Переменный реостат. Реостат – это управляющий прибор, способный изменять силу тока и напряжение. Плюсы и минусы плоских переключателей

Реостатом называют электрическое устройство используемое для ограничения и регулировки тока или напряжения в электрической схеме.

По своему внутреннему устройству реостаты делятся на проволочные и не проволочные. Основной частью любого проволочного реостата является керамическая трубка, на которую намотана особая высокоомная проволока. На направляющем металлическом стержне закреплен ползунок, свободно передвигающийся вдоль проволоки, намотанной на керамие.

Итак, любой реостат состоит из нескольких основных частей:


Керамического цилиндра
Металлическая проволока - которая наматывется на трубку из керамики, концы проволоки выведены на контакты (зажимы), расположенные на противоположных концах трубки с обоих сторон;
Металлическая штанга - установлена чуть выше трубки, на одной стороне которой имеется контактная клемма;
Движущийся контакт - закреплен на штанге, который иногда называют ползун.

Реостат подсоединен в цепь через две зажимные клеммы: нижнюю непосредственно с обмотки и верхнюю клемму с движущегося контакта. При подключении реостата в электрическую цепь, ток от нижней клеммы течет по виткам из металлической проволоки, а затем проходит через скользящий контакт, затем по металлическому стержню и на верхний контакт.

Т.е, в схеме будет задействована только часть реостатной обмотки. В тот момент, когда ползунок двигается, изменяется сопротивление обмотки, т.к меняется ее длина, а соответственно сопротивление и сила тока в электрической цепи.

Необходимо отметить, что ток следует по каждому витку обмотки, а не поперек них. Это происходит потому, что витки обмотки изолированы друг от друга.

Так на рисунке А – движущийся контакт находится посередине. Поэтому ток будет протекать только через половину устройства. На позиции Б - токовый проводник используется полностью поетому, его длина максимальная, как и сопротивление, а в соответствии с сила тока снижается. На третьем рисунке все наоборот: снижается сопротивление, растут амперы.

На электрических схемах реостат обозначен следующим образом:


Реостат в схему включается всегда последовательно. При этом один из контактов подсоединен к ползуну, с помощью которого и регулируется количество ампер в цепи. Но необходимо добавить, что этот прибор можно применять и для регулировки напряжения. Здесь может быть применено несколько схем с одним или двумя сопротивлениями. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Обычно этот электронный компонент включается в электрическую схему для регулирования величины тока, пример подключения показан на рисунке ниже.


При перемещении движка изменяется длина токопроводящего слоя, а следовательно, и величина сопротивления реостата, включаемого последовательно в схему, что в вызывает некоторое изменение величины силы тока в цепи и перераспределение напряжения между реостатом и нагрузкой.

Когда движок перемещается к контакту, величина сопротивления реостата сильно снижается,а ток в в цепи наоборот возрастает, тогда меньшая часть напряжения будет гасится на приборе и сильнее возрастет напряжение на подключенной к нагрузке.

Если движок перемещать к противоположному контакту, сопротивление реостата возрастает, а ток в цепи снижается, падение напряжение на реостате будет увеличиваться, а на нагрузке снижаться.

Расчет представленной выше схемы, аналогичен расчету гасящего сопротивления. Величина сопротивления реостата вычисляется по формуле:

R реост =U реост /I

Падение напряжения находится по формуле ниже:

U реост =U ист -U потр

У реостата имеется всего два вывода, а у его родственника , целых три. Поэтому больше не путайте их между собой.

Люди, которые связаны каким-то образом с физикой, электроникой, радиотехникой, часто сталкиваются с таким элементом, как реостат. А другие совершенно не имеют понятия об этом. Данная статья поможет разобраться с реостат и для чего он нужен.

Определение и виды

Итак, реостат - это аппарат, состоящий из нескольких резисторов и устройства, при помощи которого регулируется сопротивление всех включенных резисторов.

Виды реостатов зависят от их назначения:

  • Бывают пусковые реостаты тока, которые служат для запуска электродвигателей переменного или же
  • Пускорегулирующий реостат нужен для запуска частоты вращения электрических двигателей с постоянным током и ее регулирования.
  • Балластный или нагрузочный реостат - электрический аппарат для поглощения энергии, нужной при регулировании нагрузки генератора или же при проверке этого генератора.
  • Реостат возбуждения необходим для того, чтобы регулировать ток, находящийся в обмотках электрических машин переменного либо постоянного тока.

Материал и охлаждение

Одним из главных элементов, определяющих конструкцию элемента, является тот материал, из которого состоит реостат. И по этой причине можно разделить реостаты на керамические, жидкостные, металлические и угольные. Электроэнергия в резисторах преобразуется в теплоту, которая от них должна отводиться. Поэтому у реостатов бывает воздушное и жидкостное охлаждение. Второй тип может быть водяным или масляным. Воздушный тип применяется для любой конструкции реостата. Жидкостный же лишь для металлических, так как их резисторы обтекаются жидкостью или полностью в нее погружаются. Нужно при этом знать, что жидкость, используемая для охлаждения, может и даже должна сама охлаждаться или воздухом, или жидкостью.

Металлические реостаты

Что такое реостат из металла? Это элемент, имеющий воздушный тип охлаждения. Такие реостаты наиболее распространены, так как их наиболее легко можно приспособить к самым разным рабочим условиям. Это относится как к тепловым и электрическим характеристикам, так и к параметрам конструкции. Они могут изготавливаться со ступенчатым или непрерывным типом изменения сопротивления.

Переключатель является плоским. В нем есть подвижный контакт, который скользит по контактам неподвижным в одной и той же плоскости. Те контакты, которые не двигаются, выполнены в форме болтов, имеющих плоские головки цилиндрического или полусферического типа в форме пластин либо шин, которые расположены по дуге в один ряд или два. Тот контакт, который двигается, называется щеткой. Он может быть рычажным или мостиковым по своему типу выполнения.

Еще есть разделение на самоустанавливающийся и несамоустанавливающийся. Последний вариант по конструкции проще, но, так как контакт часто нарушается, он не является надежным в использовании. Самоустанавливающийся подвижный контакт обеспечивает необходимую степень нажатия и в эксплуатации более надежен. Именно поэтому такой вид наиболее распространен.

Плюсы и минусы плоских переключателей

К достоинствам переключателей плоского типа можно отнести несложную конструкцию, маленькие габариты при значительном количестве ступеней, низкую стоимость, реле, отключающие и защищающие управляемые цепи.

Из минусов отмечается недостаточная мощность переключения, маленькая разрывная мощность. А еще из-за трения и оплавления из строя быстро выходит щетка.

Масляное охлаждение

Металлические реостаты с масляным типом охлаждения увеличивают теплоемкость и время нагрева из-за хорошей проводимости тепла маслом. Это дает возможность увеличивать нагрузку при кратковременном режиме и сокращать расход материала резисторов и размеры самого реостата.

Элементы, которые погружаются в масло, должны обладать большой поверхностью для обеспечения хорошей теплоотдачи. Если резистор закрытого типа, то нет смысла погружать его в масло. Само погружение дает защиту контактам и резисторам от воздействия окружающих факторов. В масле отключающие способности контактов повышаются. Это достоинство реостатов такого типа. Благодаря смазке возможны большие нажатия на контакты. Но есть и недостатки. Это повышение риска опасности пожара и загрязнение помещения.

Реостат можно включать в схему в качестве или же потенциометра. Это обеспечивает плавную регулировку сопротивления и, как следствие, регулирование силы тока и напряжения в цепи. Их часто применяют в лабораториях.

Пускорегулирующие реостаты

Реостаты, имеющие ступенчатое сделаны из резисторов и переключающего устройства, состоящего, в свою очередь, из неподвижных контактов, одного скользящего контакта. Здесь же имеется привод.

Пускорегулирующие реостаты имеют полюсы якоря, который присоединяется к неподвижным контактам. Подвижный контакт замыкает и размыкает ступени сопротивления, а также и другие цепи, которые управляются данным реостатом. Привод в реостате может быть двигательным или ручным. Это что такое? Реостат такого типа широко распространен. Но недостатки у такой конструкции все же имеются. Это большое количество проводов для монтажа и деталей для крепежа. Особенно много их в реостатах возбуждения с большим числом ступеней.

Реостаты, наполненные маслом, состоят из переключающего устройства и пакетов резисторов, которые встроены в бак и погружены в масло. Пакеты состоят из элементов, выполненных из Они прикрепляются к крышке бака.

Устройство переключения имеет вид барабана и является осью с прикрепленными к ней частями цилиндрической поверхности, которые соединены, согласно схеме. Неподвижные контакты, которые соединены с элементами резистора, крепятся на неподвижную рейку. Когда ось барабана поворачивается приводом либо маховиком, эти части перемыкают неподвижные контакты, являясь контактами подвижными. Этим изменяется сопротивление в цепи.

Вышесказанное полностью проясняет вопрос, что такое реостат. Как видно, это очень важный элемент, который широко применяется в различных

Реостатом называется аппарат, состоящий из набора резисторов и устройства, с помощью которого можно регулировать сопротивление включенных резисторов.

В зависимости от назначения различают следующие основные виды реостатов:

пусковые - для пуска электродвигателей постоянного или переменного тока;

пускорегулирующие - для пуска и регулирования частоты вращения электродвигателей постоянного тока;

реостаты возбуждения - для регулирования тока в обмотках возбуждения электрических машин постоянного и переменного тока;

нагрузочные или балластные - для поглощения электроэнергии регулирования нагрузки генераторов при испытании самих генераторов или их первичных двигателей.

Одним из основных элементов, определяющих общее конструктивное выполнение реостата, является материал, из которого изготовлены его резисторы. В зависимости от этого различают реостаты металлические, жидкостные, угольные и керамические. В резисторах электрическая энергия превращается в теплоту, которая должна от них отводиться. Различают реостаты с воздушным и жидкостным (масляным или водяным) охлаждением. Воздушное охлаждение может применяться для всех конструкций реостатов. Масляное и водяное охлаждение используется для металлических реостатов, резисторы могут либо погружаться в жидкость, либо обтекаться ею. При этом следует иметь в виду, что охлаждающая жидкость должна и может охлаждаться как воздухом, так и жидкостью.

Металлические реостаты. Металлические реостаты с воздушным охлаждением получили наибольшее распространение. Их легче всего приспособить к различным условиям работы как в отношении электрических и тепловых характеристик, так и в отношении различных Конструктивных параметров. Реостаты могут выполняться с непрерывным или со ступенчатым изменением сопротивления.

Переключатель ступеней в реостатах выполняется плоским.

В плоском переключателе подвижный контакт скользит по неподвижным контактам, перемещаясь при этом в одной плоскости. Неподвижные контакты выполняются в виде болтов с плоскими цилиндрическими или полусферическими головками, пластин или шин, располагаемых по дуге окружности в один или два ряда. Подвижный скользящий контакт, называемый обычно щеткой, может выполняться мостикового или рычажного типа, самоустанавливающимся или несамоустанавливающимся.

Несамоустанавливающийся подвижный контакт проще по конструкции, но ненадежен в эксплуатации ввиду частого нарушения контакта. При самоустанавливающемся подвижном контакте всегда обеспечиваются требуемое контактное нажатие и высокая надежность в эксплуатации. Эти контакты получили преимущественное распространение.

Достоинствами плоского переключателя ступеней являются относительная простота конструкции, сравнительно небольшие габариты при большом числе ступеней, малая стоимость, возможность установки на плите переключателя контакторов и реле для отключения и защиты управляемых цепей. Недостатки - сравнительно малая мощность переключения и небольшая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность применения для сложных схем соединения.

Металлические реостаты с масляным охлаждением обеспечивают увеличение теплоемкости и постоянной времени нагрева за счет большой теплоемкости и хорошей теплопроводности масла. Это позволяет при кратковременных режимах резко увеличивать нагрузку на резисторы, а следовательно, сократить расход резистивного материала и габариты реостата. Погружаемые в масло элементы должны иметь как можно большую поверхность, чтобы обеспечить хорошую теплоотдачу. Закрытые резисторы погружать в масло нецелесообразно. Погружение в масло защищает резисторы и контакты от вредного воздействия окружающей среды в химических и других производствах. Погружать в масло J можно только резисторы или резисторы и i контакты.

Рис. 7-3. Реостат с непрерывным изменением сопротивления.

Отключающая способность контактов , в масле повышается, что является достоинством этих реостатов. Переходное сопротивление контактов в масле возрастает, но одновременно улучшаются условия охлаждения. Кроме того, за счет смазки можно допустить большие контактные нажатия. Наличие смазки обеспечивает малый механический износ.

Для длительных и повторно-кратковременных режимов работы реостаты с масляным охлаждением непригодны ввиду малой теплоотдачи с поверхности бака и большой постоянной времени охлаждения. Они применяются в качестве пусковых реостатов для асинхронных электродвигателей с фазным ротором мощностью до 1000 кВт при редких пусках.

Наличие масла создает и ряд недостатков; загрязнение помещения, повышение пожарной опасности.

Пример реостата с практически непрерывным изменением сопротивления приведен на рис. 7-3. На каркасе 3 из нагревостойкого изоляционного материала (стеатит, фарфор) намотана проволока резистора 2. Для изоляции витков друг от друга проволоку оксидируют. По резистору и направляющему токоведущему стержню или кольцу 6 скользит пружинящий контакт 5, соединенный с подвижным контактом 4 и перемещаемый при помощи изолированного стержня 8, на конец которого надевается изолированная рукоятка (на рисунке рукоятка снята). Корпус 1 служит для сборки всех деталей и крепления реостата, а пластины 7 - для внешнего присоединения.

Реостаты могут включаться в схему как переменный резистор (рис. 7-3, а) или как потенциометр (рис. 7-3,б). Они обеспечивают плавное регулирование сопротивления, а следовательно, и тока или напряжения в цепи и находят широкое применение в лабораторных условиях в схемах автоматического управления.

Рис. 7-4. Пускорегулирующий реостат: б - схема включения Rпк - резистор, шунтирующий катушку контактора в отключенном положении реостата; Rогр - резистор, ограничивающий ток в катушке; Ш1, Ш2 - параллельная обмотка возбуждения; С/, С2 - последовательная обмотка возбуждения

Рис. 7-5. Реостат возбуждения: б - одна из схем включения Rпр - сопротивление предвключенное; OВ - обмотка возбуждения

Рис. 7-6. Маслонаполненный реостат серии РМ: а – общий вид; б – схема.

Реостаты со ступенчатым изменением сопротивления (рис. 7-4 и 7-5) состоят из набора резисторов I и ступенчатого переключающего устройства.

Переключающее устройство состоит из неподвижных контактов 2 и 3, подвижного скользящего контакта 4 и привода 5. В пускорегулирующем реостате (рис. 7-4) к неподвижным контактам присоединены полюс Л1 и полюс якоря Я, отводы от элементов сопротивлений, пусковых Яд и регулировочных Яр, согласно разбивке по ступеням и другие управляемые реостатом цепи (контакторы 6; реле РМ}. Подвижный скользящий контакт производит замыкание и размыкание ступеней сопротивления, а также всех других управляемых р еостатом цепей. Привод реостата может быть ручной (при помощи рукоятки) и двигательный.

Реостаты по типу приведенных на рис. 7-4 и 7-5 нашли широкое распространение. Их конструкции обладают, однако, некоторыми недостатками, в частности большим числом крепежных деталей и монтажных проводов, особенно в реостатах возбуждения, которые имеют большое число ступеней.

Маслонаполненный реостат серии РМ, предназначенный для пуска асинхронных двигателей с фазным ротором, приведен на рис. 7-6. Напряжение в цепи ротора до 1200 В, ток 750 А. Коммутационная износостойкость 10000 операций, механическая - 45 000. Реостат допускает 2-3 пуска подряд.

Реостат состоит из встроенных в бак и погруженных в масло пакетов резисторов и переключающего устройства. Пакеты резисторов набираются из штампованных из электротехнической стали элементов и крепятся к крышке бака. Переключающее устройство - барабанного типа, представляет собой ось с закрепленными на ней сегментами цилиндрической поверхности, соединенными по определенной электрической схеме. На неподвижной рейке укреплены соединенные с резисторными элементами неподвижные контакты. При повороте оси барабана (маховиком или двигательным приводом) сегменты как подвижные скользящие контакты перемыкают те или иные неподвижные контакты и тем самым меняют значение сопротивления в цепи ротора.

Реостат - это металлический проводник с регулируемой величиной сопротивления. Реостат со скользящим контактом представляет собой цилиндр из изолирующего материала, на который намотана металлическая проволока. Концы ее присоединены к двум клеммам. Третья клемма реостата присоединена к скользящему контакту. Реостат в цепи может быть использован как регулятор тока, т.е. для изменения тока (рис.4.6),

когда провода цепи присоединяют к клемме, связанной со скользящим

контактом, и к одной клемме, связанной с обмоткой. Реостат с подвижным контактом может работать в режиме потенциометра (делителя напряжения). Это включение показано на рис.4.7.

указать плюс и минус!

При этом используются все три клеммы. Напряжение питания U подается к концам обмотки всего реостата. Далее снимается и подается потребителю напряжение U 1 , которое составляет лишь часть величины U, приблизительно пропорциональную сопротивлению реостата между точками в и с, т.е.

;
(4.7)

Изменяя положение движка С, можно менять снимаемое напряжение U 1 , приближаясь либо к U (точка С совпадает с а), либо к нулю (точка с совпадает с в).

Характеристики сопротивлений

Для каждого резистора должны быть известны его электрические параметры, определяющие рациональные условия его эксплуатации. Таковыми являются: значение электрического сопротивления R и предельно допустимая величина тока. При превышении тока выделяющаяся в резисторе энергия может привести к его перегреву в каком-либо участке, расплавлению, а следовательно разрыву цепи.

Для реостатов с подвижным контактом указывают величину сопротивления всей обмотки и предельный ток.

Для радиотехнических резисторов указывают величину сопротивления и максимальную рассеиваемую мощность.

Характеристики источников тока

Каждый источник тока имеет следующие характеристики, определяющие условия его рационального использования: электродвижущая сила, или ЭДС и внутреннее сопротивление r.

Электродвижущая сила источника тока - это величина, измеряемая отношением работы, затрачиваемой сторонними силами на перемещение заряда по замкнутой цепи, к величине этого заряда, т.е.:

(4.8)

ЭДС измеряется в вольтах (В).

Внутреннее сопротивление источника r определяет проводящие свойства той среды, которая имеется внутри источника.

Закон Ома для замкнутой цепи.

Замкнутая цепь содержит: источник тока, сопротивления (потребители тока), прибора, контролирующие характеристики тока, провода, ключ. Примером может служить цепь, приведенная на рис.4.5. По отношению к источнику тока можно выделит внешнюю цепь, содержащую элементы, находящиеся вне данного источника, если проследить за током от одной его клеммы до другой, и внутреннюю, к которой относят проводящую среду внутри источника обозначим сопротивление внешней цепи через R, внутреннее сопротивление источника г. Тогда ток в цепи определяется по закону Ома для замкнутой цепи, который гласит, что ток в замкнутой цепи прямо пропорционален величине ЭДС - обратно пропорционален сумме внутреннего и внешнего сопротивления цепи, т.е.

(4.9)

Из этого закона вытекают следующие частные случаи:

1) Если R стремится к нулю (т.е. R << r), то ток i стремится к максимально возможному значению
, называемому током короткого замыкания. Этот ток опасен для источников, поскольку вызывает перегрев источника и необратимые изменения проводящей среды внутри него.

2) Если R стремится к бесконечно большой величине (т.е. при условии, что R >> r) ток i уменьшается и падение напряжения внутри источника ir становится

намного меньше iR , следовательно
. Значит, величину ЭДС источника можно практически измерить с помощью вольтметра, присоединенного к клеммам источника при условии, что сопротивление вольтметра R v >> r при разомкнутой внешней цепи.

Правила Кирхгофа для разветвленных цепей

Разветвленной считают цепь, в которой можно выделить два или более узла. Узлом называется точка, в которой сходятся более чем два проводника (рис. 4.8, точки 3; 6). К таким цепям применимы правила Кирхгофа, позволяющие провести полный расчет цепи, т.е. определить токи в каждом проводнике.

иправить r3

Первое правило Кирхгофа гласит: алгебраическая сумма токов, сходящихся в узле, равна нулю, т.е.
.

При этом токи, текущие к узлу, берутся со знаком плюс, а токи, текущие от узла - со знаком минус, или наоборот.

Второе правило Кирхгофа гласит: в любом замкнутом контуре, ПРОИЗВОЛЬНО выбранном в разветвленной цепи проводников, алгебраическая сумма произведений сил токов на сопротивления соответствующих участков цепи равна алгебраической сумме ЭДС в этом

контуре, т.е.

Для составления уравнений по второму правилу Кирхгофа необходимо иметь в виду следующие правила:

1. Произвольно выбирается направление обхода контура (по часовой стрелке или против).

2. Произвольно выбираются и обозначаются направления токов во всех участках цепи, причем в пределах одного участка (т.е. между соседними узлами) ток сохраняется как по величине, так и по направлению.

3. Если выбранное направление обхода контура совпадает с направлением тока, то произведение тока на сопротивление i k R k берется со знаком "плюс", и наоборот.

4. Перед ЭДС  k ставится знак "плюс", если при обходе контура идем внутри источника от отрицательного полюса к положительному, т.е. если на пути обхода контура потенциал возрастает.

Покажем применение правил Кирхгофа на примере цепи, приведенной на рис.4.8. Направление токов показано на чертеже. На основе 1-го правила Кирхгофа для узла 3 имеем:
. На основе 2-го правила Кирхгофа для контура 12361 можно записать: , а для контура 34563 можно записать:. Если известны сопротивления участков цепиr x R x и включенные в них ЭДС  k , то приведенная система 3-х уравнений позволяет рассчитать токи, текущие в отдельных проводниках.

Правила Кирхгофа применимы не только для цепей постоянного тока. Они справедливы и для мгновенных значений тока и напряжения цепей, в проводниках, которых электрическое поле изменяется сравнительно медленно. Электромагнитное поле распространяется по цепи со скоростью, равной скорости света с. Если длина цепи l , то до самой отдаленной точки цепи ток дойдет за время t = l/c. Если за это время ток изменяется незначительно, то мгновенные значения тока практически по всей цепи будут одинаковыми и могут, следовательно, описываться законами, справедливыми для постоянных токов. Токи, удовлетворяющие такому условию называются квазистационарными (как бы постоянными). Для изменяющихся токов условие квазистационарности имеет вид:

; t << T (4.10)

где Т - период изменения тока. Это условие выполняется при зарядке и разрядке конденсатора и для переменных токов промышленной частоты. Поэтому к ним применимы правила Кирхгофа.

Анализ распределения энергии при работе источника постоянного тока

Пусть источник постоянного тока имеет ЭДС  и внутреннее сопротивление r и замкнут на сопротивление внешней нагрузки R .

Проанализируем несколько величин, характеризующих распределение энергии при работе источника постоянного тока.

а) Затраченная источником мощность Р.

Работа, совершаемая сторонними силами в замкнутой цепи по перемещению заряда dq , равна:

(4.11)

Исходя из определения, мощность, развиваемая сторонними силами в источнике, равна:

(4.12)

Эта мощность расходуется источником во внешней и внутренней по отношению к источнику частях цепи.

Используя закон Ома для замкнутой цепи, можно затраченную мощность представить в виде:

(4.13)

Если сопротивление нагрузки R уменьшается, стремясь к нулю, то
. ЕслиR увеличивается, стремясь в бесконечность, то
. График зависимости затраченной сторонними силами мощности Р от величины внешнего сопротивления R показан на рис.4.9 кривой 1.

б) Полезная мощность P пол.

Полезной по отношению к источнику мощностью P пол считают мощность, расходуемую источником во внешней цепи, т.е. на внешней нагрузке. Она равна:

Пользуясь законом Ома для замкнутой цепи, Рпол можно представить в виде.

(4.15)

Если R уменьшается, стремясь к нулю, то Р пол тоже стремится к нулю. Если R увеличивается, стремясь в бесконечность, то знаменатель увеличивается быстрее числителя в (4.15). Поэтому при R
, стремится к нулю. В этом случае между крайними значениями Р пол возможно существование максимального значения. Для нахождения P пол, max найдем первую производную по R выражения Р пол и приравняем ее нулю:

(4.16)

Таким образом, при сопротивлении внешней цепи R, равном сопротивлению внутренней цепи r, полезная мощность источника тока имеет максимальное значения, которое может быть найдено по формуле:

График зависимости P пол = f (R ) показан на рис.4.9 кривой 2.

в) Величина коэффициента полезного действия цепи  источника тока согласно определения равна:

(4.17)

При R 0, величина 0, при R
, величина 100%. В последнем случае P пол стремится к нулю, и такие режимы работы источника не представляют практического интереса. График зависимости КПД  источника тока от величины нагрузки R показан на рис.4.9 кривой 3.

перерис.

РАБОТА №60

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ С ПОМОЩЬЮ МОСТА ПОСТОЯННОГО ТОКА

Цель работы: ознакомиться с принципом работы мостовой схемы; произвести измерение нескольких резисторов; проверить законы параллельного и последовательного соединения резисторов.

Приборы и принадлежности: источник постоянного тока, магазин сопротивлений, нуль-гальванометр, набор измеряемых сопротивлений, ключ, провода, реохорд.

Простейший мост постоянного тока содержит элементы, представленные на рис.60.1, где R x - измеряемое сопротивление; R 1 и R 2 - два плеча реохорда.


перерис всё!

Реохорд представляет собой металлическую проволоку, намотанную на непроводящий каркас, по которой может перемещаться скользящий контакт. Обозначим сопротивление части реохорда от одного его конца до скользящего контакта через, R 1 (R АД =R 1). Тогда сопротивление оставшейся части реохорда будет R 2 (R ДБ =R 2). При перемещении подвижного контакта Д реохорда изменяется величина и направление тока в нуль - гальванометре Г.

Выведем формулу для определения R x . Обозначим ток, текущий по R x через i x по R 0 через i 0 , ток через гальванометр Г - через i Г токи через R 1 и R 2 - через i 1 и i 2 . Их направления могут быть выбраны произвольно, например так как указано на рис.60.1.

На основании 1-го закона Кирхгофа для узлов С и Д имеем:

(C)

(Д)
(60.1)

На основании 2-го закона Кирхгофа для контуров АСДА и ДСВД имеем:

Изменяя положение движка Д реохорда, можно добиться, что г"г станет равна нулю. Тогда уравнения (60.1) можно записать в виде:
;
. Откуда i x =i 0 i 2 =i 4 . Это состояние места называется уравновешенным. При равновесии моста постоянного тока формулы (60.2) имеют вид:

(60.3)

Перенеся в (60.3) отрицательные слагаемые вправо и почленно разделив, имеем:

(60.4)

Учтем, что R 1 и R 2 выполнены из однородной проволоки, удельное сопротивление которой , поперечное сечение по всей длине одинаково равно s. Длины частей реохорда R 1 и R 1 соответственно равны l 1 и l 2 . Тогда вместо (60.4) имеем:

;
(60.5)

Таким образом, добившись равновесия моста постоянного тока, замечают величину сопротивления R 0 и измеряют длины l 1 и l 2 реохорда, затем рассчитывают R x по формуле (60.5).

Описание установки

Мост постоянного тока собран согласно схеме рис.60.1 и укреплен на вертикальной панели у рабочего стола. Питание схемы осуществляется от общего выпрямителя и подается от щитка к рабочей панели. Сопротивление R o представляет собой магазин сопротивлений. Сопротивление R x выполнено в виде набора нескольких сопротивлений неизвестной величины, которые проводами могут присоединяться к схеме как по отдельности, так и соединные либо параллельно, либо последовательно. Реохорд АДБ прикреплен к рабочей панели с внутренней стороны. На наружной стороне панели показан указатель положения движка реохорда, способный перемещаться по шкале с равномерно нанесенными крупными и мелкими делениями, так что длина частей реохорда пропорционально числу делений от начала шкалы до движка и числу делений от движка до конца шкалы.

Порядок выполнения работы

1.Ознакомившись с деталями схемы и шкалами приборов (нуль-гальванометр, реохорд, магазин сопротивлений), подключают с помощью проводов одно из неизвестных сопротивлений R x 1 из набора к схеме моста.

2. На электрощите включают питание рабочей панели. Устанавливают движок реохорда посередине, т.е. количество делений шкалы реохорда, соответствующее длинам l 1 и l 2 , должно быть одинаковым (равноплечный реохорд). В магазине сопротивлений R o устанавливаем какое-либо сопротивление (200-300 Ом). Кратковременно замыкают ключ К, следя за показанием нуль-гальванометра. Изменяя сопротивление r 0 магазина, следят за отклонением стрелки нуль-гальванометра и добиваются, чтобы его стрелка установилась на нуле. Затем записывают в таблицу величину R o в омах и количество делений, соответствующее длинам плеч l 1 и l 2 реохорда.

3. Изменяют положение движка Д реохорда в ту или иную сторону на один-два крупных деления. Следует избегать сильно различающихся длин l 1 и l 2 например l 1 =0.9l 2 , т.к. это может привести к потери точности измерения R x . Необходимо помнить, что положение движка должно соответствовать целому числу крупных делений, характеризующих l 1 и l 2 . Измерения R x при неравноплечном реохорде выполняют два раза, устанавливая разные длины l 1 и l 2 , один раз l 1 > l 2 , второй раз l 1 < l 2 . Результаты заносят в таблицу.

4.Вместо первого сопротивления R x 1 включают другое R x 2 , из набора сопротивлений. С ним проводят измерения, аналогично описанным в п.2 и п.3., и результаты заносят в таблицу.

5.Соединяют сопротивления R x 1 и R x 2 последовательно, а затем параллельно и трижды определяют их общее сопротивление при каждом соединении так, как описано в п.2, п.3 и п.4.

6. Проводят оценку погрешностей измерения сопротивлений (относительная и абсолютная).

7. Используя средние значения R x 1 и R x 2 из таблицы, рассчитывают общее сопротивление при последовательном соединении R посл и при параллельном R пар. Проводят анализ полученных результатов.

Измеряем

сопротивл

l 1 ,

l 2 ,

,

R=R x ср  R x ср,

сопротивл

сопротивл

Сопротивления R x 1

соединенные

последовательно

Сопротивления R x 1

И R x 1 соединенные параллельно

Вопросы для допуска к работе

1. Какие элементы содержит простейший мост постоянного тока для измерения сопротивления? Перечислите и укажите их на рабочей панели.

2. Что означает "уравновешенный" мост?

3. Какими способами можно добиться равновесия моста?

4. Сколько раз необходимо измерять каждое из неизвестных сопротивлений?

5. Какие соединения двух сопротивлений исследуются в данной работе?

6. Где надо установить движок реохорда, чтобы мост был разноплечным? Какие длины плеч l 1 и l 2 целесообразно еще использовать?

Вопросы для сдачи работы.

1. Нарисуйте схему простейшего моста постоянного тока. Охарактеризуйте назначение элементов схемы.

2. Выведите и объясните расчетную формулу для определения неизвестного сопротивления R x .

3. Законы Кирхгофа для разветвленных цепей.

4. От чего зависит сопротивление металлического проводника. Что показывает удельное сопротивление и от чего оно зависит?

5. Законы параллельного и последовательного сопротивления проводников.

6. Объяснение порядка выполнения работы.

7. Обсуждение полученных результатов.

Литература:

Стр.99-100, 103-105; - стр.157-159.

РАБОТА №63

ОПРЕДЕЛЕНИЕ ПОЛЕЗНОЙ МОЩНОСТИ И КПД ИСТОЧНИКА ПОСТОЯННОГО ТОКА.

Цель работы: опытным путем изучить зависимость полезной мощности и КПД источника постоянного тока от величины сопротивления внешней цепи (сопротивления нагрузки).

Приборы и принадлежности: источник постоянного тока, миллиамперметр, вольтметр, два магазина сопротивлений, два ключа, провода.

Описание установки

Схема для реализации поставленной выше цели представлена на рис.63.1. Источником служит выпрямитель ИПТ.

Последовательно с выпрямителем соединяется декадный магазин сопротивлений R o , который можно рассматривать как добавочное внутреннее сопротивление источника, так как собственное сопротивление выпрямителя не велико (8 Ом). Второй декадный магазин сопротивлений R является внешним сопротивлением по отношению к источнику тока, т.е. сопротивлением нагрузки источника. Миллиамперметр mА позволяет измерить ток во внешней цепи при разных значениях R. Вольтметр V измеряет напряжение на внешней цепи источника. Ключ К 1 позволяет определить с помощью вольтметра величину ЭДС источника при разомкнутой внешней цепи, т.е. при разомкнутом ключе К 2 .

Величина R o задается преподавателем и при выполнении работы не изменяется. Величина R внешнего сопротивления может изменять произвольно, но необходимо использовать несколько значений R , меньших R o , обязательно - величину R, равную R o и несколько значений R, больших R o . Интервал между значениями R (при R > R o ) должен быть порядка 100-150 Ом.

Порядок выполнения

1.Собирают схему согласно рисунку 63.1 (или проверяют ее если собрана). Знакомятся со шкалами измерительньк приборов (декадные магазины сопротивлений, вольтметр, миллиамперметр). Определяют цены делений используемых приборов.

2. Включают выпрямитель в сеть с напряжением 220 В и тумблер на панели выпрямителя. В магазине R o устанавливают сопротивление порядка 100-150 Ом, замыкают ключ К 1 (ключ К 2 при этом разомкнут) и с помощью вольтметра определяют величину ЭДС выпрямителя, записываю ее в таблицу.

3.Замыкают оба ключа K 1 и К 2 . Изменяя внешнее сопротивление R , снимают показания вольтметра и миллиамперметра и заносят их в таблицу. Величина R изменяется 10 раз, из них по крайней мере 3 значения должны быть меньше R 0 .

4. Рассчитывают значения полезной мощности Р пол и коэффициента полезного действия по формулам

,
(63.1)

Строят графики зависимости  и P пол от величины внешней нагрузки R, т.е. =f(R); используют миллиметровую бумагу.

5. Проводят анализ полученных результатов. Рассчитывают максимальное значение полезной мощности при данном R o по формуле P пол, max = E 2 /4 R 0

Вопросы для допуска к работе

1. Какие элементы должна содержать схема для выполнения работы?

2. Для чего служит декадный магазин сопротивления R 0 ? Изменяется ли его сопротивление при выполнении работы? Каким оно должно быть?

3. Назовите цены делений используемых вольтметра и амперметра.

4. Как определить величину ЭДС источника для данной схемы?

5. Объясните порядок выполнения работы.

Вопросы для сдачи работы

1. Какую величину называют полезной мощностью по отношению к источнику? Как ее можно определить?

2. Вывести условие, при котором полезная мощность источника принимает максимальное значение?

3. Нарисовать и пояснить график зависимости полезной мощности от величины сопротивления внешней цепи.

4. Какая величина называется коэффициентом полезного действия источника тока?

5. Какова зависимость КПД источника тока от величины внешней нагрузки? При каком условии КПД источника становится максимальным?

6. Нарисуйте схему по которой выполняется работа. Объясните назначение элементов схемы.

7. Каково должно быть сопротивление внешней цепи, чтобы КПД стал равен 75%? Внутреннее сопротивление источника считать известным и равным 12 Ом.

8. Каково максимальное значение полезной мощности источника тока? От чего оно зависит?

9. Анализ полученных результатов и оценка погрешностей определения КПД и полезной мощности источника.

Литература: - стр.163-165.

РАБОТА №64

ОПРЕДЕЛЕНИЕ ЭДС ИСТОЧНИКА ТОКА МЕТОДОМ КОМПЕНСАЦИИ

Цель работы: изучить компенсационный метод измерения ЭДС;

проверить законы параллельного и последовательного источников с одинаковым значением ЭДС.

Приборы и принадлежности: источник постоянного тока, нормальный элемент Вестона, нуль-гальванометр, сухие элементы - 2 шт., 2 ключа, реохорд, провода.

Обоснование метода измерений.

Метод компенсации применяется для определения ЭДС источников или разностей потенциалов, небольших по величине. Сущность этого метода можно понять, анализируя работу схемы, приведенной на рис.64.1.

Источник с ЭДС E 0 питает током реохорд АВ. Источник с ЭДС Е 1 присоединен к части реохорда между точками А и М. Необходимо, чтобы источники тока были соединены к точке А приведенной схемы одноименными полюсами, т.е. навстречу друг другу. Величина Е 0 должна быть больше Е 1 , а внутреннее сопротивление источников тока должно быть гораздо меньше сопротивления реохорда АВ. Обозначим сопротивление части реохорда от конца А до движка М через R AM . Тогда сопротивление оставшейся части будет R MB . Сопротивление всего реохорда, т.е. R AB =R AM +R MB остается неизменным при любом положении движка М. Ток, текущий от В до М, обозначим через i ток, текущий от М до А, - через I , ток, даваемый источником Е 1 - через i 1 .

Установим условия, при которых ток в гальванометре Г станет равным нулю.

Согласно 1-ому закону Кирхгофа для узла А имеем: i ’= i ’’+ i ,

Cогласно 2-му закону Кирхгофа для контуров АСДВА и АFКМА:

где r 0 и r 1 - внутренние сопротивления источников Е 0 и Е 1 cоответственно; R Г -сопротивление нуль-гальванометра.

Перемещая подвижной контакт М, можно добиться, что ток в гальванометре i 1 cтанет равным нулю. Тогда i = i , а равенства (64.1) примут вид:

(64.2)

Отсутствие тока в цепи гальванометра означает, что ЭДС источника тока равна разности потенциалов между токами А и М реохорда. В этом случае можно также сказать, что ЭДС уравновешена падением потенциала (отсюда название метода).

Разделив в (64.2) одно равенство на другое, получим:

;
(64.3)

Если вместо 1 включить другой источник тока с 2 то для того, чтобы ток в цепи гальванометра стал равен нулю, необходимо движок М передвинуть в другое положение М". Тогда аналогично (64.2) и (64.3) получим:

(64.4)

(64.5)

Поделив левые и правые части равенств (64.3) и (64.5), получим:

(64.6)

Таким образом, если добиться компенсации с начала для известной ЭДС 1 , а затем для неизвестной для ЭДС 2 и определить величину отношения R AM / R AM ? то можно найти величину неизвестной 2 по формуле (64.6).

Отметим, что отношение сравниваемых ЭДС источников не зависит от их внутренних сопротивлений, и от других сопротивлений схемы, а определяется только сопротивлениями участка реохорда, к которому подключаются сравниваемые источники с 1 и 2 .

Т.к. для реохорда берется калиброванная проволока, сопротивление которой R=l/s, то отношение участков сопротивлений R AM и R AM ’ можно заменить отношением длин l AM и l AM этих участков. В этом случае расчетная формула для определения неизвестной ЭДС примет вид:

(64.7)

Описание установки.

Схема для определения ЭДС источника методом компенсации представлена на рис.64.2.

Согласно этой схеме собрана установка, укрепленная на вертикальной панели у рабочего стола. Питание схемы осуществляется от его выпрямителя и подается от щитка (12В) к рабочей панели. Реохордом АВ является ползунковый реостат, к движку М которого присоединен нуль-гальванометр Г. Для включения ЭДС питания 0 и нуль-гальванометра служит ключ К 1 . Перекидной ключ K 2 позволяет включать в цепь нуль-гальванометра либо источник с эталонной ЭДС 1 , либо источник, величину ЭДС 2 которого надо определить. Эталонным источником является нормальный элемент Вестона. Вместо 2 можно включить батарею, состоящую из двух сухих элементов, соединенных проводами сначала последовательно, затем параллельно.

Порядок выполнения работы

1. Ознакомившись с деталями схемы и шкалами приборов (нуль-гальванометр, реохорд), замыкают ключ К 2 на эталонный элемент 1 . Затем замыкают ключ К 1 и передвигают движок М реохорда, добиваясь полного отсутствия тока в цепи гальванометра. Ток в цепи следует замыкать на очень короткое время, достаточное для наблюдения за показаниями нуль-гальванометра.

2. Измеряют длину l AM плеча AM реохорда (до середины ползунка М). Измерения длины плеча AM производят три раза и вычисляют его среднее значение.

3. Перебрасывают рубильник K на исследуемый элемент 2 и определяют длину l AM плеча AM" реохорда, при которой наступает компенсация неизвестной ЭДС 2 .

4. Подключают вместо 2 с помощью проводов другой исследуемый источник 3 и определяют его ЭДС аналогично п.3. Результаты заносят в таблицу.

5. Соединяют источники 2 и 3 последовательно, затем параллельно и определяют общую ЭДС полученной батареи источников аналогично п.3 и п.4. Результаты заносят в таблицу.

6. Проводят оценку погрешностей (абсолютная и относительная) при измерении ЭДС методом компенсации. Проводят анализ полученных результатов.

Вопросы для допуска к работе.

1. Какие элементы содержит схема для определения ЭДС источника постоянного тока методом компенсации? Перечислите и укажите их на рабочей панели.

2. Почему метод измерения называется "метод компенсации"? Что чем компенсируется?

3. Как узнать, достигнута ли компенсация? Как можно добиться состояния компенсации?

4. Какие величины необходимо практически измерить для последующего расчета ЭДС?

5. Какие соединения двух неизвестных источников тока используются в этой работе?

Вопросы для сдачи работы.

1. Какая величина называется электродвижущей силой (ЭДС) источника тока? В каких единицах она измеряется?

2. К каким характеристикам источника целесообразно отнести ЭДС: силовым или энергетическим?

3. В чем состоит сущность метода компенсации?

4. Какие ограничения накладываются на характеристики используемых источников тока?

5. Выведите и объясните расчетную формулу для определения ЭДС методом компенсации.

6. Законы при последовательном и параллельном соединении источников тока.

7. Законы Кирхгофа для разветвленных цепей.

8. Объясните порядок выполнения работы.

9. Обсуждение полученных результатов.

Литература:

Стр.202-203; 205-207.

РАБОТА №65

ГРАДУИРОВАНИЕ ВОЛЬТМЕТРА

Цель работы: ознакомление с работой прибора магнитоэлектрической системы и принципами градуирования вольтметра.

Приборы и принадлежности: источник постоянного тока, рабочий вольтметр, испытуемый вольтметр, ключ, два магазина сопротивлений, провода.

Обоснование метода измерений.

Проградуировать прибор - это установить соотношение между делениями шкалы прибора и значения величин, отсчитываемыми по той шкале.

Градуировка вольтметра означает определение соотношения между числом делений по шкале, на которое отклонилась стрелка вольтметра, и напряжением на его клеммах.

Градуировку вольтметра проводят, пользуясь схемой, показанной на рис.65.1.

Резистором называют элемент электрической цепи в виде законченного изделия, основное назначение которого оказывать сопротивление электрическому току с целью регулирования тока и напряжения. Существуют резисторы с постоянным и переменным сопротивлением. Резистор, значение переменного сопротивления которого изменяется с помощью механического перемещения движка, называется реостатом. Резисторы и реостаты широко применяются в схемах управления электрическими силовыми установками и в электронных устройствах.

Резистивные элементы для силовых цепей изготавливаются из металла (нихрома, константана, чугуна и др.) в виде проволочных или ленточных спиралей, навитых на керамический каркас, или штампованных пластин; в виде угольных столбиков из тонких шайб; используются также жидкостные реостаты.

По назначению мощные резисторы и реостаты делятся на следующие основные группы:

1) нагрузочные – применяются для поглощения части электроэнергии цепи и превращения ее в тепловую энергию, а также для регулирования нагрузки источников электроэнергии при их испытаниях; включаются последовательно в цепь нагрузки;

    пусковые – предназначены для пуска электродвигателей и ограничения их пускового тока; включаются последовательно в силовую цепь двигателя;

    пускорегулирующие – кроме пуска электродвигателей выполняют функцию регулирования частоты вращения; включаются аналогично пусковым;

    регулировочные и установочные – предназначены для регулирования тока в обмотках возбуждения электрических машин, а также для его установки на заданное значение; включаются последовательно в цепь возбуждения;

    добавочные – предназначены для снижения напряжения в электрических установках, последовательно с которыми они включаются, и др.

Для мощных резисторов задается значение сопротивления (обычно при 20°С) и допустимый продолжительный ток, а для реостатов, кроме того, могут быть указаны количество ступеней регулирования, сопротивления и токи ступеней и другие данные.

Резистивные элементы для электронных устройств изготавливаются из металла, углеродистых и полупроводниковых материалов в виде спиралей, лент, пластин или пленок на диэлектрическом основании. Для защиты от внешних воздействий и для изоляции между витками резисторы покрывают стеклоэмалью. Маломощные резисторы характеризуются значением сопротивления (от 1 Ом до 10 Том; один тераом равен 10 12 Ом) и рассеиваемой мощностью (от 0,01 до 150 Вт).

Ток, сопротивление, напряжение и мощность резисторов взаимосвязаны соотношениями согласно законам Ома и Джоуля-Ленца.

На электрических схемах резисторы изображаются прямоугольником с размерами 10 х 4 мм и обозначаются буквой R согласно ГОСТ 2.728-74 и ГОСТ 2.710-81 (рис.1.2).

Рис.1.2. Условные графические изображения и буквенное обозначение резисторов: а - постоянный резистор; б - общее обозначение переменного резистора; в и г - варианты включения переменного резистора

В электромеханике и автоматике также используются маломощные полупроводниковые резисторы в качестве датчиков при измерении неэлектрических величин, например: фоторезисторы (их сопротивление зависит от освещённости), магниторезисторы (сопротивление зависит от напряжённости магнитного поля), терморезисторы (термисторы - их сопротивление уменьшается с повышением температуры и позисторы – с положительным температурным коэффициентом).

В данной работе студенты могут ознакомиться с мощными и маломощными резисторами и реостатами.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то