Особенность функциональных языков программирования заключается. Языки функционального программирования. Развёртывание по горячему

Язык функционального программирования

В качестве основных свойств функциональных языков программирования обычно рассматриваются [кем? ] следующие:

  • краткость и простота;

Программы на функциональных языках обычно намного короче и проще, чем те же самые программы на императивных языках.
Пример (быстрая сортировка Хоара на абстрактном функциональном языке) :

QuickSort () =
quickSort () = quickSort (n | n t, n <= h) + [h] + quickSort (n | n t, n > h)

  • строгая типизация;

В функциональных языках большая часть ошибок может быть исправлена на стадии компиляции, поэтому стадия отладки и общее время разработки программ сокращаются. Вдобавок к этому строгая типизация позволяет компилятору генерировать более эффективный код и тем самым ускорять выполнение программ.

  • модульность;

Механизм модульности позволяет разделять программы на несколько сравнительно независимых частей (модулей) с чётко определёнными связями между ними. Тем самым облегчается процесс проектирования и последующей поддержки больших программных систем. Поддержка модульности не является свойством именно функциональных языков программирования, однако поддерживается большинством таких языков.

  • функции - объекты вычисления;

В функциональных языках (равно как и вообще в языках программирования и математике) функции могут быть переданы другим функциям в качестве аргумента или возвращены в качестве результата. Функции, принимающие функциональные аргументы, называются функциями высших порядков или функционалами.

В чистом функциональном программировании оператор присваивания отсутствует, объекты нельзя изменять и уничтожать, можно только создавать новые путем декомпозиции и синтеза существующих. О ненужных объектах позаботится встроенный в язык сборщик мусора. Благодаря этому в чистых функциональных языках все функции свободны от побочных эффектов.

  • отложенные (ленивые) вычисления.

В традиционных языках программирования (например, C++) вызов функции приводит к вычислению всех аргументов. Этот метод вызова функции называется вызов-по-значению. Если какой-либо аргумент не использовался в функции, то результат вычислений пропадает, следовательно, вычисления были произведены впустую. В каком-то смысле противоположностью вызова-по-значению является вызов-по-необходимости (ленивые вычисления). В этом случае аргумент вычисляется, только если он нужен для вычисления результата.

Некоторые языки функционального программирования

  • Gofel
  • Harlequin"s MLWorks
  • Классификация функциональных языков

    В качестве примера чистого функционального языка можно привести Haskell . Однако большинство функциональных языков являются гибридными и содержат свойства как функциональных, так и императивных языков. Яркие примеры - языки Scala и Nemerle. В них органично сочетаются характеристики как объектно-ориентированных языков, так и функциональных. Реализована хвостовая рекурсия и её оптимизация, функция является полноправным объектом, то есть может быть сохранена в переменной, передана в качестве аргумента в другую функцию или возвращена из функции.

    Также функциональные языки делят на строгие и нестрогие . К нестрогим языкам относят те, которые поддерживают отложенные вычисления (F#), то есть аргументы функции вычисляются только тогда, когда они действительно понадобятся при вычислении функции. Ярким примером нестрогого языка является Haskell. В качестве примера строгого языка можно привести Standard ML .

    Некоторые функциональные языки реализованы поверх платформообразующих виртуальных машин (JVM, .NET), то есть приложения на этих языках могут работать в среде времени исполнения (JRE, CLR) и использовать встроенные классы. К ним относятся Scala, Clojure (JVM), F#, Nemerle, SML.NET (.NET).

    Ссылки

    • http://fprog.ru/ - Журнал «Практика функционального программирования»
    • http://www.intuit.ru/department/pl/funcpl/1/ - Основы функционального программирования. Л. В. Городняя
    • http://roman-dushkin.narod.ru/fp.html - Курс лекций по функциональному программированию , читаемый в МИФИ с 2001 года;
    • http://alexott.net/ru/fp/books/ - Обзор литературы о функциональном программировании . Рассматриваются книги как на русском, так и на английском языке.

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Язык функционального программирования" в других словарях:

      язык прграммирования Лисп - Язык функционального программирования. Тематики информационные технологии в целом EN Lisp … Справочник технического переводчика

      Универсальный язык программирования высокого уровня. Язык Лисп: относится к декларативным языкам функционального типа; предназначен для обработки символьных данных, представленных в виде списков. Основой языка являются функции и рекурсивные… … Финансовый словарь

      У этого термина существуют и другие значения, см. Alice. Alice Семантика: функциональный Тип исполнения: компиляция в байткод для виртуальной машины Появился в: 2002 … Википедия

      У этого термина существуют и другие значения, см. Scala. Scala Класс языка: Мультипарадигмальный: функ … Википедия

      Oz Семантика: функциональный, процедурный, декларативный, объектно ориентированный, вычисления с ограничениями, Н модели, параллельные вычисления Тип исполнения: компилируемый Появился в: 1991 Автор(ы): Gert Smolka his students Релиз … Википедия

      AWL (Alternative Web Language) Класс языка: мультипарадигмальный: функциональный, процедурный, объектно ориентированный Тип исполнения: интерпретируемый Появился в: 2005 г. Типизация данных: динамическая … Википедия

      У этого термина существуют и другие значения, см. Леда (значения). Леда (Leda) мультипарадигмальный язык программирования, спроектированный Тимоти Баддом. Язык Leda исходно создавался с целью совмещения императивного программирования, объектно… … Википедия

      Erlang Файл:Erlang logo.png Семантика: мультипарадигмальный: конкурентное, функциональное программирование Появился в: 1987 г. Автор(ы): Типизация данных: строгая, динамическая Основные реализации: E … Википедия

      В языках функционального программирования основным конструктивным элементом является математическое понятие функции. Существует различия в понимании функции в математике и функции в программировании, в следствии чего нельзя отнести Си подобные… … Википедия

      Python был задуман в 1980 х годах, а его создание началось в декабре 1989 года Гвидо ван Россумом в составе центра математики и информатики в Нидерландах. Язык Python был задуман как потомок языка программирования ABC, способный к обработке… … Википедия

    Функции являются абстракциями , в которых детали реализации некоторого действия скрываются за отдельным именем. Хорошо написанный набор функций позволяет использовать их много раз. Стандартная библиотека Python содержит множество готовых и отлаженных функций, многие из которых достаточно универсальны, чтобы работать с широким спектром входных данных. Даже если некоторый участок кода не используется несколько раз, но по входным и выходным данным он достаточно автономен, его смело можно выделить в отдельную функцию.

    Эта лекция более ориентирована на практические соображения, а не на теорию функционального программирования. Однако там, где нужно, будут употребляться и поясняться соответствующие термины.

    Далее будут подробно рассмотрены описание и использование функций в Python , рекурсия , передача и возврат функций в качестве параметров, обработка последовательностей и итераторы , а также такое понятие как генератор . Будет продемонстрировано, что в Python функции являются объектами (и, значит, могут быть переданы в качестве параметров и возвращены в результате выполнения функций). Кроме того, речь пойдет о том, как можно реализовать некоторые механизмы функционального программирования, не имеющие в Python прямой синтаксической поддержки, но широко распространенные в языках функционального программирования.

    Что такое функциональное программирование?

    Функциональное программирование - это стиль программирования, использующий только композиции функций . Другими словами, это программирование в выражениях, а не в императивных командах.

    Как отмечает Дэвид Мертц (David Mertz) в своей статье о функциональном программировании на Python , "функциональное программирование - программирование на функциональных языках ( LISP , ML, OCAML, Haskell, ...)", основными атрибутами которых являются:

    • "Наличие функций первого класса" (функции наравне с другими объектами можно передавать внутрь функций).
    • Рекурсия является основной управляющей структурой в программе.
    • Обработка списков (последовательностей).
    • Запрещение побочных эффектов у функций, что в первую очередь означает отсутствие присваивания (в "чистых" функциональных языках)
    • Запрещение операторов, основной упор делается на выражения. Вместо операторов вся программа в идеале - одно выражение с сопутствующими определениями.
    • Ключевой вопрос: что нужно вычислить, а не как .
    • Использование функций более высоких порядков (функции над функциями над функциями).

    Функциональная программа

    В математике функция отображает объекты из одного множества (множества определения функции ) в другое (множество значений функции ). Математические функции (их называют чистыми ) "механически", однозначно вычисляют результат по заданным аргументам. Чистые функции не должны хранить в себе какие-либо данные между двумя вызовами. Их можно представлять себе черными ящиками, о которых известно только то, что они делают, но совсем не важно, как.

    Программы в функциональном стиле конструируются как композиция функций. При этом функции понимаются почти так же, как и в математике: они отображают одни объекты в другие. В программировании "чистые" функции - идеал, не всегда достижимый на практике. Практически полезные функции обычно имеют побочный эффект : сохраняют состояние между вызовами или меняют состояние других объектов. Например, без побочных эффектов невозможно представить себе функции ввода-вывода. Собственно, такие функции ради этих "эффектов" и используются. Кроме того, математические функции легко работают с объектами, требующими бесконечного объема информации (например, вещественные числа). В общем случае компьютерная

    Подобные языки к функциональным, использующим менее строгое понятие. Функция в математике не может изменить вызывающее её окружение и запомнить результаты своей работы, а только предоставляет результат вычисления функции. Программирование с использованием математического понятия функции вызывает некоторые трудности, поэтому функциональные языки, в той или иной степени предоставляют и императивные возможности, что ухудшает дизайн программы (например возможность безболезненных дальнейших изменений). Дополнительное отличие от императивных языков программирования заключается в декларативности описаний функций. Тексты программ на функциональных языках программирования описывают «как решить задачу», но не предписывают последовательность действий для решения. Первым, спроектированным функциональным языком стал Лисп . Вариант данного языка широко используется в системе автоматизированного проектирования AutoLISP

    В качестве основных свойств функциональных языков программирования обычно рассматриваются следующие:

    • краткость и простота;
    • строгая типизация;
    • модульность;
    • функции - объекты вычисления;
    • отложенные (ленивые) вычисления.

    Некоторые языки функционального программирования

  • Miranda (какое семейство?)
  • Ссылки

    • http://roman-dushkin.narod.ru/fp.html - Курс лекций по функциональному программированию , читаемый в МИФИ с 2001 года.

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Функциональный язык программирования" в других словарях:

      Язык программирования, позволяющий задавать программу в виде совокупности определений функций. В функциональных языках программирования: функции обмениваются между собой данными без использования промежуточных переменных и присваиваний;… … Финансовый словарь

      функциональный язык - Язык программирования, в котором действия над данными выражаются в виде обращений к функциональным процедурам. [ГОСТ 19781 90] Тематики обеспеч. систем обраб. информ. программное EN functional language … Справочник технического переводчика

      Ruby Семантика: мультипарадигмальный Тип исполнения: интерпретатор Появился в: 1995 г. Автор(ы): Юкихиро Мацумото Последняя версия: 1.9.1 … Википедия

      Функциональный язык - 37. Функциональный язык Functional language Язык программирования, в котором действия над данными выражаются в виде обращений к функциональным процедурам Источник: ГОСТ 19781 90: Обеспечение систем обработки информации программное. Термины и… … Словарь-справочник терминов нормативно-технической документации

      Erlang Файл:Erlang logo.png Семантика: мультипарадигмальный: конкурентное, функциональное программирование Появился в: 1987 г. Автор(ы): Типизация данных: строгая, динамическая Основные реализации: E … Википедия

      Scheme Семантика: функциональный Тип исполнения: интерпретатор или компилятор Появился в: 1970 г. Автор(ы): Гай Стил и Джеральд Сассмен Типизация данных … Википедия

      У этого термина существуют и другие значения, см. Миранда. Miranda функциональный язык программирования, созданный в 1985 году Дэвидом Тёрнером в качестве стандартного функционального языка. Имеет строгую полиморфную систему типов,… … Википедия

      Hope функциональный язык программирования, разработанный в начале 1980 х годов; является предшественником языков Miranda и Haskell. В журнале Byte за август 1985 впервые опубликовано руководство по языку Hope. Пример программы вычисления… … Википедия

      У этого термина существуют и другие значения, см. SASL. SASL полностью функциональный язык программирования, разработанный Дэвидом Тёрнером в Сент Эндрюсском университете в 1972 году, на базе аппликативного подмножества ISWIM. В 1976 году… … Википедия

      У этого термина существуют и другие значения, см. Scala. Scala Класс языка: Мультипарадигмальный: функ … Википедия

    Книги

    • Программирование в Clojure. Практика применения Lisp в мире Java , Эмерик Ч., Карпер Б., Гранд К.. Почему многие выбирают Clojure? Это - функциональный язык программирования, не только позволяющий пользоваться Java-библиотеками, службами и другими ресурсами JVM, но и соперничающий с…

    String reverse(String arg) { if(arg.length == 0) { return arg; } else { return reverse(arg.substring(1, arg.length)) + arg.substring(0, 1); } }
    Эта функция довольно медленная, потому что она повторно вызывает сама себя . Здесь возможна утечка памяти, так как множество раз создаются временные объекты. Но это функциональный стиль. Вам может показать странным, как люди могут так программировать. Ну, я как раз собирался вам рассказать.

    Преимущества функционального программирования

    Вы, наверное, думаете, что я не смогу привести доводы в оправдание монструозной функции выше. Когда я только начинал изучать функциональное программирование, я тоже так думал. Я ошибался. Есть очень хорошие аргументы в пользу такого стиля. Некоторые из них субъективные. Например, программисты заявляют, что функциональные программы проще понять. Я не буду приводить таких аргументов, потому что всем известно, что лёгкость понимания - это очень субъективная вещь. К счастью для меня, есть ещё куча объективных аргументов.

    Unit тестирование

    Так как в ФП каждый символ является неизменяемым, то функции не имеют побочных действий. Вы не можете менять значения переменных, к тому же функция не может поменять значение вне своей области видимости, и тем самым повлиять на другие функции (как это может случится с полями класса или глобальными переменными). Это означает, что единственный результат выполнения функции - это возвращаемое значение. А единственное, что может повлиять на возвращаемое значение - это аргументы, передаваемые в функцию.

    Вот она, голубая мечта unit-тестеров. Можно протестировать каждую функцию в программе используя только нужные аргументы. Нет необходимости вызывать функции в правильном порядке или воссоздавать правильное внешнее состояние. Всё что вам нужно, это передать аргументы, которые соответствуют граничным случаям. Если все функции в вашей программе проходят Unit-тесты, то вы можете быть намного более уверены в качестве вашего ПО, чем в случае императивных языков программирования. В Java или C++ проверки возвращаемого значения не достаточно - функция может поменять внешнее состояние, которое тоже подлежит проверке. В ФП такой проблемы нет.

    Отладка

    Если функциональная программа ведёт себя не так, как вы ожидаете, то отладка - это пара пустяков. Вы всегда можете воспроизвести проблему, потому что ошибка в функции не зависит от постороннего кода, который выполнялся ранее. В императивной программе ошибка проявляется только на некоторое время. Вам придется пройти через ряд шагов, не относящихся к багу, из-за того, что работа функции зависит от внешнего состояния и побочных эффектов других функций. В ФП ситуация намного проще - если возвращаемое значение неправильное, то оно всегда будет неправильным, не зависимо от того, какие куски кода выполнялись прежде.

    Как только вы воспроизведёте ошибку, найти её источник - тривиальная задача. Это даже приятно. Как только вы остановите выполнение программы, перед вами будет весь стек вызовов. Вы можете просмотреть аргументы вызова каждой функции, прямо как в императивном языке. С тем отличием, что в императивной программе этого не достаточно, ведь функции зависят от значений полей, глобальных переменных и состояний других классов. Функция в ФП зависит только от своих аргументов, и эта информация оказывается прямо у вас перед глазами! Даже больше, в императивной программе проверки возвращаемого значения не достаточно для того, чтобы сказать, правильно ли ведёт себя кусок кода. Вам придётся выследить десятки объектов за пределами функции, чтобы удостовериться, что всё работает правильно. В функциональном программировании всё, что нужно сделать - это взглянуть на возвращаемое значение!

    Проходясь по стеку, вы обращаете внимание на передаваемые аргументы и возвращаемые значения. Как только возвращаемое значение отклоняется от нормы, вы углубляетесь в функцию и двигаетесь дальше. Так повторяется несколько раз пока вы не найдёте источник ошибки!

    Многопоточность

    Функциональная программа сразу готова к распараллеливанию без каких-либо изменений. Вам не придётся задумываться о deadlock-ах или состояниях гонки (race conditions) потому что вам не нужны блокировки! Ни один кусочек данных в функциональной программе не меняется дважды одним и тем же потоком или разными. Это означает, что вы можете легко добавить потоков к вашей программе даже не задумываясь при этом о проблемах, присущих императивным языкам.

    Если дела обстоят подобным образом, то почему так редко функциональные языки программирования используются в многопоточных приложениях? На самом деле чаще, чем вы думаете. Компания Ericsson разработала функциональный язык под названием Erlang для использования на отказоустойчивых и масштабируемых телекоммуникационных коммутаторах. Многие отметили преимущества Erlang-а и стали его использовать . Мы говорим о телекоммуникациях и системах контроля трафика, которые далеко не так просто масштабируются, как типичные системы, разработанные на Wall Street. Вообще-то, системы написанные на Erlang, не такие масштабируемые и надёжные, как Java системы. Erlang системы просто сверхнадёжные.

    На этом история многопоточности не заканчивается. Если вы пишете по сути однопоточное приложение, то компилятор всё равно может оптимизировать функциональную программу так, чтобы она использовала несколько CPU. Посмотрим на следующий кусок кода.


    Компилятор функционального языка может проанализировать код, классифицировать функции, которые создают строки s1 и s2 , как функции потребляющие много времени, и запустить их параллельно. Это невозможно сделать в императивном языке, потому что каждая функция может изменять внешнее состояние и код, идущий непосредственно после вызова, может зависеть от неё. В ФП автоматический анализ функций и поиск подходящих кандидатов для распараллеливания - это тривиальнейшая задача, как автоматический inline ! В этом смысле функциональный стиль программирования соответствует требованиям завтрашнего дня. Разработчики железа уже не могут заставить CPU работать быстрее. Вместо этого они наращивают количество ядер и заявляют о четырёхкратном увеличении скорости многопоточных вычислений. Конечно они очень вовремя забывают сказать, что ваш новый процессор покажет прирост только в программах, разработанных с учётом распараллеливания. Среди императивного ПО таких очень мало. Зато 100% функциональных программ готовы к многопоточности из коробки.

    Развёртывание по горячему

    В старые времена для установки обновлений Windows приходилось перезагружать компьютер. Много раз. После установки новой версии медиа проигрывателя. В Windows XP произошли значительные изменения, но ситуация всё ещё далека от идеальной (сегодня я запустил Windows Update на работе и теперь надоедливое напоминание не оставит меня в покое, пока не перезагружусь). В Unix системах модель обновления была получше. Для установки обновлений приходилось останавливать некоторые компоненты, но не всю ОС. Хотя ситуация выглядит лучше, но для большого класса серверных приложений это всё ещё не приемлемо. Телекоммуникационные системы должны быть включены 100% времени, ведь если из-за обновления человек не сможет вызвать скорую, то жизни могут быть потеряны. Фирмы с Wall Streets тоже не желают останавливать сервера на выходных, чтобы установить обновления.

    В идеале нужно обновить все нужные участки кода не останавливая систему в принципе. В императивном мире это невозможно [пер. в Smalltalk-е очень даже возможно]. Представьте себе выгрузку Java класса на лету и перезагрузка новой версии. Если бы мы так сделали, то все экземпляры класса стали бы нерабочими, потому что потерялось бы состояние, которое они хранили. Нам пришлось бы писать хитрый код, для контроля версий. Пришлось бы серриализовать все созданные экземпляры класса, потом уничтожить их, создать экземпляры нового класса, попытаться загрузить серриализованные данные в надежде, что миграция пройдёт нормально и новые экземпляры будут валидными. И кроме того, миграционный код необходимо писать каждый раз вручную. И ещё миграционный код должен сохранять ссылки между объектами. В теории ещё куда ни шло, но на практике это никогда не заработает.

    В функциональной программе всё состояние хранится в стеке в виде аргументов функций. Это позволяет значительно упростить развёртывание по горячему! По сути всё что нужно сделать - это вычислить разницу между кодом на рабочем сервере и новой версией, и установить изменения в коде. Остальное будет сделано языковыми инструментами автоматически! Если вы думаете, что это научная фантастика, то дважды подумайте. Инженеры, имеющие дело с Erlang, годами обновляют свои системы без остановки их работы.

    Доказательные вычисления и оптимизация (Machine Assisted Proofs and Optimizations)

    Еще одно интересное свойство функциональных языков программирования состоит в том, что их можно изучать с математической точки зрения. Так как функциональный язык - это реализация формальной системы, то все математические операции используемые на бумаге, могут быть применены и к функциональным программам. Компилятор, например, может конвертировать участок кода в эквивалентный, но более эффективный кусок, при этом математически обосновав их эквивалентность . Реляционные базы данных годами производят такие оптимизации. Ничто не мешает использовать аналогичные приёмы в обычных программах.

    Дополнительно вы можете использовать математический аппарат, чтобы доказать корректность участков ваших программ. При желании можно написать инструменты, которые анализируют код и автоматически создают Unit-тесты для граничных случаев! Такая функциональность бесценна для сверхнадёжных систем (rock solid systems). При разработке систем контроля кардиостимуляторов или управления воздушным трафиком такие инструменты просто необходимы. Если же ваши разработки не находятся в сфере критически важных приложений, то инструменты автоматической проверки всё равно дадут вам гигантское преимущество перед вашими конкурентами.

    Функции высшего порядка

    Помните, когда я говорил о преимуществах ФП, я отметил, что «всё выглядит красиво, но бесполезно, если мне придётся писать на корявом языке, в котором всё final ». Это было заблуждением. Использование final повсеместно выглядит коряво только в императивных языках программирования, таких как Java. Функциональные языки программирования оперируют другими видами абстракций, такими, что вы забудете о том, что когда-то любили менять переменные. Один из таких инструментов - это функции высшего порядка.

    В ФП функция - это не тоже самое, что функция в Java или C. Это надмножество - они могут тоже самое, что Java функции и даже больше. Пусть у нас есть функция на C:

    Int add(int i, int j) { return i + j; }
    В ФП это не тоже самое, что обычная C функция. Давайте расширим наш Java компилятор, чтобы он поддерживал такую запись. Компилятор должен превратить объявление функции в следующий Java код (не забывайте, что везде присутствует неявный final):

    Class add_function_t { int add(int i, int j) { return i + j; } } add_function_t add = new add_function_t();
    Символ add не совсем функция. Это маленький класс с одним методом. Теперь мы можем передавать add в качестве аргумента в другие функции. Мы можем записать его в другой символ. Мы можем создавать экземпляры add_function_t в runtime и они будут уничтожены сборщиком мусора, если станут ненужными. Функции становятся базовыми объектами, как числа и строки. Функции, которые оперируют функциями (принимают их в качестве аргументов) называются функциями высшего порядка. Пусть это вас не пугает. Понятие функций высшего порядка почти не отличается от понятия Java классов, которые оперируют друг другом (мы можем передавать классы в другие классы). Мы можем называть их «классы высшего порядка», но никто этим не заморачивается, потому что за Java не стоит строгое академическое сообщество.

    Как и когда нужно использовать функции высшего порядка? Я рад, что вы спросили. Вы пишите свою программу как один большой монолитный кусок кода не заботясь об иерархии классов. Если вы увидите, что какой-то участок кода повторяется в разных места, вы выносите его в отдельную функцию (к счастью в школах еще учат как это делать). Если вы замечаете, что часть логики в вашей функции должна вести себя по разному в некоторых ситуациях, то вы создаёте функцию высшего порядка. Запутались? Вот реальный пример из мой работы.

    Предположим, что у нас есть участок Java кода, который получает сообщение, преобразует его различными способами и передаёт на другой сервер.

    Void handleMessage(Message msg) { // ... msg.setClientCode("ABCD_123"); // ... sendMessage(msg); } // ... }
    Теперь представьте себе, что система поменялась, и теперь нужно распределять сообщения между двумя серверами вместо одного. Всё остаётся неизменным, кроме кода клиента - второй сервер хочет получать этот код в другом формате. Как нам справиться с этой ситуацией? Мы можем проверять, куда должно попасть сообщение, и в зависимости от этого устанавливать правильный код клиента. Например так:

    Class MessageHandler { void handleMessage(Message msg) { // ... if(msg.getDestination().equals("server1") { msg.setClientCode("ABCD_123"); } else { msg.setClientCode("123_ABC"); } // ... sendMessage(msg); } // ... }
    Но такой подход плохо масштабируется. При добавлении новых серверов функция будет расти линейно, и внесение изменений превратится в кошмар. Объектно ориентированный подход заключается в выделении общего суперкласса MessageHandler и вынесение логики определения кода клиента в подклассы:

    Abstract class MessageHandler { void handleMessage(Message msg) { // ... msg.setClientCode(getClientCode()); // ... sendMessage(msg); } abstract String getClientCode(); // ... } class MessageHandlerOne extends MessageHandler { String getClientCode() { return "ABCD_123"; } } class MessageHandlerTwo extends MessageHandler { String getClientCode() { return "123_ABCD"; } }
    Теперь для каждого сервера мы можем создать экземпляр соответствующего класса. Добавление новых сервером становится более удобным. Но для такого небольшого изменения многовато текста. Пришлось создать два новых типа чтобы просто добавить поддержку различного кода клиента! Теперь сделаем тоже самое в нашем языке с поддержкой функций высшего порядка:

    Class MessageHandler { void handleMessage(Message msg, Function getClientCode) { // ... Message msg1 = msg.setClientCode(getClientCode()); // ... sendMessage(msg1); } // ... } String getClientCodeOne() { return "ABCD_123"; } String getClientCodeTwo() { return "123_ABCD"; } MessageHandler handler = new MessageHandler(); handler.handleMessage(someMsg, getClientCodeOne);
    Мы не создавали новых типов и не усложняли иерархию классов. Мы просто передали функцию в качестве параметра. Мы достигли того же эффекта, как и в объектно-ориентированном аналоге, только с некоторыми преимуществами. Мы не привязывали себя к какой-либо иерархии классов: мы можем передавать любые другие функции в runtime и менять их в любой момент, сохраняя при этом высокий уровень модульности меньшим количеством кода. По сути компилятор создал объектно-ориентированный «клей» вместо нас! При этом сохраняются все остальные преимущества ФП. Конечно абстракции, предлагаемые функциональными языками на этом не заканчиваются. Функции высшего порядка это только начало

    Каррирование

    Большинство людей, с которыми я встречаюсь, прочли книгу «Паттерны проектирования» Банды Четырёх. Любой уважающий себя программист будет говорить, что книга не привязана к какому-либо конкретному языку программирования, а паттерны применимы к разработке ПО в целом. Это благородное заявление. Но к сожалению оно далеко от истины.

    Функциональные языки невероятно выразительны. В функциональном языке вам не понадобятся паттерны проектирования, потому что язык настолько высокоуровневый, что вы легко начнёте программировать в концепциях, которые исключают все известные паттерны программирования. Одним из таких паттернов является Адаптер (чем он отличается от Фасада? Похоже, что кому-то понадобилось наштамповать побольше страниц, чтобы выполнить условия контракта). Этот паттерн оказывается ненужным если в языке есть поддержка каррирования.

    Паттерн Адаптер наиболее часто применяется к «стандартной» единице абстракции в Java - классу. В функциональных языках паттерн применяется к функциям. Паттерн берёт интерфейс и преобразует его в другой интерфейс, согласно определённым требованиям. Вот пример паттерна Адаптер:

    Int pow(int i, int j); int square(int i) { return pow(i, 2); }
    Этот код адаптирует интерфейс функции, возводящей число в произвольную степень, к интерфейсу функции, которая возводит число в квадрат. В аккадемических кругах этот простейший приём называется каррирование (в честь специалиста по логике Хаскелла Карри (Haskell Curry), который провёл ряд математических трюков, чтобы всё это формализовать). Так как в ФП функции используются повсеместно в качестве аргументов, каррирование используется очень часто, чтобы привести функции к интерфейсу, необходимому в том или ином месте. Так как интерфейс функции - это её аргументы, то каррирование используется для уменьшения количества аргументов (как в примере выше).

    Этот инструмент является встроенным в функциональные языки. Вам не нужно вручную создавать функцию, которая оборачивает оригинал. Функциональный язык сделает всё за вас. Как обычно давайте расширим наш язык, добавив в него каррирование.

    Square = int pow(int i, 2);
    Этой строкой мы автоматически создаём функцию возведения в квадрат с одним аргументом. Новая функция будет вызывать функцию pow , подставляя 2 в качестве второго аргумента. С точки зрения Java, это будет выглядеть следующим образом:

    Class square_function_t { int square(int i) { return pow(i, 2); } } square_function_t square = new square_function_t();
    Как видите, мы просто написали обёртку над оригинальной функцией. В ФП каррирование как раз и представляет из себя простой и удобный способ создания обёрток. Вы сосредотачиваетесь на задаче, а компилятор пишет необходимый код за вас! Всё очень просто, и происходит каждый раз, когда вы хотите использовать паттерн Адаптер (обёртку).

    Ленивые вычисления

    Ленивые (или отложенные) вычисления - это интересная техника, которая становится возможной как только вы усвоите функциональную философию. Мы уже встречали следующий кусок кода, когда говорили о многопоточности:

    String s1 = somewhatLongOperation1(); String s2 = somewhatLongOperation2(); String s3 = concatenate(s1, s2);
    В императивных языках программирования очерёдность вычисления не вызывает никаких вопросов. Поскольку каждая функция может повлиять или зависеть от внешнего состояния, то необходимо соблюдать чёткую очерёдность вызовов: сначала somewhatLongOperation1 , затем somewhatLongOperation2 , и concatenate в конце. Но не всё так просто в функциональных языках.

    Как мы уже видели ранее somewhatLongOperation1 и somewhatLongOperation2 могут быть запущены одновременно, потому что функции гарантированно не влияют и не зависят от глобального состояния. Но что, если мы не хотим выполнять их одновременно, нужно ли вызывать их последовательно? Ответ - нет. Эти вычисления должны быть запущены, только если какая-либо другая функция зависит от s1 и s2 . Нам даже не нужно выполнять их до тех пор, пока они понадобятся внутри concatenate . Если вместо concatenate мы подставим функцию, которая в зависимости от условия использует один аргумент из двух, то второй аргумент можно даже не вычислять! Haskell - это пример языка с отложенными вычислениями. В Haskell отсутствует гарантия какой-либо очередности вызовов (вообще!), потому что Haskell выполняет код по мере необходимости.

    Ленивые вычисления обладают рядом достоинств как и некоторыми недостатками. В следующем разделе мы обсудим достоинства и я объясню как уживаться с недостатками.

    Оптимизация

    Ленивые вычисления обеспечивают громадный потенциал для оптимизаций. Ленивый компилятор рассматривает код в точности как математик изучает алгебраические выражения - он может отменять некоторые вещи, отменять выполнение тех или иных участков кода, менять очерёдность вызовов для большей эффективности, даже располагать код таким образом, чтобы уменьшить количество ошибок, при этом гарантируя целостность программы. Это самое большое преимущество при описании программы строгими формальными примитивами - код подчиняется математическим законам и может быть изучен математическими методами.

    Абстрагирование структур управления

    Ленивые вычисления обеспечивают настолько высокий уровень абстракций, что становятся возможными удивительные вещи. Например, представим себе реализацию следующей управляющей структуры:

    Unless(stock.isEuropean()) { sendToSEC(stock); }
    Мы хотим, чтобы функция sendToSEC выполнялась только если фонд (stock) не европейский. Как можно реализовать unless ? Без ленивый вычислений нам бы понадобилась система макросов, но в языках, подобных Haskell, это не обязательно. Мы можем объявить unless в виде функции!

    Void unless(boolean condition, List code) { if(!condition) code; }
    Заметьте, что code не будет выполняться, если condition == true . В строгих языках такое поведение невозможно повторить, так как аргументы будут вычислены прежде, чем unless будет вызвана.

    Бесконечные структуры данных

    Ленивые языки позволяют создавать бесконечные структуры данных, создание которых в строгих языках гораздо сложнее [пер. - только не в Python]. Например представьте себе последовательность Фибоначи. Очевидно, что мы не можем вычислить бесконечный список за конечное время и при этом сохранить его в памяти. В строгих языках, таких как Java, мы просто написали бы функцию, которая возвращает произвольный член последовательности. В языках подобных Haskell мы можем абстрагироваться и просто объявить бесконечный список чисел Фибоначи. Так как язык ленивый, то будут вычислены лишь необходимые части списка, которые реально используются в программе. Это позволяет абстрагироваться от большого числа проблем и посмотреть на них с более высокого уровня (например можно использовать функции обработки списков на бесконечных последовательностях).

    Недостатки

    Конечно бесплатный сыр бывает только в мышеловке. Ленивые вычисления тянут за собой ряд недостатков. В основном это недостатки от лени. В реальности очень часто нужен прямой порядок вычислений. Возьмём, например, следующий код:


    В ленивом языке никто не гарантирует, что первая строка выполнится раньше второй! Это означает, что мы не можем делать ввод-вывод, не можем нормально использовать нативные функции (ведь их нужно вызывать в определённом порядке, чтобы учитывать их побочные эффекты), и не можем взаимодействовать с внешним миром! Если мы введём механизм для упорядочивания выполнения кода, то потеряем преимущество математической строгости кода (а следом потеряем все плюшки функционального программирования). К счастью ещё не всё потеряно. Математики взялись за работу и придумали несколько приёмов для того, чтобы убедится в правильном порядке выполняемых инструкций не потеряв функционального духа. Мы получили лучшее от двух миров! Такие приёмы включают в себя продолжения (continuation), монады (monads) и однозначная типизация (uniqueness typing). В данной статье мы поработаем с продолжениями, а монады и однозначную типизацию отложим до следующего раза. Занятно, что продолжения очень полезная штука, которая используется не только для задания строгого порядка вычислений. Об этом мы тоже поговорим.

    Продолжения

    Продолжения в программировании играют такую же роль, как «Код да Винчи» в человеческой истории: удивительное разоблачение величайшей тайны человечества. Ну, может не совсем так, но они точно срывают покровы, как в своё время вы научились брать корень из -1.

    Когда мы рассматривали функции, мы изучили лишь половину правды, ведь мы исходили из предположения, что функция возвращает значение в вызывающую её функцию. В этом смысле продолжение - это обобщение функций. Функция не обязательно должна возвращать управление в то место, откуда её вызвали, а может возвращать в любое место программы. «Продолжение» - это параметр, который мы можем передать в функцию, чтобы указать точку возврата. Звучит намного страшнее, чем есть на самом деле. Давайте взглянем на следующий код:

    Int i = add(5, 10); int j = square(i);
    Функция add возвращает число 15, которое записывается в i , в том месте, где функция и была вызвана. Затем значение i используется при вызове square . Заметьте, что ленивый компилятор не может поменять очередность вычислений, ведь вторая строка зависит от результата первой. Мы можем переписать этот код с использованием Стиль Передачи Продолжения (Continuation Passing Style или CPS), когда add возвращает значение в функцию square .

    Int j = add(5, 10, square);
    В таком случае add получает дополнительный аргумент - функцию, которая будет вызвана после того, как add закончит работать. В обоих примерах j будет равен 225.

    В этом и заключается первый приём, позволяющий задать порядок выполнения двух выражений. Вернёмся к нашему примеру с вводом-выводом

    System.out.println("Please enter your name: "); System.in.readLine();
    Эти две строки не зависят друг от друга, и компилятор волен поменять их порядок по своему хотению. Но если мы перепишем в CPS, то тем самым добавим нужную зависимость, и компилятору придётся проводить вычисления одно за другим!

    System.out.println("Please enter your name: ", System.in.readLine);
    В таком случае println должен будет вызвать readLine , передав ему свой результат, и вернуть результат readLine в конце. В таком виде мы можем быть уверены, что эти функции будут вызваны по очереди, и что readLine вообще вызовется (ведь компилятор ожидает получить результат последней операции). В случае Java println возвращает void . Но если бы возвращалось какое-либо абстрактное значение (которое может служить аргументом readLine), то это решило бы нашу проблему! Конечно выстраивание таких цепочек функций сильно ухудшает читаемость кода, но с этим можно бороться. Мы можем добавить в наш язык синтаксических плюшек, которые позволят нам писать выражения как обычно, а компилятор автоматически выстраивал бы вычисления в цепочки. Теперь мы можем проводить вычисления в любом порядке, не потеряв при этом достоинств ФП (включая возможность исследовать программу математическими методами)! Если вас это сбивает с толку, то помните, что функции - это всего лишь экземпляры класса с единственным членом. Перепишите наш пример так, чтобы println и readLine были экземплярами классов, так вам станет понятней.

    Но на этом польза продолжений не заканчивается. Мы можем написать всю программу целиком используя CPS, чтобы каждая функция вызывалась с дополнительным параметром, продолжением, в которое передаётся результат. В принципе любую программу можно перевести на CPS, если воспринимать каждую функцию как частный случай продолжений. Такое преобразование можно произвести автоматически (в действительности многие компиляторы так и делают).

    Как только мы переведём программу к CPS виду, становится ясно, что у каждой инструкции есть продолжение, функция в которую будет передаваться результат, что в обычной программе было бы точкой вызова. Возьмём любую инструкцию из последнего примера, например add(5,10) . В программе, написанной в CPS виде, понятно что будет являться продолжением - это функция, которую add вызовет по окончанию работы. Но что будет продолжением в случае не-CPS программы? Мы, конечно, можем конвертировать программу в CPS, но нужно ли это?

    Оказывается, что в этом нет необходимости. Посмотрите внимательно на наше CPS преобразование. Если вы начнёте писать компилятор для него, то обнаружите, что для CPS версии не нужен стек! Функции никогда ничего не возвращают, в традиционном понимании слова «return», они просто вызывают другую функцию, подставляя результат вычислений. Отпадает необходимость проталкивать (push) аргументы в стек перед каждым вызовом, а потом извлекать (pop) их обратно. Мы можем просто хранить аргументы в каком-либо фиксированном участке памяти и использовать jump вместо обычного вызова. Нам нет нужны хранить первоначальные аргументы, ведь они больше никогда не понадобятся, ведь функции ничего не возвращают!

    Таким образом, программы в CPS стиле не нуждаются в стеке, но содержат дополнительный аргумент, в виде функции, которую нужно вызвать. Программы в не-CPS стиле лишены дополнительного аргумента, но используют стек. Что же хранится в стеке? Просто аргументы и указатель на участок памяти, куда должна вернуться функция. Ну как, вы уже догадались? В стеке храниться информация о продолжениях! Указатель на точку возврата в стеке - это то же самое, что и функция, которую нужно вызвать, в CPS программах! Чтобы выяснить, какое продолжение у add(5,10) , достаточно взять из стека точку возврата.

    Это было не трудно. Продолжение и указатель на точку возврата - это действительно одно и то же, только продолжение указывается явно, и по этому оно может отличаться от того места, где функция была вызвана. Если вы помните, что продолжение - это функция, а функция в нашем языке компилируется в экземпляр класса, то поймёте, что указатель на точку возврата в стеке и указатель на продолжение - это в действительности одно и то же, ведь наша функция (как экземпляр класса) - это всего лишь указатель. А значит, что в любой момент времени в вашей программы вы можете запросить текущее продолжение (по сути информацию из стека).

    Хорошо, теперь мы уяснили, что же такое текущее продолжение. Что это значит? Если мы возьмём текущее продолжение и сохраним его где-нибудь, мы тем самым сохраним текущее состояние программы - заморозим её. Это похоже на режим гибернации ОС. В объекте продолжения хранится информация, необходимая для возобновления выполнения программы с той точки, когда был запрошен объект продолжения. Операционная система постоянно так делает с вашими программами, когда переключает контекст между потоками. Разница лишь в том, что всё находится под контролем ОС. Если вы запросите объект продолжения (в Scheme это делается вызовом функции call-with-current-continuation), то вы получите объект с текущим продолжением - стеком (или в случае CPS - функцией следующего вызова). Вы можете сохранить этот объект в переменную (или даже на диск). Если вы решите «перезапустить» программу с этим продолжением, то состояние вашей программы «преобразуется» к состоянию на момент взятия объекта продолжения. Это то же самое, как переключение к приостановленному потоку, или пробуждение ОС после гибернации. С тем исключением, что вы можете проделывать это много раз подряд. После пробуждения ОС информация о гибернации уничтожается. Если этого не делать, то можно было бы восстанавливать состояние ОС с одной и той же точки. Это почти как путешествие по времени. С продолжениями вы можете себе такое позволить!

    В каких ситуациях продолжения будут полезны? Обычно если вы пытаетесь эмулировать состояние в системах лишенных такового по сути. Отличное применение продолжения нашли в Web-приложениях (например во фреймворке Seaside для языка Smalltalk). ASP.NET от Microsoft прикладывает огромные усилия, чтобы сохранять состояние между запросами, и облегчить вам жизнь. Если бы C# поддерживал продолжения, то сложность ASP.NET можно было бы уменьшить в два раза - достаточно было бы сохранять продолжение и восстанавливать его при следующем запросе. С точки зрения Web-программиста не было бы ни единого разрыва - программа продолжала бы свою работу со следующей строки! Продолжения - невероятно полезная абстракция для решения некоторых проблем. Учитывая то, что всё больше и больше традиционных толстых клиентов перемещаются в Web, важность продолжений будет со временем только расти.

    Сопоставление с образцом (Pattern matching)

    Сопоставление с образцом не такая уж новая или инновационная идея. На самом деле она имеет слабое отношение к функциональному программированию. Единственная причина, по которой его часто связывают с ФП, это то, что с некоторых пор в функциональных языках есть сопоставление с образцом, а в императивных - нет.

    Давайте начнём наше знакомство с Pattern matching следующим примером. Вот функция вычисления чисел Фибоначи на Java:

    Int fib(int n) { if(n == 0) return 1; if(n == 1) return 1; return fib(n - 2) + fib(n - 1); }
    А вот пример на Java-подобном языке с поддержкой Pattern matching-а

    Int fib(0) { return 1; } int fib(1) { return 1; } int fib(int n) { return fib(n - 2) + fib(n - 1); }
    В чём разница? Компилятор реализует ветвление за нас.

    Подумаешь, велика важность! Действительно важность не велика. Было подмечено, что большое количество функций содержат сложные switch конструкции (это отчасти верно для функциональных программ), и было принято решение выделить этот момент. Определение функции разбивается на несколько вариантов, и устанавливается паттерн на месте аргументов функции (это напоминает перегрузку методов). Когда происходит вызов функции, компилятор на лету сравнивает аргументы со всеми определениями и выбирает наиболее подходящий. Обычно выбор падает на самое специализированное определение функции. Например int fib(int n) может быть вызвана при n равном 1, но не будет, ведь int fib(1) - более специализированное определение.

    Сопоставление с образцом обычно выглядит сложнее, чем в нашем примере. Например сложная система Pattern matching позволяет писать следующий код:

    Int f(int n < 10) { ... } int f(int n) { ... }
    Когда сопоставление с образцом может быть полезно? Список таких случаев на удивление очень большой! Каждый раз, когда вы используете сложные конструкции вложенных if , pattern matching может справиться лучше с меньшим количеством кода. В голову приходит хороший пример с функцией WndProc , которая реализуется в каждой Win32 программе (даже если она спрятана от программиста за высоким забором абстракций). Обычно сопоставление с образцом может даже проверять содержимое коллекций. Например, если вы передаёте массив в функцию, то вы можете отбирать все массивы, у которых первый элемент равен 1, а третий элемент больше 3.

    Ещё одним преимуществом Pattern matching является то, что в случае внесения изменений вам не придётся копаться в одной огромной функции. Вам достаточно будет добавить (или изменить) некоторые определения функций. Тем самым мы избавляется от целого пласта паттернов из знаменитой книги Банды Четырёх. Чем сложнее и ветвистее условия, тем полезнее будет использовать Pattern matching. Как только вы начнёте их использовать, то удивитесь, как вы могли раньше без них обходится.

    Замыкания

    До сих пор мы обсуждали особенности ФП в контексте «чисто» функциональных языков - языков, которые являются реализацией лямбда исчисления и не содержат особенностей, противоречащих формальной системе Чёрча. Тем не менее, многие черты функциональных языков используются за пределами лямбда исчисления. Хотя реализация аксиоматической системы интересна с точки зрения программирования в терминах математических выражений, это не всегда может быть применимо на практике. Многие языки предпочитают использовать элементы функциональных языков не придерживаясь строгой функциональной доктрины. Некоторые такие языки (например Common Lisp) не требуют от переменных быть final - их значения можно менять. Они даже не требуют, чтобы функции зависели только от своих аргументов - функциям дозволенно обращаться к состоянию за пределом своей области видимости. Но при этом они включают в себя такие особенности, как функции высшего порядка. Передача функции в не-чистом языке немного отличается от аналогичной операции в пределах лямбда исчисления и требует наличия интересной особенности под названием: лексическое замыкание. Давайте взглянем на следующий пример. Помните, что в данном случае переменные не final и функция может обращаться к переменным за пределом своей области видимости:

    Function makePowerFn(int power) { int powerFn(int base) { return pow(base, power); } return powerFn; } Function square = makePowerFn(2); square(3); // returns 9
    Функция make-power-fn возвращает функцию, которая принимает один аргумент и возводит его в определённую степень. Что произойдёт, когда мы попробуем вычислить square(3) ? Переменная power находится вне области видимости powerFn , потому что makePowerFn уже завершилась, и её стек уничтожен. Как же тогда работает square ? Язык должен каким-либо образом сохранить значение power , чтобы функция square могла работать. А что если мы создадим ещё одну функцию cube , которая возводит число в третью степень? Язык должен будет сохранять два значения power для каждой созданной в make-power-fn функции. Феномен хранения этих значений и называется замыканием. Замыкание не только сохраняет аргументы верхней функции. Например замыкание может выглядеть следующим образом:

    Function makeIncrementer() { int n = 0; int increment() { return ++n; } } Function inc1 = makeIncrementer(); Function inc2 = makeIncrementer(); inc1(); // returns 1; inc1(); // returns 2; inc1(); // returns 3; inc2(); // returns 1; inc2(); // returns 2; inc2(); // returns 3;
    В процессе выполнения значения n сохраняются, и счётчики имеют доступ к ним. Более того у каждого счётчика своя копия n , не смотря на то, что они должны были исчезнуть после того, как функция makeIncrementer отработает. Как же компилятор умудряется это скомпилировать? Что происходит за кулисами замыканий? К счастью у нас есть волшебный пропуск.

    Всё сделано достаточно логично. С первого взгляда ясно, что локальные переменные больше не подчиняются правилам области видимости и их время жизни не определено. Очевидно, что они больше не хранятся в стеке - их нужно держать в куче (heap) . Замыкание, следовательно, сделано как обычная функция, которую мы обсуждали ранее, за исключением того, что в нём есть дополнительная ссылка на окружающие переменные:

    Class some_function_t { SymbolTable parentScope; // ... }
    Если замыкание обращается к переменной, которой нет в локальной области видимости, тогда оно принимает во внимание родительскую область. Вот и всё! Замыкание связывает функциональный мир с миром ООП. Каждый раз, когда вы создаёте класс, который хранит некоторое состояние, и передаёте его куда-то, вспомните про замыкания. Замыкание - это всего лишь объект, который создаёт «атрибуты» на лету, забирая их из области видимости, чтобы вам не пришлось делать это самим.

    Что теперь?

    Эта статья проходится лишь по верхушке айсберга Функционального Программирования. Вы можете копнуть глубже и увидеть нечто действительно большое, а в нашем случае ещё и хорошее. В будущем я планирую написать о теории категорий, монадах, функциональных структурах данных, системе типов в функциональных языках, функциональной многопоточности, функциональных базах данных, и ещё о многих вещах. Если у меня получится написать (и изучить в процессе) хотя бы о половине из этих тем, моя жизнь пройдёт не зря. А пока, Google - ваш верный друг.

    Если вы такой же разработчик, как и я, то наверняка сперва изучали парадигму ООП. Первым вашим яыком были Java или C++ - или, если вам повезло, Ruby, Python или C# - поэтому вы наверняка знаете, что такое классы, объекты, экземпляры и т.д. В чём вы точно не особо разбираетесь, так это в основах той странной парадигмы, называющейся функциональным программированием, которая существенно отличается не только от ООП, но и от процедурного, прототипно-ориентированного и других видов программирования.

    Функциональное программирование становится популярным - и на то есть причины. Сама парадигма не нова: Haskell , пожалуй, является самым функциональным языком, а возник он в 90-ых. Такие языки, как Erlang, Scala, Clojure также попадают под определение функциональных. Одним из основных преимуществ функционального программирования является возможность написания программ, работающих конкурентно (если вы уже забыли, что это - освежите память прочтением ), причём без ошибок - то есть взаимные блокировки и потокобезопасность вас не побеспокоят.

    У функционального программирования есть много преимуществ, но возможного максимального использования ресурсов процессора благодаря конкурентному поведению - это его главный плюс. Ниже мы рассмотрим основные принципы функционального программирования.

    Вступление : Все эти принципы не обязательны (многие языки следуют им не полностью). Все они теоретические и нужны для наиболее точного определения функциональной парадигмы.

    1. Все функции - чистые

    Это правило безусловно является основным в функциональном программировании. Все функции являются чистыми, если они удовлетворяют двум условиям:

    1. Функция, вызываемая от одних и тех же аргументов, всегда возвращает одинаковое значение.
    2. Во время выполнения функции не возникают побочные эффекты .

    Первое правило понятно - если я вызываю функцию sum(2, 3) , то ожидаю, что результат всегда будет равен 5. Как только вы вызываете функцию rand() , или обращаетесь к переменной, не определённой в функции, чистота функции нарушается, а это в функциональном программировании недопустимо.

    Второе правило - никаких побочных эффектов - является более широким по своей природе. Побочный эффект - это изменение чего-то отличного от функции, которая исполняется в текущий момент. Изменение переменной вне функции, вывод в консоль, вызов исключения, чтение данных из файла - всё это примеры побочных эффектов, которые лишают функцию чистоты. Может показаться, что это серьёзное ограничение, но подумайте ещё раз. Если вы уверены, что вызов функции не изменит ничего «снаружи», то вы можете использовать эту функцию в любом сценарии. Это открывает дорогу конкурентному программированию и многопоточным приложениям.

    2. Все функции - первого класса и высшего порядка

    Эта концепция - не особенность ФП (она используется в Javascript, PHP и других языках) - но его обязательное требование. На самом деле, на Википедии есть целая статья, посвящённая функциям первого класса . Для того, чтобы функция была первоклассной, у неё должна быть возможность быть объявленной в виде переменной. Это позволяет управлять функцией как обычным типом данных и в то же время исполнять её.

    3. Переменные неизменяемы

    Тут всё просто. В функциональном программировании вы не можете изменить переменную после её инициализации. Вы можете создавать новые, но не можете изменять существующие - и благодаря этому вы можете быть уверены, что никакая переменная не изменится.

    4. Относительная прозрачность функций

    Сложно дать корректное определение относительной прозрачности . Самым точным я считаю такое: если вы можете заменить вызов функции на возвращаемое значение, и состояние при этом не изменится, то функция относительно прозрачна. Это, быть может, очевидно, но я приведу пример.

    Пусть у нас есть Java-функция, которая складывает 3 и 5:

    Public int addNumbers(){ return 3 + 5; } addNumbers() // 8 8 // 8

    Очевидно, что любой вызов этой функции можно заменить на 8 - значит, функция относительно прозрачна. Вот пример непрозрачной функции:

    Public void printText(){ System.out.println("Hello World"); } printText() // Returns nothing, but prints "Hello World"

    Эта функция ничего не возвращает, но печатает текст, и при замене вызова функции на ничто состояние консоли будет другим - значит, функция не является относительно прозрачной.

    5. Функциональное программирование основано на лямбда-исчислении

    Функциональное программирование сильно опирается на математическую систему, называющуюся лямбда-исчислением . Я не математик, поэтому я не буду углубляться в детали - но я хочу обратить внимание на два ключевых принципа лямбда-исчисления, которые формируют самое понятие функционального программирования:

    1. В лямбда-исчислении все функции могут быть анонимными, поскольку единственная значимая часть заголовка функции - это список аргументов.
    2. При вызове все функции проходят процесс каррирования . Он заключается в следующем: если вызывается функция с несколькими аргументами, то сперва она будет выполнена лишь с первым аргументом и вернёт новую функцию, содержащую на 1 аргумент меньше, которая будет немедленно вызвана. Этот процесс рекурсивен и продолжается до тех пор, пока не будут применены все аргументы, возвращая финальный результат. Поскольку функции являются чистыми, это работает.

    Как я уже говорил, лямбда-исчисление на этом не заканчивается - но мы рассмотрели лишь ключевые аспекты, связанные с ФП. Теперь, в разговоре о функциональном программировании вы сможете блеснуть словечком «лямбда-исчисление», и все подумают, что вы шарите 🙂

    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то