Радиорелейные станции. Радиорелейные линии связи — особенности, применение

Радиорелейные линии (РРЛ) представляют собой цепочку приемо-передающих радиостанций (оконечных, промежуточных, узловых), которые осуществляют последовательную многократную ретрансляцию (прием, преобразование, усиление и передачу) передаваемых сигналов.

В зависимости от используемого вида распространения радиоволн РРЛ можно разделить на две группы: прямой видимости и тропосферные .

РРЛ прямой видимости являются одним из основных назем-ных средств передачи сигналов телефонной связи , программ звукового и ТВ вещания, цифровых данных и других сообщений на большие расстояния. Ширина полосы частот сигналов многоканальной телефонии и ТВ составляет несколько десятков мегагерц, поэтому для их передачи практически могут быть использованы диапазоны только дециметровых и сантиметровых волн, общая ширина спектра которых составляет 30 ГРц.

Кроме того, в этих диапазонах почти полностью отсутствуют атмосферные и промышленные помехи. Расстояние между соседними станциями (протяженность пролета) R зависит от рельефа местности и высоты подъема антенн. Обычно его выбирают близким или равным расстоянию прямой видимости R o . Для сферической поверхности Земли с учетом атмосферной рефракции

где h 1 и h 2 - высоты подвеса соответственно передающей и приемной антенн (в метрах). В реальных условиях, в случае мало пересеченной местности 40 - 70 км при высоте антенных мачт 60-100м.

Рис. 11.1. Условное изображение РРЛ.

Комплекс приемопередающей аппаратуры РРЛ для передачи информации на одной несущей частоте (или на двух несущих частотах при организации дуплексных связей) образует широкополосный канал, называемый стволом (радиостволом). Оборудование, предназначенное для передачи телефонных сообщений и включающее в себя кроме радиоствола модемы и аппаратуру объединения и разъединения каналов, называют телефонным стволом.

Соответствующий комплекс аппаратуры для передачи полных ТВ сигналов (вместе с сигналами звукового сопровождения, а часто и звукового вещания) называют ТВ стволом. Большинство современных РРЛ являются многоствольными. При этом, кроме рабочих стволов, могут быть один или два резервных ствола, а иногда и отдельный ствол служебной связи. С увеличением числа стволов возрастает соответственно и объем оборудования (число передатчиков и приемников) на станциях РРЛ.

Часть РРЛ (один из возможных вариантов) условно изображена на рис. 11.1, где непосредственно отмечены радиорелейные станции трех типов: оконечная (ОРС), промежуточная (ПРС) и узловая (УРС).

На ОРС производится преобразование сообщений, поступающих по соединительным линиям от междугородных телефонных станций (МТС), междугородных ТВ аппаратных (МТА) и междугородных вещательных аппаратных (МВА), в сигналы, передаваемые по РРЛ, а также обратное преобразование. На ОРС начинается и заканчивается линейный тракт передачи сигналов.


С помощью УРС разветвляются и объединяются потоки информации, передаваемые по разным РРЛ, на пересечении которых и располагается УРС. К УРС относят также станции РРЛ, на которых осуществляется ввод и вывод телефонных, ТВ и других сигналов, посредством которых расположенный вблизи от УРС населенный пункт связывается с другими пунктами данной линии.

Рис. 11.2. Структурная схема одноствольного ретранслятора РРЛ.

1 , 10 - антенны; 2,6 - фидерные тракты; 3,7 - приемо-передатчики; 4,9 - приемники;
5,8 - передатчики.

На ОРС или УРС всегда имеется технический персонал, который обслуживает не только эти станции, но и осуществляет контроль и управление с помощью специальной системы телеобслуживания ближайшими ПРС. Участок РРЛ (300-500 км) между соседними обслуживаемыми станциями делится примерно пополам так, что одна часть ПРС входит в зону телеобслуживания одной УРС (ОРС), а другая часть ПРС обслуживается другой УРС (ОРС).

ПРС выполняют функции активных ретрансляторов без выделения передаваемых сигналов электросвязи и введения новых и, как правило, работают без постоянного обслуживающего персонала. Структурная схема ретранслятора ПРС приведена на рис. 11.2. При активной ретрансляции сигналов на ПРС используют две антенны, расположенные на одной и той же мачте. В этих условиях трудно предотвратить попадание части мощности усиленного сигнала, излучаемого передающей антенной, на вход приемной антенны. Если не принять специальных мер, то указанная связь выхода и входа усилителя ретранслятора может привести к его само-возбуждению, при котором он перестает выполнять свои функции.



Рис. 11.3. Схемы распределения частот в РРЛ.

Эффективным способом устранения опасности самовозбуждения является разнесение по частоте сигналов на входе и выходе ретранслятора. При этом на ретрансляторе приходится устанавливать приемники и передатчики, работающие на разных частотах. Если на РРЛ предусматривается одновременная связь в прямом и обратном направлениях, то число приемников и передатчиков удваивается, и такой ствол называется дуплексным (см. рис. 11.2). В этом случае каждая антенна на станциях используется как для передачи, так и для приема высокочастотных сигналов на каждом направлении связи.

Одновременная работа нескольких радиосредств на станциях и на РРЛ в целом возможна лишь при устранении взаимовлияния между ними. С этой целью создаются частотные планы, т.е. планы распределения частот передачи, приема и гетеродинов на РРЛ.

Исследования показали, что в предельном случае для двусторонней связи по РРЛ (дуплексный режим) можно использовать лишь две рабочие частоты ƒ 1 и ƒ 2 . Пример РРЛ с таким двухчастотным планом условно изображен на рис. 11.3, а. Чем меньше на линии используется рабочих частот, тем сложнее устранить взаимовлияние сигналов, совпадающих по частоте, но предназначенных разным приемникам. Во избежание подобных ситуаций на РРЛ стараются использовать антенны с узкой диаграммой направленности, с возможно меньшим уровнем боковых и задних лепестков; применяют для разных направлений связи волны с различным типом поляризации; располагают отдельные станции так, чтобы трасса представляла собой некоторую ломаную линию.

Применение указанных мер не вызывает сложностей, если связь осуществляется в диапазоне сантиметровых волн. Реальные антенные устройства, работающие на менее высоких частотах, обладают меньшим направленным действием. Поэтому на РРЛ дециметрового диапазона приходится разносить частоты приема на каждой станции. В этом случае для прямого и обратного направлений связи выбирают различные пары частот ƒ 1 , ƒ 2 и ƒ 3 , ƒ 4 (четырехчастотный план) (см. рис. 11.3, б), и необходимая для системы связи полоса частот возрастет вдвое. Четырехчастотный план не требует указанных выше мер защиты, однако он неэкономичен с точки зрения использования полосы частот. Число радиостволов, которое может быть образовано в выделенном диапазоне частот, при четырехчастотном плане вдвое меньше, чем при двухчастотном.

Для радиорелейной связи в основном используются сантиметровые волны, поэтому двухчастотный план получил наибольшее распространение.

25.01.2011

Радиорелейная связь (от радио и французского relais – промежуточная станция), радиосвязь, осуществляемая при помощи цепочки приемо-передающих радиостанций, как правило, отстоящих друг от друга на расстоянии прямой видимости их антенн. Таким образом, радиорелейная связь – это особый вид радиосвязи на ультракоротких волнах с многократной ретрансляцией сигнала.

Радиорелейная связь первоначально применялась для организации многоканальных линий телефонной и телевизионной связи, в которых сообщения передавались с помощью аналогового электрического сигнала. Одна из первых таких линий протяженностью 200 км с 5 телефонными каналами появилась в США в 1935 году. Она соединяла Нью-Йорк и Филадельфию.
В 1932–1934 г.г. в СССР была разработана приёмопередающая аппаратура, работающая на метровых волнах, и созданы опытные линии связи Москва–Кашира и Москва–Ногинск. Первое отечественное оборудование «Краб», используемое на линии радиорелейной связи через Каспийское море, между Красноводском и Баку (1953–1954 гг.), работало в метровом диапазоне.

В те годы для радиорелейных линий считалось наиболее целесообразным применение импульсной модуляции, техника которой была хорошо освоена в радиолокации, одновременно с временным уплотнением. Казалось, что при тогдашнем уровне развития технологий это сулит большие преимущества. Но цикл теоретических исследований и экспериментальных проработок, проведенных в Научно-исследовательском институте радио, подтвердил складывающееся в то время у специалистов в области радиорелейной связи мнение, что сочетание частотной модуляции с частотным уплотнением позволит создать линии, не уступающие даже наиболее совершенным коаксиальным кабельным системам. Надо подчеркнуть, что сказанное относится к концу 1940-х – началу 1950-х годов. А поскольку, как известно, развитие общества и науки идет по спирали, то сегодня современные новейшие технологии позволили вернуться к цифровым методам передачи на более высоком уровне – передача данных, цифровая телефония и телевидение.

В середине 50–х годов прошлого века в России было разработано семейство радиорелейной аппаратуры «Стрела», работавшей в диапазоне 1600-2000 МГц: «Стрела П» – для пригородных линий, обеспечивающих передачу 12 телефонных каналов; «Стрела Т» – для передачи одной телевизионной программы на расстояние 300–400 км и «Стрела М» – для магистральных линий емкостью 24 канала и протяжённостью до 2500 км. На аппаратуре «Стрела» был построен ряд первых отечественных радиорелейных линий (РРЛ). Вот некоторые из них: Москва – Рязань, Москва – Ярославль – Нерехта – Кострома –Иваново, Фрунзе – Джалал Абад, Москва – Воронеж, Москва – Калуга, Москва – Тула.

Следующая разработка для РРЛ – аппаратура Р-60/120. Она позволяла создавать 3–6-ствольные магистральные линии длиной до 2500 км для передачи 60–120 телефонных каналов и на дальности до 1000 км для передачи телевизионных программ с выполнением рекомендаций МККТ и МККР по качественным показателям. Радиорелейные линии на базе аппаратуры Р–60/120 были построены в различных районах СССР. Одной из первых и, пожалуй, самой протяженной была линия Москва – Ростов-на-Дону. Оборудование типа Р-60/120, работавшее в диапазоне 2 ГГц, было предназначено для внутризоновых РРЛ.

Чтобы передавать телевизионные сигналы на большие расстояния, а также сигналы телефонных каналов, нужно было создать радиорелейное оборудование магистральных РРЛ.

Магистральным РРЛ были выделены соответствующие полосы частот в диапазонах 4 и 6 ГГц. В таких диапазонах, при одинаковых габаритных размерах антенн и прочих равных условиях, излучаемая в эфир мощность увеличивается в 2,5–3 раза за счёт большого коэффициента усиления антенны. Это было весьма существенно для достижения необходимых качественных показателей передаваемых сигналов телевидения и многоканальной телефонии. Первой отечественной радиорелейной системой магистральной радиорелейной связи была система Р-600, работающая в диапазоне 4 ГГц. Первая магистральная радиорелейная линия Ленинград–Таллин, оборудованная аппаратурой Р-600, была построена в 1958 г., после этого началось их серийное производство.

Система и аппаратура Р-600 послужили основой дальнейшего совершенствования радиорелейного оборудования для магистральных РРЛ. В период 1960-1970 г.г. были разработаны, произведены и внедрены в эксплуатацию новые виды оборудования семейства Р-600: Р-600М, Р-6002М, Р-600-2МВ и «Рассвет», также работающие в диапазоне 4 ГГц. В телевизионном стволе обеспечивалась передача видеосигнала и сигнала звукового сопровождения.

Важнейшей разработкой, проводившейся в СССР в середине 60-х годов, было создание магистральной радиорелейной системы большой ёмкости «Восход». Она предназначалась, в первую очередь, для РРЛ Москва – Дальний Восток. Разработка системы связи, радиоаппаратуры, источников гарантированного электропитания, системы резервирования и методов контроля качества работы аппаратуры проводилась с учётом обеспечения высокой надёжности линии. Расчётный коэффициент исправного действия линии протяжённостью 12 500 км составлял 0,995, а потеря достоверности при передаче бинарной информации без кодовой защиты – не более. Сверхвысокочастотная (СВЧ) приёмопередающая аппаратура «Восход» работала в полосе частот 3400-3900 МГц. Все активные элементы аппаратуры «Восход» были выполнены на полупроводниковых приборах, исключение составляли СВЧ выходные ступени передатчиков и гетеродинных трактов, где использовались лампы бегущей волны (ЛБВ).

Для обеспечения высокой надежности в системе «Восход» было предусмотрено применение разнесенного по высоте приёма с быстродействующей системой автоматического выбора и параллельная работа передатчиков. Система разнесенного приёма, весьма эффективно решая задачу борьбы с замиранием сигналов на интервалах РРЛ, одновременно позволяла автоматически резервировать приёмники станции. Параллельная работа передатчиков обеспечивала их автоматическое резервирование и удвоение выходной мощности передатчиков, которая в аппаратуре «Восход» составляла 10 Вт. Вся система автоматического резервирования приёмопередающего оборудования замыкалась в пределах каждой станции, поэтому в «Восходе» не было необходимости передавать по служебным каналам какие-либо сигналы для управления работой системы резервирования (как это имеет место в радиорелейных системах с поучастковой системой резервирования стволов). Таким образом, особенностью системы «Восход» являлось отсутствие специального резервного ствола, что позволяло сделать все радиостволы рабочими и, следовательно, лучше использовать отведенную для системы полосу радиочастот.

В системе «Восход» было предусмотрено 8 широкополосных рабочих стволов, из которых 4 предназначались для работы на основном магистральном направлении и 4 – на ответвлениях или пересекающих магистралях. Все стволы универсальны, одинаково пригодны как для передачи сигналов многоканальной телефонии, так и для передачи сигналов телевизионных программ.

Телефонный ствол системы обеспечивал передачу сигналов 1920 каналов ТЧ в случае, когда аппаратура промежуточных станций размещалась в кабинах наверху башни (т. е. при коротких волноводах), а аппаратура узловых и оконечных станций – в наземных помещениях. Пропускная способность телефонного ствола при размещении аппаратуры в наземных помещениях на всех станциях составляла 1020 каналов ТЧ. В нижней части группового спектра телефонного ствола обеспечивалась передача сигналов служебной связи и дистанционного обслуживания (телеобслуживания). Система телеобслуживания позволяла иметь до 16 автоматизированных промежуточных станций между соседними узловыми станциями.

Телевизионный ствол системы давал возможность передавать видеосигнал и четыре канала тональных (звуковых) частот, организованных на поднесущих частотах и расположенных выше спектра видеосигнала. Эти тональные звуковые каналы использовались как для передач сигналов звукового сопровождения телевидения, так и радиовещания.

Следующим важным этапом в развитии техники радиорелейной связи стала разработка в 1970 году комплекса унифицированных радиорелейных систем связи «КУРС». Комплекс охватывал четыре системы связи, работающие в диапазонах 2, 4, 6 и 8 ГГц. Аппаратура в диапазонах 4 и 6 ГГц предназначалась для магистральных радиорелейных линий (РРЛ), а в диапазонах 2 и 8 ГГц – для зоновых РРЛ.

В приёмопередающей аппаратуре различных диапазонов частот широко использовались унифицированные узлы и блоки (УПЧ, умножители частоты и т. п.). Все они были выполнены на наиболее совершенных для того времени полупроводниковых приборах и других комплектующих изделиях отечественного производства.

Аппаратура КУРС-4 и КУРС-6 отличалась от предыдущих разработок и своей компактностью. Например, в системе КУРС-4 в одной стойке шириной 600 мм размещалось 4 приёмника или 4 передатчика.

К середине 70-х годов в стране была построена уникальная радиорелейная линия, протяженность которой составляла около 10 тыс. км, емкостью каждого ствола, равной 14 400 каналов тональной частоты. В эти годы суммарная протяженность радиорелейных линий в СССР превысила 100 тыс. км.

Последней разработкой в СССР для магистральной радиорелейной связи было создание нового поколения оборудования «Радуга». В его состав вошли: приёмопередающее оборудование, работающее в диапазоне 4 ГГц – «Радуга- 4»; приёмопередающее оборудование, работающее в диапазоне 6 ГГц – «Радуга- 6»; оборудование резервирования «Радуга».

Для «Радуги» было разработано новое поколение унифицированного оборудования «Рапира-М», включающего: оконечную аппаратуру телефонных и телевизионных стволов; ЧМ-модемы; аппаратуру служебной связи и телеобслуживания.

Магистральная радиорелейная система «Радуга-Рапира-М» позволяла создавать магистральные РРЛ в двух диапазонах частот: 4 ГГц (в полосе частот 3400–3900 МГц) и 6 ГГц (в полосе частот 5670–6170 МГц).

В каждом диапазоне возможна организация до семи рабочих стволов и одного резервного ствола. По каждому из рабочих стволов обеспечивалась:
в режиме передачи многоканальной (аналоговой) телефонии – передача сигналов 1920 каналов ТЧ и при необходимости дополнительно – 48 каналов ТЧ в спектре 60–252 кГц, а также передача в одном из телефонных стволов сигналов служебной связи в спектре 0,3–52 кГц, которые необходимы для нормальной работы РРЛ;
в режиме передачи телевидения – передача видеосигнала и сигналов 4 каналов звукового сопровождения и вещания.

Технические параметры оборудования системы «Радуга-Рапира-М» обеспечивали высокие качественные показатели и надежность работы каналов и трактов РРЛ, оснащенных этим оборудованием.

Таким образом, в России со времен СССР существует широко развитая сеть аналоговых магистральных и внутризоновых радиорелейных линий, что делает экономически целесообразным использование существующих радиорелейных станций для организации цифровых трактов. В настоящее время процесс модернизации аналоговых радиорелейных линий в цифровые называют цифровизацией.

К числу радиорелейных станций (РРС) цифровизация которых возможна, относятся: «Восход-М», «Курс-4», «Курс-6», «Курс-4М», «ГТТ-70/4000», «ГТТ-70/8000», «Ракита-8», «Радуга-4», «Радуга-6», «Радуга-АЦ», «Комплекс» и др. При цифровизации указанных РРС используется оборудование, обычно подключаемое по промежуточной частоте 70 МГц. Кроме того, возможен вариант дополнительной передачи цифрового сигнала Е1 (2048 кбит/с) без нарушения работы аналоговой РРЛ.

В конце прошлого века были разработаны различные варианты цифровых модемов на скорости от 2 до 34 Мбит/с. В результате, было создано семейство цифровых модемов для аналоговых РРЛ на скоростях: 2,048 Мбит/с, 8,448 Мбит/с, 17 Мбит/с и 34,368 Мбит/с.

Для организации передачи различной цифровой информации со скоростями 8,448 Мбит/с, 17 Мбит/с или 34,368 Мбит/с использовались свободные от аналоговой информации стволы. Модемы на эти скорости могут комплектоваться мультиплексной аппаратурой и, таким образом, обеспечивать передачу соответственно 4, 8 или 16 цифровых потоков по 2,048 Мбит/с, что хорошо согласуется с принципами построения синхронной цифровой иерархии (SDH).

Во всех типах цифровых модемов обеспечивался контроль входного и выходного сигналов, обнаружение и генерация сигналов индикации аварийного состояния (СИАС) и контроль коэффициента ошибок без перерыва и с перерывом связи. Было организовано производство всех названных цифровых модемов, и они нашли свое применение на действующей сети РРЛ.

Радиорелейная связь обеспечивает высококачественные дуплексные каналы связи, практически мало зависящие от времени года и суток, от состояния погоды и атмосферных помех.

При организации радиорелейной связи необходимо учитывать зависимость ее от рельефа местности, что вызывает необходимость тщательного выбора трассы линии связи, невозможность работы или значительное уменьшение дальности действия радиорелейных станций в движении, возможность перехвата передач и создания радиопомех противником.

Радиорелейная связь может быть организована по направлению, по сети и по оси. Применение того или иного способа в каждом отдельном случае зависит от конкретных условий обстановки, особенностей организации управления, рельефа местности, важности данной связи, потребности в обмене, наличия средств и других факторов.

Направление радиорелейной связи - это способ организации связи между двумя пунктами управления (командирами, штабами) (Рис. 19).

Рисунок 19. Организация радиорелейной связи по направлениям

Этот способ обеспечивает наибольшую надежность работы направления связи и большую ее пропускную способность, но по сравнению с другими способами обычно требует повышенного расхода частот и радиорелейных станций при штабе, организующем связь. Кроме того, при организации связи по направлениям возникают трудности в размещении большого количества радиорелейных станций без взаимных помех на узле связи старшего штаба и исключается возможность маневра каналами между направлениями.

Сеть радиорелейной связи - это способ организации связи, при котором связь старшего пункта управления (командира, штаба) с несколькими подчиненными пунктами управления (командирами, штабами) осуществляется с помощью одного радиорелейного полукомплекта (Рис. 20).

Рисунок 20. Организация сети радиорелейной связи

При работе по сети передатчики радиорелейных станций подчиненных корреспондентов постоянно настроены на частоту приемника главной станции. Следует иметь в виду, что при отсутствии обмена все станции сети должны находиться в симплексном режиме, то есть в режиме дежурного приема. Право вызова предоставляется преимущественно главной станции. После вызова главной станцией одного из корреспондентов переговор между ними может продолжаться в дуплексном режиме. По окончании переговора станции вновь переключаются в симплексный режим. Количество радиорелейных станций в сети не должно превышать трех-четырех.

Связь по сети возможна главным образом при условии, когда главная станция работает на ненаправленную (штыревую) антенну. В зависимости от обстановки подчиненные корреспонденты могут использовать как штыревые, так и направленные антенны. Если подчиненные корреспонденты находятся относительно главной станции в каком-либо одном направлении или в пределах сектора направленного излучения антенны главной станции, то связь старшего командира с подчиненными может обеспечиваться по сети и при работе на направленную антенну, имеющую сравнительно большой угол направленности (60 - 70°).

Ось радиорелейной связи - это способ организации радиорелейной связи, при котором связь старшего пункта управления (командира, штаба) с несколькими подчиненными пунктами управления (командирами, штабами) осуществляется по одной радиорелейной линии, развернутой в направлении перемещения своего пункта управления или одного из пунктов управления 1подчиненных штабов (Рис. 23).


Рисунок 21. Организация оси радиорелейной связи

Связь пункта управления старшего штаба с пунктами управления осуществляется через опорные (вспомогательные) узлы связи, на которых производится распределение телефонных и телеграфных каналов между пунктами управления.

По сравнению со связью по направлениям организация радиорелейной связи по оси уменьшает количество радиорелейных станций на узле связи пункта управления старшего штаба и тем самым упрощает назначение частот этим станциям без взаимных помех, дает возможность осуществлять маневр каналами, обеспечивает более эффективное их использование, сокращает время для выбора и расчета трасс, облегчает управление радиорелейной связью и требует меньшего количества личного состава, необходимого для охраны и обороны промежуточных станций. Недостатками этого способа являются зависимость всей радиорелейной связи от работы осевой линии и необходимость в дополнительной коммутации каналов на опорных (вспомогательных) узлах связи. Пропускная способность оси определяется емкостью осевой линии, поэтому организация радиорелейной связи по оси целесообразна лишь в том случае, если на осевой линии используются многоканальные станции, а на линиях привязки - малоканальные. Применение для оси малоканальных станций не дает должного эффекта, так как требует значительного количества этих станций и частот.

Радиорелейная связь осуществляется непосредственно или через промежуточные (ретрансляционные) радиорелейные станции. Эти станции развертываются в тех случаях, когда связь непосредственно между оконечными станциями не обеспечивается вследствие удаленности их друг от друга или по условиям рельефа местности, а также при необходимости выделения каналов в промежуточном пункте.

Определение радиорелейной связи противопоставляют прямой радиосвязи. Сообщение абонента многократно передаётся промежуточными звеньями цепи, образующими радиорелейную линию (РРЛ). Название заложено англичанами: relay - смена. Физические особенности распространения заставили инженеров применять ультракороткие волны (УКВ): дециметровые, сантиметровые, реже, метровые. Потому что длинные самостоятельно способны обогнуть Земной шар. Причина применения радиорелейных линий объясняется необходимостью заложить большой объем информации, невозможный на низких частотах. Ограничения объясняет теорема Котельникова.

Примечание. Тропосферную связь считают подвидом радиорелейной.

Достоинства метода

  1. Первое преимущество названо – возможность заложить больший объем информации. Число каналов пропорционально ширине пропускания приёмопередающей аппаратуры. Величину повышает рост частоты. Упомянутый факт обусловлен формулами, описывающими колебательный контур, иные избирательные участки электрической цепи.
  2. Линейность распространения УКВ обусловливает высокие направленные свойства. Направленность растёт с увеличением площади антенны относительно длины волны. Короткие проще охватить тарелкой. Например, дальняя связь осуществляется длинами, достигающими километров. Сантиметровые, дециметровые волны легко охватываются сравнительно малыми параболоидами, значительно снижая требуемую мощность (за исключением случая тропосферной передачи информации), уровень помех. Шумы фактически ограничены внутренней неидеальностью входных каскадов приёмника.
  3. Устойчивость объясняется фактом прямой видимости тандема передатчик-приёмник. Мало влияния оказывают погода, время дня/года.

Указанные преимущества уже в начале второй половины XX века позволяли экономистам сопоставлять экономическую эффективность цепочки с кабелем. Допускалась возможность передачи аналоговых телевизионных каналов. Оборудование вышек значительно сложнее регенераторов. Однако кабелю восполнять сигнал приходится каждые 6 км. Вышки обычно разделены дистанциями 50-150 км, расстояние (км) ограничено величиной, равной квадратному корню из высоты вышки (м), умноженному на 7,2. Наконец, вечная мерзлота сильно усложняет прокладку кабельных линий, лепту вносят болота, скалы, реки.

Эксперты отмечают простоту развёртывания системы, экономию цветных металлов:

  • Медь.
  • Свинец.
  • Алюминий.

Отмечается малая эффективность автономных вышек. Неизбежно требуется обслуживающий персонал. Необходимо людей расквартировать, назначить несение вахты.

Принцип действия

Линия обычно реализует дуплексный (двунаправленный) режим передачи информации. Чаще применяли частотное деление каналов. Первыми европейскими соглашениями установили участки спектра:

  • Дециметровые волны:
  1. 460-470 МГц.
  2. 1300-1600 МГц.
  3. 1700-2300 МГц.

  • Сантиметровые:
  1. 3500-4200 МГц.
  2. 4400-5000 МГц.
  3. 5925-8500 МГц.
  4. 9800-10.000 МГц.

Метровые волны способны огибать препятствия, допускается использование ввиду отсутствия непосредственной видимости. Частоты выше 10 ГГц невыгодны, поскольку превосходно поглощаются осадками. Послевоенные конструкции компании Белла (11 ГГц) оказались неконкурентоспособными. Участок спектра чаще выбирают сообразно получению необходимого числа каналов.

История

Цифровой набор предложили раньше импульсного. Однако реализация идеи запоздала на 60 лет. Судьбу антибиотиков повторяет радиорелейная связь.

Изобретение идеи

Историки единогласно отдают приоритет открытия Иоганну Маттаушу, написавшему (1898) в журнале Заметки электротехника (том 16, 35-36) соответствующую публикацию. Критики отмечают несостоятельность теоретической части, предлагавшей создать телеграфные ретрансляторы. Однако год спустя Эмилем Гуарини-Форестио построен первый работоспособный экземпляр. Уроженец итальянской общины Фазано (Апулия), будучи студентом, 27 мая 1899 года запатентовал в бельгийском подразделении радио-репитер. Дату считают официальным днём рождения радиорелейной связи.

Устройство представлено комбинацией приёмопередающей аппаратуры. Конструкция производила демодуляцию принятого сигнала, последующее формирование, излучение ненаправленной антенной, формируя широковещательный канал. Фильтр защищал приёмный тракт от мощного излучения передатчика.

Ощущая недостатки представленной конструкции, Гуарини-Форезио (декабрь 1899) патентует (Швейцария, №21413) конструкцию направленной спиральной антенны (круговая поляризация), снабжённой металлическим рефлектором. Устройство исключало взаимный перехват вышками чужих сообщений. Дальнейшее усовершенствование произведено тесным сотрудничеством с Фернандо Понтселе. Вместе изобретатели провели попытку установить связь меж Брюсселем и Антверпеном, используя Малины промежуточным пунктом, местом базирования ретранслятора.

Конструкцию снабдили цилиндрическими антеннами диаметром 50 см, снабдив аппаратурой высотное здание. Отталкиваясь от результатов, полученных жарким июнем 1901 года, началась подготовка линии Париж – Брюссель дальностью 275 км. Шаг установки ретрансляторов составил 27 км. Декабрь принёс задумке успех, обеспечив время задержки сообщения 3..5 секунд.

Завидя радужные перспективы, Гуарини витал в облаках, предвкушая коммерческий успех (эквивалентный прибылям компании Белла) радиорелейной связи, устраняющей проблемы дальности. Реальность внесла коррективы. Потребовался широкий ассортимент решений:

  1. Питание приёмопередающей аппаратуры.
  2. Конструирование более удобоваримых антенн.
  3. Снижение стоимости оборудования.

Лишь 30 лет спустя изобретение подходящих электронных высокочастотных ламп позволило идее выплыть на поверхность. Изобретатель удостоился ордена Короны Италии.

Ламповые конструкции покоряют Ла-Манш

В 1931 году англо-французский консорциум (Компания международного телефона и телеграфа, Англия; Лаборатория телефонного оборудования, Франция), возглавляемый Андрэ Клавиром, покорил Ла-Манш (Дувр-Кале). Событие осветил журнал Radio News (август, 1931 г, стр. 107). Напомним суть проблемы: прокладка подводного кабеля обходится дорого, разрыв линии означает необходимость тратить значительные средства на ремонт. Инженеры двух стран решили преодолеть водное пространство (40 км) семидюймовыми (18 см) волнами. Экспериментаторы передали:

  1. Телефонный разговор.
  2. Кодированный сигнал.
  3. Изображения.

Система параболических антенн диаметром 10 футов (19-20 длин волн) давала два параллельных луча, конфигурация автоматически блокировала явление интерференции. Мощность потребления передатчика составила 25 Вт, КПД – 50%. Положительные результаты заставили предполагать возможность генерации более высоких частот, включая оптические. Сегодня очевидна нецелесообразность подобных замашек. Технические характеристики используемых вакуумных ламп замалчивались организаторами, упоминался лишь общий принцип действия, изобретённый Хайнрихом Баркхаузеном (Университет Дрездена), усовершенствованный французским экспериментатором Пирье. Затейники выражали благодарность учёным-предшественникам:

  1. Глагольева-Аркадьева А.А. изобрела (1922) микроволновый генератор (5 см..82 мкм) из взвешенных в масляном сосуде алюминиевых опилок.
  2. Профессор Эрнест Николс, доктор Тир проводили аналогичные исследования в США, добившись генерации волн, сравнимых с инфракрасным диапазоном.
  3. Разработчикам помогли бесчисленные эксперименты Густава Ферье, занимавшегося миниатюризацией вакуумных приборов в попытке снизить длину волны.

Ключом стала идея Баркхаузена получать колебания прямо внутри лампы (принцип действия современных магнетронов). Наблюдатели сразу отметили возможность закладки множества каналов. Дециметровое вещание тогда полностью отсутствовало. Диапазон на четыре порядка шире волн, широко используемых тогда телевидением. Резкий рост числа каналов вещания становился настоящей проблемой. Открываемые дециметровым спектром возможности явно превышали потребности.

Уже тогда заметка предполагала использование атомных переходов для генерации волн высокой частоты. Обсуждалось рентгеновское излучение. Журналисты окончили всеобщим призывом инженеров осваивать открывающиеся перспективы.

Дубль два

Несколькими годами позже опыты возобновились. Линия длиной 56 км соединила берега пролива:

  1. Община святого Инглевера (Франция).
  2. Замок Лимпн (Кент, Великобритания).

Создатели линии рассчитывали серьёзно устроиться, поставив две стальные вышки, украшенные параболическими антеннами диаметром 9,75 фута. Генератор спрятался позади рефлектора, тонкое жало волновода пробивало тарелку, облучатель сформирован шаровидным зеркалом. Оператору построили наземный пункт управления, оборудовав необходимыми панелями, включая регулятор напряжения. Функциональный набор предполагал использование азбуки Морзе, факса, телерадиовещания.

Супергетеродинный приёмник с кварцевой стабилизацией понижал входной сигнал до 300 кГц, декодируя амплитудную модуляцию. Согласно заявлениям организаторов, оснастка призвана заменить морские телефонные, телеграфные кабели. Американская компания Белла построила аналогичную систему, форсировав залив Кейп-Код.

Технологии радаров Второй мировой

Начавшаяся Вторая мировая война подстегнула развитие микроволновых генераторов. Помогли начинаниям американские (Стэнфорд) изобретатели клистрона (1937) Рассел и Зигмунд Варианы. Новые лампы помогли создать усилители, генераторы СВЧ диапазона. Ранее повально применяли трубки Баркхаузена-Курца, магнетроны с расщепленным анодом, выдающие слишком малую мощность. Демонстрация прототипа успешно прошла 30 августа 1937 года. Западные разработчики немедля занялись построением станций воздушного обзора.

Братья создали организацию, занимающуюся коммерциализацией изобретения. Линейный ускоритель протонов помогал медикам лечить некоторые заболевания (рак). Принцип действия использует концепцию модуляции скорости (1935) Оскара Хайля и его жены. Хотя эксперты предполагают полную неосведомлённость Варианов относительно существования сего научного труда.

Работы американского физика Хансена (1939) по ускорению частиц могли быть использованы с целью замедления электронов, передающих энергию выходному тракту радиочастоты. Резонатор Хансена иногда называют румбатроном. Клистроны использовались преимущественно фашистами, станции союзников начинялись магнетронами. Армия США построила мобильные системы связи на базе грузовых машин, переплывшие океан помогать союзникам. Армейцам понравилась идея быстро налаживать связь на дальние дистанции. После войны компания AT&T применяла 4-ваттные клистроны, создавая радиорелейную сеть, покрывающую Северную Америку. Собственную инфраструктуру, благодаря 2К25, построил Вестерн Юнион.

Главным двигателем бурного прогресса считают идею резкого расширения объёма каналов, покупаемого низкой стоимость возведения вышек. Релейные сети (РРЛС) окутали три линии обороны Северной Америки времён Холодной войны. Прототип TDX разработали (1946) Лаборатории Белла. Система быстро совершенствовалась, обновляя вакуумные лампы:

  • 416В.
  • 416С.

Послевоенные попытки организовать связь наталкивались на необходимость выбора элементной базы. Эксперты всерьёз обсуждали конструкции ламп, клистронов, жаловались на влияние дождя. Типичные проблемы незащищённой аналоговой связи. Первые линии (включая оборонные сети ПВО США) питались дизельным топливом. Башня непременно вмещала нижний этаж-хранилище горюче-смазочных материалов, чаще ядовитых.

Угасание технологии

Переход на сантиметровый диапазон требует упразднить металлокерамические, маячковые триоды. Взамен вводят клистроны, лампы бегущей волны. Антенные устройства, наоборот, выходят миниатюрнее. Сантиметровый диапазон сильно увеличивает потери родных спектру ДМВ коаксиальных соединений. Взамен решили ставить волноводы. Третье поколение TDX перешло на твердотельную электронику. Мобильные варианты передавали 24 канала с частотным делением. Каждый вмещал 18 телетайпных линий. Аналогичные системы разрабатывались повсеместно. Лишь в 1980-е пользу технологии подвергли сомнению, ввиду внедрения спутниковой связи. Оптический кабель перекрыл возможности радиолиний.

Это интересно! Группа спутников Риолит занималась перехватом советской радиорелейной связи.

Современное состояние

Ныне идея повсеместно применяется мобильными сетями наземного базирования. Учёные чаще рассматривают возможность переноса энергии. Источником идеи следует считать Николу Теслу, задумавшего ещё в начале XX века покрыть территорию США сетью передатчиков. Изобретатель демонстрировал полную безопасность высокочастотных разрядов. Сегодня эксперты подразумевают перенос действа в открытый космос.

Передача энергии

Открытие электромагнетизма заставило учёных ломать голову, осмысливая способы передачи энергии. Первым реализованным методом назовём тороидальный трансформатор Майка Фарадея (1831). Рассмотрев уравнения Максвела, Джон Генри Пойнтинг создал теорему (1884), описывающую процесс переноса мощности электромагнитной волной. Четыре года спустя Хайнрих Рудольф Герц подтвердил теорию практикой, наблюдая искровой разряд приёмного вибратора. Проблемой занимались Вильям Генри Вэрд (1871), Махлон Лумис (1872), оба желали использовать потенциал атмосферы Земли.

«Секретные» книги полны проектами Теслы победить фашистскую авиацию беспроводными излучателями. Факты упоминают посмертное тотальное изъятие бумаг изобретателя американскими спецслужбами. Катушки Теслы шутя позволяли получить высокочастотные разряды молнии. Башня Ворденклиф (1899) серьёзно пугала округу, производителей меди наводнила ужасом мысль беспроводной передачи. Тесла дистанционно поджигал трубки Гисслера (1891), лампочки накала.

Сербский изобретатель распространил методику генерации колебаний резонансными контурами LC. Методика гениального Теслы предусматривала запуск воздушных шаров на высоты 9,1 км. Пониженное давление облегчало передачу мегавольтных напряжений. Второй идеей изобретатель задумал заставить электрический потенциал Земного шара вибрировать, снабжая станции планеты энергией. Задуманная Мировая Беспроводная система могла также передавать информацию. Неудивителен испуг инвесторов, набивавших карман производством меди.

Метод питания поездов напряжением частотой 3 кГц запатентован Морисом Хатином и Морисом Лебланком (1892). В 1964 году Вильям Браун создал модель игрушечного вертолёта, питаемого энергией электромагнитной волны. Технологии RFID (например, ключ домофона) изобретены в середине 70-х:

  1. Марио Кардулло (1973).
  2. Коэлле (1975).

Позже появились карты доступа. Сегодня технологию заездили мобильные гаджеты, подзаряжающиеся беспроводным путём. Аналогичная технология используется индукционными варочными панелями, плавильными печами. Инженеры активно реализуют идеи компьютерных игр начала второго тысячелетия, планируя создать орбитальные солнечные электростанции, обороняемые боевыми дронами, питаемыми энергией электромагнитных волн. Большинству известен лазерный скальпель, использующий принцип передачи мощности коже пациента.

Это интересно! Концепцию беспроводных дронов (1959) выдвинула фирма Радеон, выполняя проект Министерства обороны. Канадский Исследовательский центр связи (1987) создал первый прототип, месяцами исполнявший возложенные функции.

Консорциум беспроводной передачи энергии

17 декабря 2008 года сформирована организация, призванная рекламировать стандарт беспроводной зарядки устройств Qi. Свыше 250 мировых компаний поддержали идею. Позже проект одобрили Нокиа, Хуавей, Вистеон. Заранее стали известны планы оснастить технологией мобильные устройства. В октябре 2016 обнародовали намерение создать зарядные точки доступа.

24 компании составили «стальной стержень» группы лоббистов. 2017 год пополнил список маркетинговыми менеджерами Apple. Касательно безопасности методики мнения учёных разделились. Эксперты сошлись в одном: вскорости методика индуктивной подзарядки станет общепринятой.

Связь с релейными системами

Подобно тому, как первые экспериментаторы преодолели Ла-Манш, ранние орбитальные солнечные электростанции станут питать спутники, продляя кардинально срок службы оборудования. Затем передача энергии станет глобальной, охватив все человеческие устройства. Технологию проще всего именовать релейной. Энергия станет приниматься, усиливаться, передаваться далее.

Это интересно! Питер Гласер первым (1968) предложил фармить энергию Солнца орбитальными заводами, передавая луч наземным станциям.

Лазерный луч эффективно переносит энергию. Мощность 475 Вт настигла мишень, преодолев многие мили свободного пространства. Система показала КПД 54%. Лаборатории НАСА передали 30 кВт, применив частоту 2,38 ГГц (спектр микроволновой печи) тарелкой диаметром 26 метров. Итоговый КПД достиг 80%. Япония (1983) затеяла исследования передачи энергии слоем ионосферы, полной свободных носителей заряда.

Прототип создан командой Марина Соляшича (Массачусетский технологический университет). Резонансный передатчик отправил 60 Вт энергии на частоте 10 МГц, преодолев дистанцию 2 метра, достигнув КПД 40%. Год спустя группа Грега Лея и Майка Кеннана (Невада), используя частоту 60 кГц, покорила дальность 12 метров. Полагаем, новейшие разработки быстро засекретят.

Обнародованную историю завершает создание НАСА летательного аппарата (2003), питаемого излучением лазера. Анонсированный 12 марта 2015 года проект JAXA призван реализовать идеи Николы Тесла.

Радиорелейные линии связи являются одной из наиболее масштабных и прогрессивных сетей передачи, приема и обработки данных во всем мире. Сам принцип передачи сообщений основан на распространении радиоволн в атмосфере. Для того, чтобы сигнал смог преодолевать большие расстояния, необходимо использовать специальное оборудование радиорелейной связи - цепочку ретрансляторов, благодаря которым и будет осуществляться распространение радиоволн определенной частоты.

Принцип работы радиорелейной линии связи

Чтобы понять природу распространения радиоволн, необходимо изучить физику, механику и динамику этих явлений, которые непосредственно связаны с атмосферными свойствами и электромагнитным полем. Исходя из множества факторов, и производится расчет радиорелейных линий связи. Если не вдаваться в подробности, то принцип функционирования всей системы выглядит следующим образом:

  • сначала в специальном передающем устройстве происходит генерирование колебаний высокой частоты и выделяется так называемый несущий сигнал;
  • информация, которую необходимо передать (голос, видео, текст), кодируется и преобразовывается в частотные колебания, а затем модулируется вместе с несущим сигналом;
  • посредством специальных антенн подготовленный сигнал транслируется в пространство, попадая на приемные устройства, которые находятся в определенном радиусе от передатчика;
  • в случае недостаточной мощности сигнала, сложности его распространения или большого расстояния между передатчиком и приемником, используются радиорелейные линии связи, оборудование которых позволяет решить возникшие проблемы. Как правило, это сеть наземных ретрансляторов, которые не только принимают сигнал, но и усиливают его, устраняют помехи и передают по цепочке к следующему объекту через узконаправленные антенны;
  • сигнал достигает приемника, где происходит его отделение от несущей частоты и преобразование в изначальный вид с последующим отображением на терминале связи. Это может быть просто голосовое сообщение или полноценная видео трансляция. Эфирное радио и телевизионное вещание как раз и построено на этом принципе передачи сигнала.

Типы линии связи

Радиорелейные и спутниковые линии связи - это комплекс оборудования, которое сочетает наземные и орбитальные ретрансляторы, которые дают возможность транслировать сигнал практически в любую точку на поверхности планеты.

Существует два типа основных способа передачи радиосигнала:

  • передача по прямой видимости;
  • радиорелейная тропосферная связь.

В первом случае передача сигнала происходит по стандартному алгоритму - от источника (передатчика) через систему наземных ретрансляционных сетей непосредственно к приемнику. Одна из особенностей заключается в том, что ретрансляторы располагаются фактически в зоне непосредственной видимости, на естественных возвышенностях (горы, холмы). В случае отсутствия прямого прохождения сигнала между антеннами возникают помехи и искажения благодаря дифракционным замираниям, что может привести к существенному ослаблению сигнала и обрыву связи. Использование этого типа коммуникаций ограничено в местах с отсутствием необходимой инфраструктуры и нецелесообразны в малонаселенных районах нашей страны преимущественно в северной ее части.

Решением указанных выше проблем стала новая технология - тропосферная радиорелейная линия связи. Принцип распространения сигнала остался прежним, изменился его способ, который в своей основе содержит физические процессы отражения радиоволн различных диапазонов от нижних слоев атмосферы. Многочисленные испытания показали, что наибольший эффект дает применение волн диапазона УКВ. Благодаря правильным расчетам, трансляцию радиосигнала удалось произвести на 300 км.

Преимущества радиорелейной линия связи

Преимущества новой технологии очевидны:
  • нет необходимости строить ретрансляторы в зоне прямой видимости;
  • существенное увеличение радиуса дальности прохождения сигнала;
  • возможность обеспечения максимальной дальности передачи информации на расстояние до 450 километров благодаря расположению ретрансляторных антенн на холмах и других возвышенностях.

Одна из основных проблем, с которыми столкнулись ученые, заключается в сильном эффекте затухания колебаний при трансляции радиоволн. Вопрос был решен благодаря использованию активного ретрансляторного оборудования, которое позволяет не только принимать и передавать радиоволну, но и стабилизировать уровень сигнала, усиливать его и отфильтровывать помехи. Современная радиорелейная военная связь функционирует на основе технологии распространения сигнала в тропосфере, которая дополнена другими инновационными решениями.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то