Разрядность процессора — копаем в суть

Совсем недавно на блоге сайт была опубликована заметка, в помощь тем, кто собирается обновлять свой компьютер или же покупать/собирать новый. А именно, в ней говорилось о том, сколько оперативной памяти нужно компьютеру в зависимости от тех задач, которые передними ставятся: Сколько оперативной памяти нужно?

Следующей нашей заметкой по плану была статья о поддержке различных объемов памяти со стороны операционной системы — о разрядности операционной системы; о том, что не все объемы памяти поддерживаются всеми версиями Windows . Отдельное спасибо всем читателям, которые в комментариях на блоге упомянули о теме разрядности: после прочтения их я понял, что короткой заметки в блоге на эту тему — мало. Нужен подробный материал на эту тему.

Именно поэтому было решено написать статью, (ликбез, если хотите) по этому вопросу и разместить ее здесь, на ITexpertPortal.com — в архиве бесплатных обучающих материалов и статей на важные темы компьютерной грамотности.

Итак, вернемся к основной теме, к разрядности операционных систем и к поддержке различных объемов памяти. Вначале ответим на вопрос:

Что такое разрядность вообще?

Научное определение: В информатике разрядностью электронного (в частности, периферийного) устройства или шины называется количество разрядов (битов), одновременно обрабатываемых этим устройством или передаваемых этой шиной. Термин применим к составным частям вычислительных, периферийных или измерительных устройств: шинам данных компьютеров, процессорам и т.д. Разрядностью компьютера называют разрядность его машинного слова. (источник — Википедия).

Думаю, все просто и понятно. Разрядность — способность одновременно обрабатывать какое-то количество битов, если говорить проще.

На самом деле, все не так просто, и чтобы осветить полностью этот вопрос и "по-научному" — никакой статьи не хватит. Поэтому, не будем углубляться в курс архитектуры ПК, а затронем чисто практические моменты, с которыми приходится сталкиваться и которые имеют значение для нас — пользователей.

Причем тут объем оперативной памяти?

Существует две версии операционной системы Windows (по крайней мере пока — только две). Не важно, что именно мы возьмем из современных и актуальных систем: XP, Vista или 7.
Все эти системы существуют в двух вариантах — 32-битные и 64-битные. Например:

Windows 7 Ultimate 32-bit (или х86 — равнозначные обозначения)
Windows 7 Ultimate 64-bit (
или x64 — равнозначные обозначения)
Windows Vista Ultimate x86 (x86 —
это обозначение 32-битной версии)
Windows Visa Ultimate x64 (соответственно — 64-битная версия)

Архитектурные различия между 32 и 64-битными версиями Windows, разумеется, есть. Говорить о них можно долго, но это ни к чему, поверьте мне. 🙂

Самые главные особенности и отличия, которые непосредственно касаются пользователя и с которыми приходится сталкиваться:

1. Максимальный объем оперативной памяти.
2. Разрядность операционной системы.
3. Разрядность процессора.

Вот об этом мы с вами поговорим подробнее…

Максимальный объем оперативной памяти.

32-битная операционная система может адресовать (т.е. может использовать, "видеть") не более 4 ГБ оперативной памяти. Это самое главное отличие, и самое существенное. Если в вашем компьютере установлено, скажем, 2 ГБ, то 32-битная операционная система работает с таким объемом нормально.

Если вы у становите 4 ГБ памяти и будете работать под управлением 32-битной ОС, то она просто не увидит такой объем. Все, что она сможет использовать — это примерно 3.5 ГБ из 4 ГБ. Остальной объем она не может предоставить для работающих программ. Разумеется, если вы установите в компьютер 8 ГБ памяти, скажем, и при этом будете оставаться на 32-битной системе, то она так же не увидит более 3.5 ГБ из всего установленного объема.

64-битная операционная система может работать с гораздо бОльшими объемами памяти — до 192 ГБ (для Windows 7) . Т.е. если вы, скажем, захотели установить 8 ГБ памяти, то обязательно нужно переходить на 64-битную ОС, в противном случае, вы просто не сможете использовать столь большой доступный объем.

Мы рассмотрели, можно сказать, "крайности", до 2 ГБ и 8 ГБ и более. А как быть с золотой серединой? Что, если у вас уже установлено или же вы планируете увеличить объем памяти до 4 ГБ? Нужно ли в этом случае переходить на 64-битную ОС, чтобы компьютер смог использовать не 3.3, а все 4 ГБ памяти?

Не все так просто… 64-битные версии ОС используют заметно больше памяти. Все переменные теперь уже не 32-битные, а 64-битные. Обычно это увеличивает объём приложений на 20-40%, что приводит и к соответствующему росту объёма занимаемой памяти. На такие файловые форматы, как музыка или видео, это не влияет.

Устанавливать 64-битную версию Windows , чтобы лучше использовать 4 Гбайт памяти, смысла не имеет, пусть даже 32-битная версия распознаёт только до 3,5 ГБ памяти. Проблема кроется в том, что вы получите отсутствующую память, однако сразу же её потеряете по той причине, что 64-битная версия требует для себя больше памяти. Так что переход на 64 бита актуален только при памяти большего объёма: 6, 8 ГБ и более.

Итак, если вы решили установить много памяти, и здесь 64-битная ОС нужна точно, то возможно, вас интересует вопрос:

Какими особенностями обладает 64-битная Windows Vista /7 ?

Визуально — никакими. Т.е. внешне — это обычная ОС, ничем не выделяющаяся от 32-битного варианта. Вы можете определить ее принадлежность к 64-битной архитектуре только зайдя в пункт "свойства системы" в панели управления — там указана разрядность.

Технически — небольшие различия есть. Первое, собственно, что 64-битная ОС "видит" большие объемы памяти и умеет с ними работать. Второе — она позволяет запускать 64-битные приложения.

64-битная ОС позволяет запускать и обычные 32-битные программы. Привычным способом, никаких настроек для этого не требуется. Все как всегда. Просто в 64-битной системе присутствует подсистема выполнения 32-х разрядных приложений. Поэтому, вы с успехом можете устанавливать и работать как с 32-битными, так и с 64-битными приложениями.

Сейчас таких х64-приложений немного, хотя их число постоянно растет. Особенно это касается ресурсоемких программ — графических и видеоредакторов и так далее. Т.е. всех программ, которым нужны в первую очередь большие объемы доступной для работы памяти. Например, чтобы какой-то видеоредактор мог использовать в работе более 4 ГБ из доступной памяти.

Например, компания Adobe заявляла, что современные приложения серии Adobe CS5 — будут только 64-битные. Это значит, что, скажем, Photoshop CS5, Dreamweaver CS5 и т.п. смогут запустится только на 64-битной системе. На 32-битной ОС они просто не запустятся. Почему?

Потому что в 64-битной ОС могут работать 32-битные приложения, но не наоборот!

Следующий технический момент64-битные ОС требуют 64-битных драйверов . Как правило, все современные (не старше двух лет) устройства ПК, ноутбуки и периферия имеют на прилагающемся установочном диске две версии драйверов — 32 и 64-битную. Поэтому с современными устройствами проблем не возникнет — как обычно вставляем диск с драйвером в привод и запускаем установку, инсталлятор сам определит версию Windows и запустит соответствующий разрядности драйвер.

Если диска нет или на нем нет 64-битного драйвера, необходимо посетить официальный сайт разработчика конкретного устройства, чтобы скачать такой драйвер. То же относится и к устаревшему оборудованию.

ОБЯЗАТЕЛЬНО проверьте наличие 64-битных версий ВСЕХ необходимых драйверов еще ДО начала установки 64-битной версии Windows !

Разрядность процессора.

Где взять/как определить 64-битные приложения?

64-битное программное обеспечение можно определить без труда. На упаковке в системных требованиях, как правило, указывается, что данная программа 64-битная. Это же может быть указано отдельно на упаковке.

Если же вы приобретаете какое-то ПО через интернет, то принадлежность к 64-битной архитектуре тоже указывается.

Вот пример: моя лицензионная коробочная версия Windows Vista Ultimate . В комплекте два установочных диска — 32 и 64-битная версия ОС:

Не обращайте внимание на "англоязычность" в данном случае, просто ОС была куплена в Соединенных Штатах.

Но это в данном случае — Vista Ultimate (только Ultimate) так поставлялась, в двух версиях. Как правило, та же Windows, например (или любая другая программа) продается ИЛИ 32-битная ИЛИ 64-битная, о чем указано на коробке, как я уже упоминал.

На этом отличия и особенности 64-битных операционных систем Windows, значимые для пользователя заканчиваются.

В остальном — все точно так же, как и на привычных 32-битных Windows XP/Vista/7.

Целью данной статьи является попытка посеять сомнение в голове читателя, уверенного, что он знает о разрядности всё или почти всё. Но сомнение должно быть конструктивным, дабы сподвигнуть на собственное исследование и улучшить понимание.

Термин «разрядность» часто используют при описании вычислительных устройств и систем, понимая под этим число бит, одновременно хранимых, обрабатываемых или передаваемых в другое устройство. Но именно применительно к центральным процессорам (ЦП), как к наиболее сложным представителям вычислительного железа, не делимым на отдельные детали (до тех пор, пока кто-то не придумал, как продать отдельно кэш или умножитель внутри чипа), понятие разрядности оказывается весьма расплывчатым. Продемонстрировать это поможет умозрительный пример.

Представьте себе, что вокруг благодатные 80-е, в мире (всё ещё) десятки производителей ЦП, и вы работаете в одном из них над очередным поколением. Никаких 256-битных SSE8, встроенных GPU и 5-канальных контроллёров памяти на свете пока нет, но у вас уже есть готовый 16-битный процессор (точнее, «16-битный» пишется в технической документации), в котором 16 бит везде и во всём - от всех внешних шин до архитектурного размера обрабатываемых данных. Реальным примером такого ЦП могут быть первые однокорпусные (правда, не однокристальные) ЦП для архитектуры DEC PDP-11. И вот приходит задание руководства - разработать новое, обратно совместимое поколение этого же ЦП, которое будет 32-битным - не уточняя, что понимается под последним. Именно это понимание и предстоит прояснить в первую очередь. Итак, наш главный вопрос: что именно надо удвоить по разрядности в нашем пока насквозь 16-битном ЦП, чтобы получившийся процессор мог называться 32-битным? Чтобы решать задачу было легче, применим два подхода: систематизируем определения и посмотрим на примеры.Систематизируем

Первое, что приходит в голову - разрядность чего именно считать? Обратимся к определению любой информационной системы: её три основных функции - это обработка, хранение и ввод-вывод данных, за которые отвечают, соответственно, процессор(ы), память и периферия. Учитывая, что сложная иерархически самоподобная система состоит из многих компонент, можно утверждать, что такое разделение функций сохраняется и на компонентном уровне. Например, тот же процессор в основном обрабатывает данные, но он также обязан их хранить (для чего у него есть относительно небольшая память) и обмениваться с другими компонентами (для этого есть разные шины и их контроллёры). Поэтому будем функционально разделять разрядности обработки, хранения и обмена информации.

Рискну предположить, что все производители любого программируемого «железа», особенно процессоров, на 90% стараются не для конечных пользователей, а для программистов. Следовательно, с точки зрения производителей процессор должен выполнять нужные команды нужным образом. С другой стороны, детали структуры кристалла (топологические, электрические и физические параметры отдельных транзисторов, вентилей, логических элементов и блоков) могут быть скрыты не только от пользователя, но и от программиста. Выходит, что разрядность надо отличать и по реализации - физическую и архитектурную.

Следует добавить, что программисты тоже бывают разные: большинство пишут прикладные программы на языках высокого уровня с помощью компиляторов (что делает код до некоторой степени платформонезависимым), некоторые пишут драйверы и компоненты ОС (что заставляет более внимательно относиться к учёту реальных возможностей аппаратной части), есть творцы на ассемблере (явно требующем знания целевого процессора), а кто-то пишет сами компиляторы и ассемблеры (аналогично). Поэтому под программистами далее будем понимать именно тех, для кого детали аппаратной реализации важны если не для написания программы вообще, то хотя бы для её оптимизации по скорости - «архитектурная» разрядность чего-либо будет относиться именно к программированию на родном машинном языке процессора или более удобном ассемблере, не залезая при этом в нутро ЦП (это уже вопросы микроархитектуры, которую мы для большего различия и назвали физической реализацией). Описанные нюансы всё равно влияют на всех программистов, т.к. языки высокого уровня почти всегда переводятся компиляторами в машинный код, а компиляторы тоже должен кто-то написать. Исключения в виде интерпретируемых языков тоже не стоят в стороне - сами интерпретаторы тоже создаются с помощью компиляторов.

Осталось рассмотреть, разрядность какой именно информации нам интересна. Что вообще потребляет и генерирует ЦП в информационном смысле? Команды, данные, адреса и сигнально-управляющие коды. О последних речь не идёт - их разрядность жёстко зафиксирована в конкретной аппаратной реализации и в большинстве случаев программно не управляема. Чуть трудней с командами - в семействе архитектур RISC, например, разрядность любого обращения к памяти должна быть равна физической разрядности шины данных процессора, в т.ч. и при считывании кода (кроме некоторых послаблений в современных ARM и PowerPC). Это хорошо для ЦП - нет проблем с невыровненным доступом, все команды имеют одинаковую, либо переменную, но просто вычисляемую длину. Зато плохо для программиста - RISC это усечённый набор команд, которые ещё и занимают больше места, чем при более компактном кодировании (для того же алгоритма нужно больше команд, но и для того же числа команд надо больше байтов). Поэтому именно CISC-парадигма завоевала наибольший подход с её разнообразием и переменной длинной команд, не равной разрядности чего-либо. Разумеется, все современные ЦП внутри - настоящие RISC, но это только физически, а не архитектурно. Остались только два вида информации - данные и адреса. Их и рассмотрим.Собираем

У нас имеется три критерия видов разрядности: функциональный (обработки, хранения и обмена), реализационный (физическая и архитектурная) и типовой (данных и адресов). Итого уже 12 видов этой непонятной штуки. Предположим, что на каждую комбинацию критериев для нашего исходного ЦП мы отвечаем «16-битная» (и физическая разрядность обработки данных, и архитектурная хранения адресов, и все остальные). Теперь посмотрим, какие из этих вопросов обязательно должны давать ответ «32-битная», чтобы получившийся процессор оказался именно таким.

Начнём с архитектурной части. Должен ли ЦП хранить данные и адреса в логическом 32-битном формате, чтобы называться 32-битным? Насчёт данных, очевидно, да, а вот по поводу адресов всё не так просто. Почти все 8-битные (по данным) ЦП имеют возможность хранить 16-битные адреса в парах регистров (иначе им не видать распространённой на этих платформах 16-битной адресации), но от этого их не называют 16-битными. Может быть, если ЦП сможет хранить 32-битные данные, но всего-то 16-битные адреса, его уже можно называть 32-битным?..

На аналогичные вопросы об архитектурных вычислениях над 32-битными данными и адресами, а также программно 32-битном обмене данных с программно 32-битной адресацией ответ может быть таким же - с данными надо, а с адресами не факт.

Перейдём на физическую реализацию. Должен ли ЦП хранить данные и адреса в физически 32-битном формате? Оказывается, не обязательно, т.к. для 32-битных операндов можно спарить регистры, чем успешно пользовались ещё 8-битные ЦП, начиная с i8080. А зилоговские 16-битные Z8000 могли даже счетверять регистры, получая 64-битный аргумент (только для данных). Это не так эффективно, т.к. полный объём данных, умещающийся в регистровом файле, не увеличится, но это и не требовалось. Зато всегда есть возможность обратиться и к старшей, и к младшей половине виртуального 32-битного регистра - камень в огороды архитектур IA-32 и MC68k, где можно обращаться только к младшей половине (в IA-32 - ещё и с префиксом, что замедляет выполнение).

Идём далее. Должен ли ЦП обрабатывать данные и адреса 32-битными физическими порциями? Оказывается, и это не требуется, операнды можно обрабатывать половинками в функциональных устройствах 16-битного размера. Стоит вспомнить процессор Motorola MC68000, применявшийся в первых Макинтошах, Амигах, Атари и других популярных машинах - он считался 32-битным, в нём есть 32-битные регистры, но нет ни одного 32-битного ФУ (оно появилось только в 68020). Зато есть целых три 16-битных АЛУ, два из которых умеют спариваться при выполнении 32-битной операции. У i8080 и Z80 8-битные АЛУ выполняли 16-битные операции для вычисления адреса последовательно над его байтами. Позже эта история повторилась с набором SSE и его 128-битными операндами, которые поначалу обрабатывались на 64-битных ФУ.

Наконец, обмен: нужно ли процессору физически принимать и передавать данные 32-битными порциями с 32-битной адресацией? На первый вопрос дали ответ почти все производители ЦП, выпустив чипы с половинной шириной шины: 8 бит для 16-битного i8088, 16 бит для 32-битных MC68000/010 и i80386SX/EX/CX, и даже 8 бит для 32-битного MC68008. С физической разрядностью шины адреса куда веселее. Начнём с того, что для многобайтовых шин данных (т.е. начиная с 16-битной) физическая адресация памяти может происходить по словам или по байтам. В первом случае на шину адреса всегда подаётся адрес слова, а шина данных считывает или записывает нужную его часть - от отдельного байта до слова целиком. Для обозначения разрядности доступа может применяться отдельная шина байт-маски (в архитектуре x86 такой приём начал применяться со времён i386 - по биту на каждый байт шины данных), либо комбинация управляющих сигналов с младшими битами шины адреса, которые в этом режиме не нужны (для 32-биной шины данных адрес слова нацело делится на 4, а потому младшие 2 бита шины адреса всегда равны нулю) - так было до выхода i386. Случай же адресации байтов возможен лишь при динамической подстройке ширины шины и из широко известных ЦП применялся только в MC68020/030. В результате к сегодняшнему дню используется именно адресация слов вместе с байт-маской, поэтому физическая разрядность шины адреса оказывается меньше её логической ширины на число бит, на единицу меньшее разрядности шины данных в байтах. Из чего следует, что 32-битная физическая шина адреса может быть только при 8-битной шине данных, на что ни один архитектор и инженер в здравом уме не пойдёт по очевидным соображениям.

Но это ещё не всё. Зачем нам вообще 32-битная физическая или логическая адресация? Середина-конец 80-х, на рынке только-только появились мегабитные микросхемы памяти, типичный объём памяти для ПК пока что измеряется сотнями килобайт, но чуть позже - мегабайтами. А 32-битная адресация позволит получить доступ к 4 ГБ физического ОЗУ! Да кому вообще такое может понадобиться в ближайшие лет 20 в персоналках?! Неудивительно, что первые популярные «32-битные» ЦП имели совсем не 32 бита логической ширины шины адреса: MC68000 имел 24 (23 физических + 1 для управления разрядами), а MC68008 - и вовсе 20. Intel 386SX (вышедший на 3 года позже оригинального полностью 32-битного i80386), помимо уполовинивания шины данных, сократил и шину адреса до 24 (23 физических) бит, а его встраиваемые версии 386EX/CX имели 26-битную шину. Более того, первые чипсеты, позволявшие оперировать 32-битными адресами, появились лишь в 90-х, а первые материнские платы, имевшие достаточное число слотов памяти, чтобы набрать >4 ГБ модулями максимального на тот момент размера - лишь в 2000-х. Хотя первые ЦП с 64-битной физической шиной адреса (IBM/Motorola PowerPC 620) появились аж в 1994 г.. Выводим

Итак, физически в процессоре вообще ничего не требуется делать 32-битным. Достаточно лишь архитектурно убедить программиста, что ЦП выполняет 32-битные операции одной командой. И хотя она при отсутствии полноценных внутренних ресурсов неизбежно будет декодироваться в цепочки микрокода для управления 16-битными физическими порциями информации и аппаратными блоками - это уже программиста не волнует. Так что же, достаточно переписать прошивку, переделать декодер и схему управления, и вот наш 16-битный процессор сразу стал 32-битным?

Как известно, любую хорошую идею можно довести до абсурда, и тогда она сама себя дискредитирует. Увеличение разрядности ЦП - не исключение. На этом месте архитектурщик сразу должен задаться вопросом - а зачем всё это? Увеличивать разрядность данных хорошо для ускорения работы с ними (часто требуется обрабатывать значения, не умещающиеся в 16 бит), а адресов - для получения возможности оперировать большими объёмами данных (ограничение в 64 КБ для 16-битной адресации, кое-как ослабленное сегментной моделью IA-16, сковывало программистов уже в середине 80-х). Можно, конечно, сделать страничную адресацию с программно переключаемыми банками (могли же 8-битные ЦП адресовать 1 МБ на популярных дешёвых ПК и игровых приставках), но ценой усложнения программ и замедления доступа к памяти. Аналогично - разве имеет смысл делать 32-битность для данных такой, что она почти не ускоряет производительность по сравнению с обработкой 32-битных чисел на 16-битной платформе под управлением программы, а не микрокода? Таким образом мы только упростим программирование, сэкономив на числе команд, но не получим скачок в скорости. Из чего мы приходим к выводу - увеличение разрядности должно реализовываться так, чтобы оно реально привело к качественному (больше памяти) и количественному (быстрее операции) скачку возможностей архитектуры. «Больше памяти» здесь относится именно к качественному развитию, т.к. многие алгоритмы и приложения вообще откажутся работать при недостатке ОЗУ, в то время как даже медленный процессор всё равно рано или поздно программу выполнит. Виртуальная память с дисковой подкачкой бессмысленна при менее чем 32-битной реализации.

Но означает ли всё это, что в ЦП как можно больше ресурсов, и аппаратных, и архитектурных, должны быть 32-битными, чтобы его можно было бы назвать полноценным 32-битным процессором? Совсем нет. Возьмём тот же MC68000 - у него 32-битная архитектура для данных и адресов и 32-битные регистры, но 16-битные АЛУ и внешняя шина данных и 24-битная физическая внешняя адресация. Тем не менее, недостаточная «32-битность» не мешает ему обгонять появившийся на 3 года позже «16-битный» 80286: на популярном в 1980-е бенчмарке Dhrystones MC68000 на 8 МГц набирает 2100 «попугаев», а 286 на 10 МГц - 1900 (также 16-битный i8088 на 4,77 МГц - 300).

Но всё это нам не поможет ответить на вопрос - что же такое разрядность процессора? В момент, когда мы уже было пришли к некоему заключению, на сцене появляется новый герой - тип данных. Всё вышеизложенное имело отношение лишь к целочисленным вычислениям и их аргументам. Но ведь есть ещё и вещественные. Кроме того, пока что мы оперируем скалярными величинами, но есть ещё и векторные. А ведь, по слухам, Intel намерена встроить вещественный сопроцессор прямо внутрь своего нового 80486 (напомню: на дворе у нас, условно - 80-е годы). С учётом того, что внутреннее физическое и архитектурное представление данных (с адресами FPU не работает) 80-битное - как же тогда называть «четвёрку» - «32/80-битным» процессором? Вернёмся обратно в настоящее - как называть Pentium MMX, который откусил 64 бита от каждого 80-битного скалярного вещественного регистра и назвал их целочисленным векторным регистром? А Pentum Pro/II с 256-битной шиной данных между кэшем L2 и ядром? (Ещё ранее MIPS R4000 и его варианты имели внутренний контроллёр L2 с внешней 128-битной шиной до самого кэша.) А как назвать Pentium III с его 128-битными регистрами XMM, хотя в каждом таком векторе могут пока храниться лишь 32-битные компоненты, а обрабатываться лишь парами в 64-битных ФУ, но не четвёрками? А как воспринимать готовящиеся сейчас для новых архитектур (в частности, Intel Larrabee) команды векторной адресации типа Scatter и Gather, где части векторного регистра воспринимаются как адреса, а не данные, и потому адресация тоже может считаться ххх-битной?

Современный спор о переходе с 32-битной на 64-битную платформу повторяет эту историю с дополнениями, ещё более подсаливающими и так разнообразное по вкусу блюдо. Прежде всего, если посмотреть на темпы удвоения разрядности (что бы под ней не понимали) однокристальных ЦП, то окажется, что переход от первых 4-битных к первым 32-битным произошёл всего за 8 лет - c 1971 г. (i4004) по 1979 г. (MC68000 и куда менее известный NS32016). Следующее удвоение до 64 бит потребовало 10 лет - i860 имел 32-битное целое скалярное АЛУ и 32-битные универсальные регистры со спариванием, но 64-битные FPU и целочисленное векторное ФУ, 64-битные внешние шины и, впервые, внутреннюю 128-битную шину ядро-кэш. А пока 64 бита добрались до ПК - прошло ещё лет 15, хотя 64-битный доступ к памяти (через 64-битную же шину данных, но для «32-битного» процессора) появился уже в первых Pentium в 1993 г.. А дело в том, что для целочисленных скалярных вычислений два главных типа операндов - данные и адреса - пока достаточно было иметь лишь 32-битными. Об избыточности 32-битной адресации для 80-90-х гг. уже сказано, но и жёсткая необходимость в 64-битных целочисленных вычислениях, в отличие от 32-битных, также до сих пор не возникала, да и не просматривается и сейчас. Для целых чисел диапазон от –2·10 9 до 2·10 9 или от 0 до 4·10 9 покрывает подавляющее большинство нужд, а редкие моменты 64-битности вполне удовлетворяются дедовским способом - операциями над частями операндов с переносом, что не так уж сильно медленнее и доступно с первых моментов появления 32-битных архитектур. Дополнительной пикантности добавляет тот факт, что 64-битная арифметика над целыми числами в архитектуре x86 появились ещё до AMD64 и EM64T, причём сразу векторная - начиная с набора SSE2 (2001 г.) существуют команды paddq и psubq для сложения и вычитания целых 64-битных компонентов, а команды 32-битного перемножения для любой архитектуры дают 64-битное число (команды деления, соответственно - его принимают; аналогично для многих 16-битных платформ, включая IA-16).

Разрядности некоторых процессоров для ПК

Критерий Разрядность
Функциональный обработки хранения обмена
Реализационный физич. архитектурн. физич. архитектурн. физич. архитектурн.
Типовой (D: данных; A: адресов) D A D A D A D A D A D A
i8080/85, Z80 8 8 8-16 16 8 8 8-16 16 8 16 8-16 16
Z8000 16 16 8-64 16 16 16 8-64 16 8-16 23 8-64 23
MC68000/010 (MC68008) 16 16 8-32 32 32 32 8-32 32 8-16 (8) 24 (20) 8-32 32
MC68020/030 32 32 8-32 32 32 32 8-32 32 8-32 32 8-32 32
i8086/186* (i8088/188*) 16 16 8-16 16 16 16 8-16 16 8-16 (8) 20 8-16 20
i80286 16 16 8-16 16 16 16 8-16 16 8-16 24 8-16 24
i80386DX 32 32 8-32 32 32 32 8-32 32 8-32 32 8-32 32
i80386SX (EX/CX) 32 32 8-32 32 32 32 8-32 32 8-16 24 (26) 8-32 32
i860 32/64|64 32 8-64/64|64 32 32/64/32 32 8-64/64/64 32 64 64 8-64 64
i80486 32/80 32 8-32/80 32 32/80 32 8-32/80 32 32 32 8-80 32
Pentium, K5 (Pentium Pro) 32/80 32 8-32/80 32 32/80 32 8-32/80 32 64 32 (36) 8-80 32 (51)
Pentium MMX (Pentium II) 32/80|64 32 8-32/80|64 32 32/80|64 32 8-32/80|64 32 64 32 (36) 8-80 32 (51)
K6 (K6-2) 32/80| 64(/64) 32 8-32/80| 64(/64) 32 32/80| 64(/64) 32 8-32/80| 64(/64) 32 64 32 8-80 32
Athlon 32/80| 64/64 32 8-32/80| 64/64 32 32/80| 64/64 32 8-32/80| 64/64 32 64 36 8-80 51
Athlon XP 32/80| 64/64 32 8-32/80| 64/32-128 32 32/80|64/128 32 8-32/80| 64/128 32 64 36 8-128 51
Pentium III (Pentium 4/M, Core) 32/80| 64/64 32 8-32/80| 64(+128)/32-128 32 32/80| 64(+128)/128 32 8-32/80| 64(+128)/128 32 64 36 8-128 51
Pentium 4 D/EE (Athlon 64*) 64/80| 64/64 64 8-64/80|64 + 128/32-128 64 64/80|64 + 128/128 64 8-64/80|64 + 128/128 64 64(+16) 40 8-128 52
Atom 32-64/80| 64/64-128 64 8-64/80|64 + 128/32-128 64 64/80|64 + 128/128 64 8-64/80|64 + 128/128 64 64 36 8-128 51
Core 2 (i7*) 64/80| 128/128 64 8-64/80|64 + 128/32-128 64 64/80|64 + 128/128 64 8-64/80|64 + 128/128 64 64 (192+16) 40 8-128 52
Athlon II*, Phenom (II)* 64/80| 128/128 64 8-64/80|64 + 128/32-128 64 64/80|64 + 128/128 64 8-64/80|64 + 128/128 64 128+16 40 (48) 8-128 52

* - Мультиплексированная шина данных и адреса (для ЦП с интегрированным контроллёром памяти - только межпроцессорная)
«A/B|C/D» - для данных указана разрядность скалярного целого / вещественного | векторного целого / вещественного доменов
«X+Y» - имеет домены этого вида двух разрядностей
«X-Y» - в зависимости от команды или ФУ принимает все промежуточные значения с целой степенью двойки

Если вы дочитали до этого места, то объявленная цель статьи, скорее всего, уже достигнута, а Идеальное Конечное Точное Определение разрядности так и не найдено. Может быть, его вообще нет, и это даже хорошо. В конце концов, если компьютер это главный инструмент для работы с информацией, то каждая IT-технология это метод улучшения работы компьютера. Разрядность сама по себе ничего не даст в отрыве от всего остального арсенала высоких инфотехнологий. PDA/коммуникаторы, мобильники, нетбуки, медиа-плееры и прочая карманная электроника, а также гигантское количество встроенных контроллёров и бортовых компьютеров отлично работают, увеличивая свою популярность и без всякой 64-битности. Так зачем тогда переходят на большие разрядности? Зачем, например, никому пока не нужная 64-битность в Intel Atom для нетбуков, где 8 ГБ памяти мало того, что никому не нужны, так ещё и за пару часов досуха выжмут батарею, а научные или экономические вычисления (где могут потребоваться 64 целых бита) никто запускать не будет? Один из возможных ответов: «потому что мы можем». Дополнительная пара миллионов транзисторов для удвоения ещё оставшихся 32-битными блоков утонет каплей в море вентилей, уже потраченных на всё остальное в этом же чипе. Галопирующий прогресс микроэлектроники как главного паровоза IT сделал интегральный транзистор таким дешёвым, что теперь лакомый для любого маркетолога шильдик «64 bit» обойдётся потребителю в десяток лишних центов, обеспечивая совсем не бутафорское, а вполне реальное ускорение на 10-50 % в 1-5 % приложений. И если мелкая овчинка стоит почти бесплатной выделки, почему нет?

При установке системы часто возникает вопрос, как определить разрядность процессора 32 или 64 бит? В этой статье я расскажу, что такое разрядность процессора и как ее определить.

Разрядность – это пропускная способность процессора на один такт, т.е. количество bit данных, которые он сможет обработать. Существует два вида разрядности процессора: 32 и 64 бита.

Как определить разрядность процессора в операционной системе Windows?

Все современные процессоры являются 64битными, но на них можно установить 32битную систему. Если ваш компьютер старше 2003 года – у вас процессор 64битный. Проверить это можно несколькими способами.

Как определить разрядность процессора. Способ первый.

Открываем командную строку. Комбинация Win+R, вводим «cmd». Далее вводим слово «systeminfo» (без кавычек) и нажимаем Enter.

Через пару минут вы увидите информацию о процессоре если разрядность процессора 32 бита вы увидите x86,а если 64 то соответственно x64.

Видео инструкция:

Как определить разрядность процессора. Способ второй.

Нам потребуется бесплатная утилита CPU-Z. Загружаем ее с официального сайта . Устанавливаем и запускаем.


Нужная нам информация находиться в строке Instructions.

Существуют и другие программы для определения разрядности процессора. Если вы, имея 64 разрядный процессор, установите 32 разрядную операционную систему ничего страшного не случиться. Просто процессор будет работать не на полную мощность, и вы сможете использовать только 4гб оперативной памяти. Но сделать наоборот, ваш компьютер будет сильно зависать и в итоге просто перестанет запускаться.

В последнее время все чаще можно слышать от производителей компьютерных комплектующих и создателей программного обеспечения упоминание о том, что их детища поддерживают работу или предназначены для 64-битной разрядности. Все это заставляет простых пользователей, которые не желают отставать от авангардных тенденций мировой IT-индустрии, интересоваться а могут ли их компьютеры работать в данном режиме? Ответ на данный вопрос будет целиком и полностью зависеть от ответа на другой вопрос: «Как узнать разрядность процессора, установленного в компьютере?».

Что такое разрядность? Для начала давайте раз и навсегда определимся с понятием разрядности. Термин «разрядность» принято использоваться при определении числа бит, которые одновременно хранятся, используются или передаются на обработку в другие устройства.

Первые микропроцессоры - прародители современных процессоров работали в 4, 8 и 16-битной разрядности. Затем долгое время развивалась и использовалась 32-битная архитектура. И вот теперь пришла очередь 64-битной. С чем связана необходимость повышения одновременно обрабатываемого числа информации? В первую очередь с ограниченностью количества адресуемой (поддерживаемой) оперативной памяти.

Какие ограничения накладывает разрядность процессора на объем используемой оперативной памяти можно узнать из следующей таблицы.


* Для сравнения суммарный объем всей накопленной человечеством информации в настоящее время оценивается ориентировочно в 500 эксабайт.


Именно поэтому, пользователи устанавливающие в 32-битные операционные системы 4 Гб оперативной памяти и более сталкиваются с тем, что компьютер их распознает, но использует только от 2,8 до 3,5 Гб. Отсюда логично вытекает, что если в компьютере планируется установка более 4 Гб оперативной памяти, то без 64-разрядной операционной системы вам не обойтись. Разумеется, что центральный мозг компьютера - процессор при этом также должен поддерживать 64-разрядный режим.

С 2003 года все процессоры, выпускаемые двум мировыми лидерами индустрии - Intel и AMD, являются исключительно 64-битными, но с поддержкой работы в 32-разрядном режиме.

Если очень хочется посмотреть на разрядность процессора, установленного в компьютере «вживую», то можно воспользоваться бесплатной утилитой CPU-Z, которая много может рассказать о компьютерном «железе». Для этого скачиваем утилиту с официального сайта www.cpuid.com, устанавливаем на компьютер и запускаем ее.


Сразу же попадаем на первую вкладку, содержащую всю информацию о процессоре. В строке Instructions смотрим на наличие одной из следующих записей: EM64T или X86-64. Обе они говорят, что процессор 64-битный. Только в первом случае это процессор от Intel, а во втором от AMD.

После того, как вы убедились в поддержке процессором 64-битных инструкций можно установить на компьютер 64-битную операционную систему, увеличить объем памяти и ощутить главное преимущество x64-архитектуры - повышенную стабильность при работе с ресурсоемкими приложениями.

Кстати, бояться того, что вы не сможете найти программ соответствующей разрядности на сегодняшний день уже не стоит. Многие приложения могут быть запущены в режиме обратной совместимости с 32-битным режимом. Проблему могут быть только лишь с некоторыми драйверами старых неподдерживаемых устройств.

Простой пользователь компьютера может долгое время работать с установленной операционной системой Windows и даже не задумываться о том, какая у нее разрядность. Однако пройдет время, и ему потребуется установить на компьютер программу, которая способна работать только с 64-битной версией Windows, и здесь возникнут проблемы, если действующая операционная система обладает разрядностью x32 или x86. В связи с этим может возникнуть вопрос: как узнать разрядность Windows? Давайте на него ответим и более подробно разберемся в отличиях между 32- и 64- битными версиями операционной системы.

Базовые версии операционной системы Windows разрабатывались давно, и с релизом новых вариантов программного обеспечения от компании Microsoft, они лишь дорабатывались. По сути 32-битный (32-разрядные) операционные системы уже отошли в прошлое, и они используются редко, только в тех случаях, когда «железо» компьютера не поддерживает 64-битный Windows.

Сами по себе биты в отношении операционной системы Windows – это способ обработки информации центральным процессором компьютера. В качестве обрабатываемой информации используется оперативная память, и 32-битный Windows способен работать не более чем с 3,5 Гб оперативной памяти, тогда как на 64-битном данный лимит находится на уровне около 200 Гб. С развитием мощности программ и их требовательности к оперативной памяти, компьютеры начали повально переходить на 64-разрядную операционную систему.

Главным минусом 64-разрядной системы является ее требовательность к центральному процессору компьютера. Если в PC установлен 32-разрядный центральный процессор, он никоим образом не сможет работать с 64-разрядной версией операционной системы, то есть им не предусмотрена поддержка более чем 3,5 Гб оперативной памяти.

Многих пользователей компьютера, которые выбирают при установке Windows разрядность операционной системы, вводит в заблуждение отсутствие версии на 32 бита. Связано это с тем, что 32-битная версия Windows для 64-битного процессора обозначается как x86, а не x32. Разобраться, с чем это связано, можно только в том случае, если изучить процессы взаимодействия операционной системы с компьютерным «железом». Пользователю же надо просто запомнить, что 32-битная и 86-битная операционные системы практически ничем не отличаются, и с объемом оперативной памяти более 3,5 Гб справляется только 64-разрядная версия ПО.

Если центральный процесс компьютера поддерживает 64-разрядную версию Windows, то при установке необходимо выбрать именно ее. Следует понимать, что 32-битная версия операционной системы – это прошлый век, и вот лишь некоторые тому подтверждения:


После выхода 64-битной версии Windows, устанавливать 32-битную следует только если процессор или драйвера для него не поддерживают работу с 64-разрядной операционной системой.

Как узнать разрядность Windows, установленной на компьютере?

Определить разрядность установленной на компьютер версии Windows можно с помощью десятка сторонних приложений. Имеются способы, как узнать x32, x64 или x86 версия операционной системы установлена на компьютере, с помощью стандартных средств Windows.

Первый способ

Узнать разрядность Windows на компьютере можно через меню информации о системе:


Второй способ


Третий способ

Посмотреть разрядность системы через «Сведения о системе»:


Можно видеть, что узнать разрядность операционной системы довольно просто, и это необходимо сделать, если имеется желание расширить объем оперативной памяти компьютера. Также знание разрядности операционной системы понадобится при желании переустановить операционную систему.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то