2-3.6). Структуру и параметры операторов преобразования сигналов в канале определяют на основе построения математических моделей каналов (см. п. 4.1.3). Прохождение сигналов через каналы и характеристики выходных сигналов обычно изучают методами теории радиотехнических цепей и статистической радиотехники .

При строгом рассмотрении реальные непрерывные каналы являются нелинейными инерционными стохастическими системами . В них реакция на выходе не может предшествовать воздействию на входе, поэтому такие системы часто называют динамическими, Анализ таких систем представляет сложную задачу. Ее решение еще более усложняется, когда в роли входных воздействий выступают случайные модулированные сигналы. Для приближенного решения задач анализа искажений непрерывный канал, как уже отмечалось в § 1.3, удобно рассматривать как последовательное соединение линейной инерционной системы и нелинейной, но безынерционной системы. На рис. 4.1 показана структурная схема непрерывного канала без помех, где линейная-инерционная система представлена полосовым фильтром а нелинейная безынерционная система - нелинейным

преобразователем . В статистической радиотехнике показано, как анализируют прохождение случайных сигналов через такие системы.

Линейные искажения сигналов появляются в линейном инерционном четырехполюснике с постоянными параметрами из-за наличия в нем реактивных элементов. При линейных искажениях нарушаются существующие частотные и фазовые соотношения между отдельными составляющими сигнала и форма сигналов. Для отсутствия искажений необходимо, чтобы модуль коэффициента передачи и время запаздывания для всех составляющих были одинаковы. Нелинейными называют искажения сигналов, которые возникают в нелинейных безынерционных четырехполюсниках с постоянными параметрами из-за нелинейности характеристик активных элементов: ламп, транзисторов и др.

Рис. 4.1. Эквивалентная схема непрерывного канала без помех

Рис. 4.2. Эквивалентная схема непрерывного капала с помехами

В результате нелинейных искажений спектры сигналов расширяются, в них появляются дополнительные компоненты, растут уровни взаимных помех в каналах.

4.1.2. Помехи в непрерывных каналах. Для рассмотрения помех в непрерывных каналах выходной сигнал представляют в виде

где входной сигнал; соответственно мультипликативная и аддитивная помехи; задержка сигнала в канале. Структурная схема непрерывного канала с помехами показана на рис. 4.2.

Мультипликативные помехи обусловлены случайными изменениями коэффициента передачи канала из-за изменения характеристик среды, в которой распространяются сигналы, и коэффициентов усиления схем при изменении питающих напряжений, из-за замираний сигналов в результате интерференции и различного затухания сигналов при многолучевом распространении радиоволн . Сущность физических явлений, вызывающих мультипликативные помехи, подробно рассмотрена в . Мультипликативные помехи бывают «медленные», когда

и «быстрые», когда

где интервал корреляции случайного процесса интервал корреляции или длительность сигнала, если он рассматривается как детерминированный.

Если сигнал включает ряд спектральных компонент и интервал корреляции или длительность компоненты сигнала, то в зависимости от значения отношения различают общие и селективные мультипликативные помехи (замирания сигналов). Если

то мультипликативную помеху называют общей. Если это отношение различно для различных компонент, то помеху называют селективной. Если случайный сигнал может быть представлен в виде тригонометрического ряда Фурье (2.45), то в роли выступает период гармоники

Аддитивные помехи обусловлены флуктуационными явлениями, связанными с тепловыми процессами в проводах, резисторах, лампах, транзисторах и других элементах схем, наводками под действием атмосферных явлений (грозовые, разряды, космическое излучение, магнитные бури и т. п.) и индустриальных процессов (работа промышленных установок, линий электропередач, радиостанций, других линий связи и т. п.).

Аддитивные помехи делят на сосредоточенные и флуктуационные. Сосредоточенные аддитивные помехи отличаются сосредоточенностью энергии помехи и полосе частот (узкополосные помехи) или на отрезке времени (импульсные помехи). Узкогтолосные помехи в основном обусловлены действием посторонних источников сигналов - ширина спектра этих помех сравнима или значительно меньше ширины спектра полезных сигналов. Узкополосные помехи как помехи от соседних станций характерны для радиосвязи. Статистические свойства узкополосных помех носят такой же характер, как и у полезных сигналов. Борьба с узкополосными аддитивными помехами ведется методами повышения избирательности радиоприемных устройств и улучшения линейности характеристик усилителей (нелинейные преобразования помех приводят к расширению их спектра, что вызывает появление частотных компонент помехи в полосе прозрачности систем, отведенной для приема полезных сигналов).

Импульсные помехи - это случайные последовательности импульсов, создаваемые промышленными установками и атмосферными источниками сигналов. Эти помехи характеризуются широким энергетическим спектром. Ширина их спектра, как известно, обратно пропорциональна длительности импульсов. Энергия спектральных составляющих импульсных помех падает в области сверхнизких и сверхвысоких частот. Это является одной из причин все более широкого использования радиоволн метрового, дециметрового и сантиметрового диапазонов.

Понятие сосредоточенности энергии помехи относительно. Поэтому для определенности сосредоточенными аддитивными помехами следует считать те, для которых

где соответственно ширина спектра и длительность помехи; - ширина спектра и длительность сигнала. Первое соотношение в (4.4) определяет узкополосную помеху, второе - импульсную.

Флуктуационная аддитивная помеха характеризуется «размытостью» энергии спектра в широком диапазоне частот. Она обусловлена главным образом внутренними шумами элементов аппаратуры (тепловые шумы, дробовой эффект в электровакуумных приборах и т. п.). Средняя мощность теплового шума в полосе частот полезного сигнала определяется по формуле

спектральная плотность

где постоянная Болыцмана; абсолютная температура; при . Спектральная плотность помехи на положительных частотах Флуктуационную помеху из-за «внутренней» природы невозможно устранить, можно лишь учесть ее характеристики при синтезе такой оптимальной системы, в которой наличие флуктуационной помехи меньше всего сказывается на качестве передачи информации.

Математическими моделями сосредоточенных аддитивных помех являются узкополосные случайные сигналы и случайные последовательности импульсов. Математической моделью флуктуационной аддитивной помехи служит гауссовский белый шум (см. п. 2.4.4).

4.1.3. Модели непрерывных каналов. В настоящее время разработано большое количество моделей непрерывных каналов, различных по сложности математического описания, требуемым исходным данным и погрешностям описания реальных каналов. Наиболее распространены следующие модели: идеальный канал, гауссов канал, гауссов канал с неопределенной фазой, гауссов однолучевой канал с замираниями, гауссов многолучевой канал с замираниями и сосредоточенными аддитивными помехами. Для анализа реальных каналов в конкретных условиях обычно выбирают такую модель, которая приводит к не слишком трудоемким решениям задач и в то же время обладает погрешностями, допустимыми в инженерных расчетах.

Идеальный канал можно применять как модель реального непрерывного канала, если соблюдаются следующие условия: помехи любого вида отсутствуют, оператор преобразования сигналов в канале является детерминированным (см. рис. 4.1), мощность и полоса сигналов ограничены. Для анализа выходных

сигналов с помощью этой модели необходимо знать. характеристики входных сигналов и операторов Модель идеального канала слабо отражает реальные условия, ее применяют чаще всего для анализа линейных и нелинейных искажений модулированных сигналов в многоканальных системах проводной связи.

Гауссовский канал. Основные допущения при построении этой модели следующие: коэффициент передачи и время задержки сигналов в канале не зависят от времени и являются детерминированными величинами, известными в месте приема сигналов; в канале действует аддитивная флуктуационная помеха - гауссовский белый шум (гауссовский процесс).

Если на вход гауссового канала поступает узкополосный сигнал, то выходной сигнал можно представить в виде

где квадратурные составляющие входного сигнала; коэффициент передачи канала как функция времени; средняя частота входного сигнала; время задержки сигнала в канале; - гауссовский белый шум. Если на вход гауссова канала поступает широкополосный сигнал, для компоненты которого коэффициент передачи канала равен а фазовый сдвиг то выходной сигнал

где средняя частота компоненты; время задержки компоненты; число компонент. Из сравнения (4.7) и (4.8) следует, что входной сигнал может рассматриваться как узкополосный, если амплитудные и фазовые искажения отсутствуют, и Для анализа сигналов на выходе гауссовых каналов необходимо знать характеристики входных сигналов, значения а также спектр помехи

Гауссов канал применяют как модель реальных каналов проводной связи и однолучевых каналов без замираний или с медленными замираниями, когда можно надежно измерить Эта модель позволяет анализировать амплитудные и фазовые искажения сигналов и влияние флуктуационной помехи.

Гауссовский канал с неопределенной фазой сигнала. В этой модели время задержки сигнала в канале рассматривают как случайную величину, поэтому фаза в (4.7) также случайна. Для анализа выходных сигналов канала необходимо знать закон распределения времени задержки или фазы сигнала.

Введем в (4.7) следующие обозначения для квадратурных компонент:

Для реальных каналов измеряют следующие характеристики этих процессов: математические ожидания дисперсии корреляционные функции . В зависимости от измеренных значений характеристик, различают обобщенную гауссовскую модель, обобщенную релеевскую модель и релеевскую модель однолучевого канала с замираниями.

имеет вид (2.87).

В релеевской модели канала поэтому распределение величины (4.10) является распределением Релея (2.78), а распределение фазы равномерное (2.79). Следовательно, обобщенная гауссовская модель однолучевого канала с замираниями является наиболее общей, частными видами этой модели служат обобщенная релеевская модель и релеевская модель.

Рассмотренные модели однолучевого канала с замираниями достаточно хорошо описывают свойства радиоканалов различных диапазонов и проводных каналов со случайными, в том числе и переменными параметрами.

Гауссов многолучевой канал с замираниями. Эта модель описывает радиоканалы, распространение сигналов от передатчика к приемнику в которых происходит по различным «каналам» - путям. Длительности прохождения сигналов и коэффициенты передачи различных «каналов» являются неодинаковыми и случайными. Принимаемый сигнал образуется в результате интерференции сигналов, пришедших по различным путям. Он описывается соотношением (4.8), в котором квадратурные составляющие передаваемого сигнала, прошедшие по

Гауссовский многолучевой канал с замираниями и аддитивными сосредоточенными помехами. В этой модели наряду с флуктуационной помехой учитывают и различного вида сосредоточенные помехи. Она является наиболее общей и достаточно полно отражает свойства многих реальных каналов. Однако ее использование порождает сложность и трудоемкость решения задач анализа, а также необходимость сбора и обработки большого объема исходных статистических данных.

В дальнейшем для решения задач анализа непрерывных и дискретных каналов используются, как правило, модель гауссовского канала и модель гауссовского однолучевого канала с замираниями.

Сигнал может быть охарактеризован различными параметрами. Таких параметров, вообще говоря, очень много, но для задач, которые приходится решать на практике, существенно лишь небольшое их число. Например, при выборе прибора для контроля технологического процесса может потребоваться знание дисперсии сигнала; если сигнал используется для управления, существенным является его мощность и так далее. Рассматривают три основных параметра сигнала, существенных для передачи информации по каналу. Первый важный параметр - это время передачи сигнала T с . Второй характеристикой, которую приходится учитывать, является мощность P с сигнала, передаваемого по каналу с определенным уровнем помех P z . Чем больше значение P с по сравнению с P z , тем меньше вероятность ошибочного приема. Таким образом, представляет интерес отношение P с /P z . Удобно пользоваться логарифмом этого отношения, называемым превышением сигнала над помехой:

Третьим важным параметром является спектр частот F x . Эти три параметра позволяют представить любой сигнал в трехмерном пространстве с координатами L, T, F в виде параллелепипеда с объемом T x F x L x . Это произведение носит название объема сигнала и обозначается через V x

Информационный канал можно характеризовать также тремя соответствующими параметрами: временем использования канала Т к , шириной полосы частот, пропускаемых каналом F k , и динамическим диапазоном канала D k характеризующим его способность передавать различные уровни сигнала.

Величина

называется емкостью канала.

Неискаженная передача сигналов возможна только при условии, что сигнал по своему объему «вмещается» в емкость канала.

Следовательно, общее условие согласования сигнала с каналом передачи информации определяется соотношением

Однако соотношение выражает необходимое, но недостаточное условие согласования сигнала с каналом. Достаточным условием является согласование по всем параметрам:

Для информационного канала пользуются понятиями: скорость ввода информации, скорость передачи информации и пропускная способность канала.

Под скоростью ввода информации (потоком информации) I(X) понимают среднее количество информации, вводимое от источника сообщений в информационный канал в единицу времени. Эта характеристика источника сообщений и определяется только статистическими свойствами сообщений.

Скорость передачи информации I(Z,Y) – среднее количество информации, передаваемое по каналу в единицу времени. Она зависит от статистических свойств передаваемого сигнала и от свойств канала.

Пропускная способность С – наибольшая теоретически достижимая для данного канала скорость передачи информации. Это характеристика канала и не зависит от статистики сигнала.



С целью наиболее эффективного использования информационного канала необходимо принимать меры к тому, чтобы скорость передачи информации была как можно ближе к пропускной способности канала. Вместе с тем скорость ввода информации не должна превышать пропускную способность канала, иначе не вся информациябудет передана по каналу.

Это основное условие динамического согласования источника сообщений и информационного канала.

Одним из основных вопросов в теории передачи информации является определение зависимости скорости передачи информации и пропускной способности от параметров канала и характеристик сигналов и помех. Эти вопросы были впервые глубоко исследованы К. Шенноном.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то