Принцип действия пзу. Что такое ПЗУ? Схема, разделы и объем ПЗУ. ПЗУ с электрическим или ультрафиолетовым стиранием

Структура микропроцессора Устройство управления Устройство управления является функционально наиболее сложным устройством ПК. Оно вырабатывает управляющие сигналы, поступающие по кодовым шинам инструкций во все блоки машины. Упрощенная функциональная схема УУ показана на рис. 4.5. Здесь представлены: Рис. 4.5.Укрупненная функциональная схема устройства управления Регистр команд – запоминающий регистр, в котором хранится код команды: код выполняемой операции и адреса операндов, участвующих в операции. Регистр команд расположен в интерфейсной части МП, в блоке регистров команд. Дешифратор операций – логический блок, выбирающий в соответствии с поступающим из регистра команд кодом операции (КОП) один из множества имеющихся у него выходов. Постоянное запоминающее устройство микропрограмм – хранит в своих ячейках управляющие сигналы (импульсы), необходимые для выполнения в блоках ПК операций обработки информации. Импульс по выбранному дешифратором операций в соответствии с кодом операции считывает из ПЗУ микропрограмм необходимую последовательность управляющих сигналов. Узел формирования адреса (находится в интерфейсной части МП) – устройство, вычисляющее полный адрес ячейки памяти (регистра) по реквизитам, поступающим из регистра команд и регистров МПП. Кодовые шины данных, адреса и инструкций – часть внутренней интерфейсной шины микропроцессора. В общем случае УУ формирует управляющие сигналы для выполнения следующих основных процедур:
  • выборки из регистра-счетчика адреса команды MПП адреса ячейки ОЗУ, где хранится очередная команда программы;
  • выборки из ячеек ОЗУ кода очередной команды и приема считанной команды в регистр команд;
  • расшифровки кода операции и признаков выбранной команды;
  • считывания из соответствующих расшифрованному коду операции ячеек ПЗУ микропрограмм управляющих сигналов (импульсов), определяющих во всех блоках машины процедуры выполнения заданной операции, и пересылки управляющих сигналов в эти блоки;
  • считывания из регистра команд и регистров МПП отдельных составляющих адресов операндов (чисел), участвующих в вычислениях, и формирования полных адресов операндов;
  • выборки операндов (по сформированным адресам) и выполнения заданной операции обработки этих операндов;
  • записи результатов операции в память;
  • формирования адреса следующей команды программы.
Арифметико-логическое устройство предназначено для выполнения арифметических и логических операций преобразования информации. Функционально АЛУ (рис. 4.6) состоит обычно из двух регистров, сумматора и схем управления (местного устройства управления).
Рис. 4.6.Функциональная схема АЛУ Сумматор – вычислительная схема, выполняющая процедуру сложения поступающих на ее вход двоичных кодов; сумматор имеет разрядность двойного машинного слова. Регистры - быстродействующие ячейки памяти различной длины: регистр 1 (Рг1) имеет разрядность двойного слова, а регистр 2 (Рг2) – разрядность слова. При выполнении операций в Рг1 помещается первое число, участвующее в операции, а по завершении операции – результат; в Рг2 – второе число, участвующее в операции (по завершении операции информация в нем не изменяется). Регистр 1 может и принимать информацию с кодовых шин данных, и выдавать информацию на них, регистр 2 только получает информацию с этих шин. Схемы управления принимают по кодовым шинам инструкций управляющие сигналы от устройства управления и преобразуют их в сигналы для управления работой регистров и сумматора АЛУ. АЛУ выполняет арифметические операции (+, -, *, :) только над двоичной информацией с запятой, фиксированной после последнего разряда, т.е. только над целыми двоичными числами. Выполнение операций над двоичными числами с плавающей запятой и над двоично-кодированными десятичными числами осуществляется или с привлечением математического сопроцессора, или по специально составленным программам. Микропроцессорная память Микропроцессорная память - память небольшой емкости, но чрезвычайно высокого быстродействия (время обращения к МПП, т.е. время, необходимое на поиск, запись или считывание информации из этой памяти, измеряется наносекундами – тысячными долями микросекунды). Она предназначена для кратковременного хранения, записи и выдачи информации, непосредственно в ближайшие такты работы машины участвующей в вычислениях; МПП используется для обеспечения высокого быстродействия машины, ибо основная память не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Микропроцессорная память состоит из быстродействующих регистров с разрядностью не менее машинного слова. Количество и разрядность регистров в разных микропроцессорах различны: от 14 двухбайтных регистров у МП 8086 до нескольких десятков регистров разной длины у МП Pentium . Регистры микропроцессора делятся на регистры общего назначения и специальные. Специальные регистры применяются для хранения различных адресов (адреса команды, например), признаков результатов выполнения операций и режимов работы ПК (регистр флагов, например) и др. Регистры общего назначения являются универсальными и могут использоваться для хранения любой информации, но некоторые из них тоже должны быть обязательно задействованы при выполнении ряда процедур. Интерфейсная часть микропроцессора Интерфейсная часть МП предназначена для связи и согласования МП с системной шиной ПК, а также для приема, предварительного анализа команд выполняемой программы и формирования полных адресов операндов и команд. Интерфейсная часть включает в свой состав адресные регистры МПП, узел формирования адреса, блок регистров команд, являющийся буфером команд в МП, внутреннюю интерфейсную шину МП и схемы управления шиной и портами ввода-вывода. Порты ввода-вывода – это пункты системного интерфейса ПК, через которые МП обменивается информацией с другими устройствами. Всего портов у МП может быть 65536. Каждый порт имеет адрес – номер порта, соответствующий адресу ячейки памяти, являющейся частью устройства ввода-вывода, использующего этот порт, а не частью основной памяти компьютера. Порт устройства содержит аппаратуру сопряжения и два регистра памяти – для обмена данными и обмена управляющей информацией. Некоторые внешние устройства используют и основную память для хранения больших объемов информации, подлежащей обмену. Многие стандартные устройства (НЖМД, НГМД, клавиатура, принтер, сопроцессор и др.) имеют постоянно закрепленные за ними порты ввода-вывода. Схема управления шиной и портами выполняет следующие функции:
  • формирование адреса порта и управляющей информации для него (переключение порта на прием или передачу и др.);
  • прием управляющей информации от порта, информации о готовности порта и его состоянии;
  • организацию сквозного канала в системном интерфейсе для передачи данных между портом устройства ввода-вывода и МП.
Схема управления шиной и портами использует для связи с портами кодовые шины инструкций, адреса и данных системной шины: при доступе к порту МП посылает сигнал по КШИ, который оповещает все устройства ввода-вывода, что адрес на КША является адресом порта, а затем посылает и сам адрес порта. То устройство, адрес порта которого совпадает, дает ответ о готовности, после чего по КШД осуществляется обмен данными.

ПЗУ – память, информация в которой, будучи однажды записанной, изменению не подлежит. Например, программа загрузки в ОЗУ микропроцессорной системы информации из внешней памяти. Все типы ПЗУ используют один и тот же принцип построения схемы. Информация в ПЗУ представляется в виде наличия или отсутствия соединения между шинами адреса и данных.

Условное графическое обозначение ПЗУ представлено на рис.26.10.

Рис.26.10. Условное графическое обозначение ПЗУ

Рис. 26.11. Схема ПЗУ

На рис. 26.11 приведена схема простейшего ПЗУ. Для реализации ПЗУ достаточно использовать дешифратор, диоды, набор резисторов и шинные формирователи. Рассматриваемое ПЗУ содержит разрядных слова, т.е. его общий объем составляет 32 бит. Количество столбцов определяет разрядность слова, а количество строк – количество 8 разрядных слов. Диоды устанавливаются в тех местах, где должны храниться биты, имеющие значение логического «0» (дешифратор подает 0 на выбранную строку). В настоящее время вместо диодов ставят МОП-транзисторы.

В табл. 26.1 приведено состояние ПЗУ, схема которого приведена на рис. 26.11.

Таблица 26.1

Состояние простого ПЗУ

Слово Двоичное представление
А0 А1 D1 D2 D3 D4 D5 D6 D7 D8

Как правило, ПЗУ имеют многоразрядную организацию со структурой 2DM . Технологии изготовления самые разнообразные – КМОП, n-МОП, ТТЛ(Ш) и диодные матрицы.

Все ПЗУ можно разделить на следующие группы: программируемые при изготовлении (масочные), с однократным программированием и перепрограммируемые.

В запоминающих устройствах, программируемых при изготовлении (ПЗУ или ROM), информация записывается непосредственно в процессе их изготовления с помощью фотошаблона, называемого маской, на завершающем этапе технологического процесса. Такие ПЗУ называемые масочными, построены на диодах, биполярных или МОП транзисторах.

Область использования масочных ПЗУ – хранение стандартной информации, например знакогенераторы (коды букв латинского и русского алфавита), таблицы типовых функций (синусы, квадратичные функции), стандартное программное обеспечение.

Программируемые постоянные запоминающие устройства (ППЗУ, или PROM ) – ПЗУ с возможностью однократного электрического программирования. Этот вид памяти позволяет пользователю однократно запрограммировать микросхему памяти с помощью программаторов.

Микросхемы ППЗУ построены на запоминающих ячейках с плавкими перемычками. Процесс программирование заключается в избирательном пережигании плавких перемычек с помощью импульсов тока достаточной амплитуды и длительности. Плавкие перемычки включаются в электроды диодов или транзисторов.

На рис. 26.12 приведена схема ППЗУ с плавкими перемычками. Оно изготавливается со всеми диодами и перемычками, т.е. в матрице все «0», а при программировании пережигаются те перемычки, в ячейках которых должны быть логические «1».

Рис. 26.12. Фрагмент схемы ППЗУ

Репрограммируемые постоянные запоминающие устройства (РПЗУ и РПЗУ УФ) – ПЗУ с возможностью многократного электрического программирования. В ИС РПЗУ УФ (EPROM ) старая информация стирается с помощью ультрафиолетовых лучей, для чего в корпусе микросхемы имеется прозрачное окошко; в РПЗУ (EEPROM ) – с помощью электрических сигналов.

Запоминающие ячейки РПЗУ строятся на n -МОП или КМОП транзисторах. Для построения ЗЭ используются различные физические явления хранения заряда на границе между двумя диэлектрическими средами или проводящей и диэлектрической средой.

В первом варианте диэлектрик под затвором МОП транзистора делают из двух слоев: нитрида кремния и двуокиси кремния. Этот транзистор называется МНОП: металл – нитрид кремния – окисел – полупроводник. На границе диэлектрических слоев возникают центры захвата зарядов. Благодаря туннельному эффекту носители заряда могут проходить сквозь тонкую пленку окисла и скапливаться на границе раздела слоев. Этот заряд, являющийся носителем информации, хранимой МНОП-транзистором, приводит к изменению порогового напряжения транзистора. При этом пороговое напряжение возрастает настолько, что рабочее напряжение на затворе транзистора не в состоянии его открыть. Транзистор, в котором заряд отсутствует, легко открывается. Одно из состояний определено как логическая единица, второе – ноль.

Во втором варианте затвор МОП транзистора делают плавающим, т.е. не связанным с другими элементами схемы. Такой затвор заряжается током лавинной инжекции при подаче на сток транзистора высокого напряжения. В результате заряд на плавающем затворе влияет на ток стока, что используется при считывании информации, как и в предыдущем варианте с МНОП транзистором. Такие транзисторы получили название ЛИЗМОП (МОП транзистор с лавинной инжекцией заряда). Так как затвор транзистора окружен изолятором, ток утечки очень мал и информация может храниться достаточно долго (десятки лет).

В РПЗУ с электрическим стиранием над плавающим затвором транзистора размещают второй – управляющий затвор. Подача напряжения на него вызывает рассасывание заряда на плавающем затворе за счет туннельного эффекта. РПЗУ имеют весомые преимущества перед РПЗУ УФ, так как не требуют для перепрограммирования специальных источников ультрафиолетового света. ЗУ с электрическим стиранием практически вытеснили ЗУ с ультрафиолетовым стиранием.

Фрагмент схемы РПЗУ с использованием двухзатворных транзисторов типа ЛИЗМОП показан на рис. 26.13. Запись логического нуля осуществляется в режиме программирования с помощью заряда плавающего затвора. Стирание информации, т.е. разряд плавающего затвора, означает запись логической единицы. В этом случае при подаче сигнала по линии выборки опрашиваемые транзисторы открываются и передают напряжение U ПИТ на линии считывания.

Современные РПЗУ имеют информационную емкость до 4 Мбит при тактовой частоте до 80 МГц.

26.5. Flash -память

Основные принципы работы и тип запоминающих элементов Flash -памяти аналогичны ППЗУ с электрической записью и стиранием информации, построенной на транзисторах с плавающим затвором. Как правило, благодаря своим особенностям, Flash -память выделяют в отдельный класс. В ней производится стирание или всей записанной информации одновременно, или больших блоков информации, а не стирание отдельных слов. Это позволяет исключить схемы управления записью и стиранием отдельных байтов, что дает возможность значительно упростить схему ЗУ и достичь высокого уровня интеграции и быстродействия при снижении стоимости.

Рис.26.13. Фрагмент схемы РПЗУ

Современные тенденции развития электронных приборов требуют постоянного увеличения объема используемой памяти. На сегодня инженеру доступны микросхемы как энергозависимой памяти типа DRAM , которую характеризуют предельно низкая цена за бит и большие уровни интеграции, так и энергонезависимой Flash -памяти, себестоимость которой постоянно снижается и стремится к уровню DRAM .

Потребность в энергонезависимой Flash -памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе Flash -памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в Flash -памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, Flash -память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR (ИЛИ-НЕ) и NAND (И-НЕ). Структура NOR (рис. 26.14, а) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис. 26.14, б) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

Рис.26.14. Структуры на основе NOR (a) и NAND (б)

В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR . Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-Flash лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-Flash ниже, чем в других технологиях Flash -памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Более детально особенности микросхем Flash -памяти можно рассмотреть на примере кристаллов серии HY 27xx(08/16)1G 1M фирмы Hynix . На рис. 26.15 показана внутренняя структура и назначение выводов этих приборов.

Микросхема имеет следующие выводы:

I/O 8-15 – вход/выход данных для х16 устройств

I/O 0-7 – вход/выход данных, адресный вход или вход команд для х8 и х16 устройств;

ALE – включение адресной защелки;

CLE – включение защелки команд;

– выбор кристалла;

– разрешение чтения;

– чтение/занят (выход с открытым стоком);

– разрешение записи;

– защита от записи

V CC – напряжение питания;

V SS – общий вывод.

Рис.26.15. Схема внешних выводов (а), назначение выводов (б) и структурная схема (в) Flash -памяти

Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read ). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.

Рис.26.16. Организация массива памяти NАND -структуры

Массив памяти NAND -структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис. 26.16).

Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC ), программных флагов и идентификаторов негодных блоков (Bad Block ) основной области. В 8-битных устройствах страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В 16-ти битных устройствах страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.

Память на основе ячеек NOR имеет сравнительно большие времена стирания и записи, но обладает доступом к каждому биту на чтение. Данное обстоятельство позволяет применять такие микросхемы для записи и хранения программного кода, который не требует частого перезаписывания. Такими применениями могут быть, например, BIOS для встраиваемых компьютеров или ПО для телевизионных приставок.

Свойства NAND-Flash определили область ее применения: карты памяти и иные устройства хранения данных. Сейчас данный тип памяти применяется почти повсеместно в мобильных устройствах, фото- и видеокамерах и т.д. NAND-Flash лежит в основе практически всех типов карт памяти: SmartMedia , MMC , SecureDigital, MemoryStick

Достигнутая в настоящее время информационная емкость Flash -памяти достигает 8ГБит, типовая совокупная скорость программирования и стирания составляет до 33.6 мС / 64 кБ при тактовой частоте до 70 МГц.

Двумя основными направлениями эффективного использования Flash -памяти являются хранение редко изменяемых данных и замена памяти на магнитных дисках. Для первого направления используется Flash -память с адресным доступом, а для второго – файловая память.

26.6. ОЗУ типа FRAM

FRAM – оперативное энергонезависимое ЗУ, сочетающее высокое быстродействие и малую потребляемую мощность, присущие ОЗУ, со свойством хранения данных при отсутствии приложенного напряжения.

В сравнении с EEPROM и Flash -памятью время записи данных в ЗУ этого типа и потребляемая мощность намного меньше (менее 70 нс против нескольких миллисекунд), а ресурс по циклам записи намного выше (не менее 10 11 против 10 5 …10 6 циклов для EEPROM ).

FRAM должна стать в ближайшем будущем самой популярной памятью в цифровых устройствах. FRAM будет отличаться не только быстродействием на уровне DRAM , но и возможностью сохранять данные при отключении энергии. Словом, FRAM может вытеснить не только медленную Flash , но и обычную ОЗУ типа DRAM . Сегодня ферроэлектрическая память находит ограниченное применение, к примеру, в RFID -тэгах. Ведущие компании, в числе которых Ramtron, Samsung, NEC, Toshiba , активно развивают FRAM . Примерно к 2015 году на рынок должны поступить n -гигабайтные модули FRAM .

Указанные свойства FRAM обеспечивает сегнетоэлектрик (перовскит), используемый в качестве диэлектрика накопительного конденсатора ячейки памяти. При этом сегнетоэлектрическое ЗУ хранит данные не только в виде заряда конденсатора (как в традиционных ОЗУ), но и виде электрической поляризации кристаллической структуры сегнетоэлектрика. Сегнетоэлектрический кристалл имеет два состояния, которые могут соответствовать логическим 0 и 1.

Термин FRAM еще не устоялся. Первые FRAM получили название – ферродинамические ОЗУ. Однако в настоящее время в качестве запоминающих ячеек используется сегнетоэлектрик и сейчас FRAM часто называют сегнетоэлектрическим ОЗУ.

Первые FRAM имели 2Т /2С -архитектуру (рис.26.17, а), на основе которой выполняется и большинство современных микросхем сегнетоэлектрической памяти. Ячейка такого типа, в которой каждому биту соответствует индивидуальный опорный бит, позволяет определить разницу зарядов с высокой точностью. А благодаря считыванию дифференциального сигнала исключается влияние разброса параметров конденсаторов ячеек. Позже появились FRAM с архитектурой 1Т /1С (рис.26.17, б). Достоинство микросхем с такой архитектурой – меньшая, чем в обычных схемах площадь ячейки и, следовательно, меньшая стоимость микросхемы в пересчете на единицу информационной емкости.

На рис.26.18 приведена структурная схема сегнетоэлектрического ОЗУ (FRAM ) объемом 1 Мбит и параллельным интерфейсом доступа FM 20L 08 фирмы Ramtron . В таблице 26.1. показаны выводы микросхемы.

FM 20L 08 – энергонезависимая память с организацией 128К×8, которая считывается и записывается подобно стандартному статическому ОЗУ. Сохранность данных обеспечивается в течение 10 лет, при этом, нет необходимости задумываться о надежности хранения данных (неограниченная износостойкость), упрощается проектирование системы и исключается ряд недостатков альтернативного решения энергонезависимой памяти на основе статического ОЗУ с резервным батарейным питанием. Быстрота записи и неограниченное количество циклов перезаписи делают FRAM лидером по отношению к другим типам энергонезависимой памяти.

Рис.26.17. Ячейка памяти типа 2Т /2С (а) и 1Т /1С (б)

Рис.26.18. Структурная схема FRAM FM 20L 08

В электронных устройствах одним из наиболее важных элементов, обеспечивающих работу всей системы считается память, которая делится на внутреннюю и внешнюю. Элементами внутренней памяти считают ОЗУ, ПЗУ и кеш процессора. Внешняя – это всевозможные накопители, которые подключаются к компьютеру из вне – жесткие диски, флешки, карты памяти и др.

Постоянное запоминающее устройство (ПЗУ) служит для хранения данных, изменение которых в процессе работы невозможно, оперативное запоминающее устройство (ОЗУ) для помещения в её ячейки информации от процессов, происходящих в текущий момент времени в системе, а кеш память используется для срочной обработки сигналов микропроцессором.

Что такое ПЗУ

ПЗУ или ROM (Read only memory – Только для чтения) – типичное устройство хранения неизменяемой информации, включенное в состав почти каждого компонента ПК и телефона и требующееся для запуска и работы всех элементов системы. Содержимое в ROM записано производителем аппаратного обеспечения и содержит директивы для предварительного тестирования и запуска устройства.

Свойствами ПЗУ являются независимость от питания, невозможность перезаписи и возможность хранить информацию длительные сроки. Информация, содержащаяся в ROM, вносится разработчиками однажды, и аппаратное обеспечение не допускает её стирания, хранится до окончания службы компьютера или телефона, или его поломки. Конструктивно ПЗУ защищены от повреждений при перепадах напряжения, поэтому нанести ущерб содержащейся информации могут только механические повреждения.

По архитектуре делятся на масочные и программируемые:

  • В масочных устройствах информация вносится с помощью типичного шаблона на финальном этапе изготовления. Содержащиеся данные не могут быть перезаписаны пользователем. Разделяющими компонентами выступают типичные pnp элементы транзисторов или диодов.
  • В программируемых ПЗУ (Programmable ROM) информация представлена в виде двумерной матрицы проводящих элементов, между которыми расположен pn переход полупроводникового элемента и металлическая перемычка. Программированием такой памяти происходит устранением или созданием перемычек посредством тока высокой амплитуды и продолжительности.

Основные функции

В блоки памяти ROM вносят информацию по управлению аппаратным обеспечением заданного устройства. ПЗУ включает в себя следующие подпрограммы:

  • Директиву старта и контроля за работой микропроцессора.
  • Программу проверяющую работоспособность и целостность всего аппаратного обеспечения, содержащегося в компьютере или телефоне.
  • Программу дающую начало работе системы и завершающее её.
  • Подпрограммы, управляющие периферийным оборудованием и модулями ввода/вывода.
  • Данные о адресе операционной системы на физическом накопителе.

Архитектура

Постоянные запоминающие устройства выполнены в виде двухмерного массива . Элементами массива являются наборы проводников, часть которых не затрагивается, прочие ячейки разрушаются. Проводящие элементы являются простейшими переключателями и формируют матрицу за счет поочередного соединения их к рядам и строкам.

Если проводник замкнут, он содержит логический ноль, разомкнут – логическую единицу. Таким образом в двухмерный массив физических элементов вносят данные в двоичном коде, которые считывает микропроцессор.

Разновидности

В зависимости от способа изготовления устройства ПЗУ делят на:

  • Обыкновенные , создаваемые фабричным способом. Данные в таком устройстве не изменяются.
  • Программируемые ПЗУ, допускающие изменение программы один раз.
  • Стираемое программируемое оборудование , позволяющее очищать данные с элементов и перезаписывать их, например, посредством ультрафиолета.
  • Электрически очищаемые перезаписываемые элементы, в которых допускается многократное изменение . Такой вид применяется в HDD, SSD, Flash и других накопителях. На такой же микросхеме записан BIOS на материнских платах.
  • Магнитные , в которых информация хранилась на намагниченных участках, чередующихся с не намагниченными. В них была возможна перезаписи.

Разница между RAM и ROM

Отличия между двумя видами аппаратного обеспечения, заключаются в её сохранности при отключении питания, скорости и возможности доступа к данным.

В оперативной памяти (Random access memory или RAM) информация содержится в последовательно расположенных ячейках к каждой из которых возможно получить доступ посредством программных интерфейсов . RAM содержит данные о выполняемых в текущий момент процессах в системе, таких как программы, игры, содержит значения переменных и списки данных в стеках и очередях. При отключении компьютера или телефона RAM память полностью очищается . По сравнению с ROM памятью она отличается большей скоростью доступа и потреблением энергии.

ROM память работает медленнее, и для своей работы потребляет меньше энергии. Главное отличие заключается в невозможности изменять входящие данные в ПЗУ, в то время как в ОЗУ информация меняется постоянно.

Доброго времени суток.

Если вы хотите заполнить пробел в знаниях относительно того, что такого ПЗУ, то попали по адресу. В нашем блоге вы сможете прочитать об этом емкую информацию на языке, доступном для простого пользователя.


Расшифровка и объяснение

Буквы ПЗУ являются заглавными в формулировке «постоянное запоминающее устройство». Его еще можно равноправно назвать «ROM». Английская аббревиатура расшифровывается как Read Only Memory, а переводится - память только для чтения.

Эти два названия раскрывают суть предмета нашей беседы. Речь идет об энергонезависимом типе памяти, которую можно только считывать. Что это значит?

  • Во-первых, на ней хранятся неизменяемые данные, заложенные разработчиком при изготовлении техники, то есть те, без которых ее работа невозможна.
  • Во-вторых, термин «энергонезависимый» указывает на то, что при перезагрузке системы данные с нее никуда не деваются, в отличие от того, как это происходит с оперативной памятью.

Стереть информацию с такого устройства можно только специальными методами, к примеру, ультрафиолетовыми лучами.

Примеры

Постоянная память в компьютере - это определенное место на материнской плате, в котором хранятся:

  • Тестовые утилиты, проверяющие правильность работы аппаратной части при каждом запуске ПК.
  • Драйвера управления главными периферийными девайсами (клавиатурой, монитором, дисководом). В свою очередь, те слоты на материнской плате, в функции которых не входит включение компьютера, не хранят свои утилиты в ROM. Ведь место ограничено.
  • Прогу начальной загрузки (BIOS), которая при включении компа запускает загрузчик операционной системы. Хотя нынешний биос может включать ПК не только с оптических и магнитных дисков, но и с USB-накопителей.

В мобильных гаджетах постоянная память хранит в себе стандартные приложения, темы, картинки и мелодии. При желании пространство для дополнительной мультимедийной информации расширяют с помощью перезаписываемых SD-карт. Однако если устройство используется только для звонков, в расширении памяти нет необходимости.

В целом, сейчас ROM есть в любой бытовой технике, автомобильных плеерах и прочих девайсах с электроникой.

Физическое исполнение

Чтобы вы лучше могли познакомиться с постоянной памятью, расскажу больше о ее конфигурации и свойствах:

  • Физически представляет собой микросхему со считывающим кристаллом, если входит в комплект компьютера, к примеру. Но бывают и самостоятельные массивы данных (компакт-диск, грампластинка, штрих-код и т. д.).
  • ПЗУ состоит из двух частей «А» и «Э». Первая - диодно-трансформаторная матрица, прошиваемая при помощи адресных проводов. Служит для хранения программ. Вторая предназначена для их выдачи.
  • Схематически состоит из нескольких одноразрядных ячеек. При записи определенного бита данных выполняется запайка к корпусу (ноль) или к источнику питания (единица). В современных устройствах схемы соединяются параллельно для увеличения разрядности ячеек.
  • Объем памяти варьируется от нескольких килобайт до терабайт, в зависимости от того, к какому устройству она применена.

Виды

Разновидностей ПЗУ несколько, но чтобы не терять ваше время, назову только две основных модификации:

  • Первая буква добавляет слово «programmable» (программируемое). Это значит, что пользователь может один раз самостоятельно прошить устройство.

  • Еще две буквы впереди скрывают под собой формулировку «electrically erasable» (электрически стираемое). Такие ПЗУ можно перезаписывать сколько угодно. К этому типу относится флеш-память.

В принципе это всё, что я хотел сегодня до Вас донести.

Буду рад, если вы подпишетесь на обновления и будете заходить чаще.

Типы ПЗУ

ПЗУ – расшифровывается как постоянное запоминающее устройство, обеспечивающее энергонезависимое хранение информации на каком-либо физическом носителе. По способу хранения информации ПЗУ можно разделить на три типа:

1. ПЗУ, основанные на магнитном принципе хранения информации.

Принцип работы этих устройств основан на изменении направления вектора намагниченности участков ферромагнетика под воздействием переменного магнитного поля в соответствии со значениями битов записываемой информации.

Ферромагнетик – вещество, способное при температуре ниже определенного порога (точки Кюри) обладать намагниченностью при отсутствии внешнего магнитного поля.

Считывание записываемых данных в таких устройствах основано на эффекте электромагнитной индукции или магниторезистивного эффекта. Этот принцип реализуется в устройствах с подвижным носителем в виде диска или ленты.

Электромагнитной индукцией называется эффект возникновения электрического тока в замкнутом контуре при изменении магнитного потока проходящего через него.

Магниторезистивный эффект основан на изменении электрического сопротивления твердотельного проводника под действием внешнего магнитного поля.

Основное преимущество данного типа – большой объем хранимой информации и низкая стоимость единицы хранимой информации. Основной недостаток – наличие подвижных частей, большие габариты, низкая надежность и чувствительность к внешним воздействиям (вибрация, удары, перемещения и т.д.)

2. ПЗУ, основанные на оптическом принципе хранения информации.

Принцип работы этих устройств основан на изменении оптических свойств участка носителя, например, за счет изменения степени прозрачности или коэффициента отражения. Примером ПЗУ, основанном на оптическом принципе хранения информации, могут служит CD -, DVD-, BluRay - диски.

Основное достоинство данного типа ПЗУ – низкая стоимость носителя, удобство транспортирования и возможность тиражирования. Недостатки – низкая скорость чтения/записи, ограниченное количество перезаписей, потребность в считывающем устройстве.

3. ПЗУ, основанные на электрическом принципе хранения информации.

Принцип работы этих устройств основан на пороговых эффектах в полупроводниковых структурах – возможности хранения и регистрации наличия заряда в изолированной области.

Этот принцип используется в твердотельной памяти – памяти, не требующей использование подвижных частей для чтения/записи данных. Примером ПЗУ, основанном на электрическом принципе хранения информации, может служить flash – память.

Основное достоинство данного типа ПЗУ – высокая скорость чтения/записи, компактность, надежность, экономичность. Недостатки – ограниченное число перезаписи.

На данный момент существуют или находятся на этапе разработки и другие, «экзотические» типы постоянной памяти, такие как:

Магнитно-оптическая память – память, сочетающая свойства оптических и магнитных накопителей. Запись на такой диск осуществляется путем нагрева ячейки лазером до температуры около 200 о С. Разогретая ячейка теряет магнитный заряд. Далее ячейку можно остудить, что будет означать, что в ячейку записан логический ноль, либо зарядить заново магнитной головкой, что будет означать, что в ячейку записана логическая единица.

После охлаждения магнитный заряд ячейки изменить нельзя. Считывание производится лазерным лучом меньшей интенсивности. Если в ячейки содержится магнитный заряд, то лазерный луч поляризуется, а считывающее устройство определяет, является ли лазерный луч поляризованным. За счет «закрепления» магнитного заряда при охлаждении магнитно-оптические обладают высокой надежностью хранения информации и теоретически могут иметь плотность записи большую, чем ПЗУ основанное только на магнитном принципе хранения информации. Однако заменить «жесткие» диски они не могут из-за очень низкой скорости записи, обусловленную необходимостью высокого нагрева ячеек.

Широкого распространения магнитно-оптическая память не получила и используется очень редко.

Молекулярная память – память, основанная на технологии атомной туннельной микроскопии, позволяющей изымать или добавлять в молекулы отдельные атомы, наличие которых затем может считываться специальными чувствительными головками. Данная технология была представлена в середине 1999 года компанией Nanochip, и теоретически позволяла достичь плотности упаковки около 40 Гбит/см 2 , что в десятки раз превосходит существующие серийные образцы «Жестких» дисков, однако слишком низкая скорость записи и надёжность технологии не позволяет говорить о практическом использовании молекулярной памяти в обозримом будущем.

Голографическая память – отличается от существующих наиболее распространенных типов постоянной памяти, использующих для записи один или два поверхностных слоя, возможностью записывать данных по «всему» объему памяти с помощью различных углов наклона лазера. Наиболее вероятно применение такого типа памяти в ПЗУ на базе оптического хранения информации, где уже не в новинку оптические диски с несколькими информационными слоями.

Существуют и другие, совсем уж экзотические типы постоянной памяти, но они даже в лабораторных условиях балансируют на грани научной фантастики, поэтому упоминать о них не буду, поживем – увидим.


  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то