Развитие эвм в ссср. Первый советский компьютер лебедева

Когда я начал работу над этой статьей, то ради собственного интереса я решил расспросить своих знакомых разных возрастов о том, что они знают о развитии ЭВМ, технологий, компьютеров, интернета в Мире и СССР. Чего я только не услышал; это были и фамилии Джобса, Гейтса и Гордона Мура. Это были фамилии Брина, Цукерберга, а кто-то даже назвал фамилию Торвальдса.

И стало обидно. Никто не упомянул фамилии С. А. Лебедева, И. С. Брука или В. С. Бурцева.

В 1997 году ученая мировая общественность признала С.А. Лебедева пионером вычислительной техники, и в том же году Международное компьютерное общество выпустило медаль с надписью: «С.А. Лебедев - разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения». Всего при непосредственном участии академика было создано 18 электронно-вычислительных машин, 15 из которых переросли в серийное производство.

Да, времена железного занавеса и строжайшей секретности сделали своё дело. Но научное сообщество в СССР так же может похвастаться своими достижениями в области компьютеростроения.

График начала выпуска или эксплуатации советских компьютеров:

В данной статье мы с вами рассмотрим наиболее интересные достижения советских ученых и изобретателей.

МЭСМ

В 1944-м, после назначения на должность директора Института энергетики АН УССР, академик Лебедев с семьей переезжает в Киев. Лаборатория института переезжает в предместье Киева (Феофания, бывший монастырь). Именно там и воплощается в жизнь давнишняя мечта профессора Лебедева - создать электронно-цифровую счетную машину.

В 1950-м ЭВМ, названная Малой электронной счётной машиной (МЭСМ), произвела первые вычисления – нахождение корней дифференциального уравнения. В 1951-м году инспекция академии наук, возглавляемая Келдышем, приняла МЭСМ в эксплуатацию. МЭСМ состояла из 6000 вакуумных ламп, выполняла 3000 операций в секунду, потребляла чуть меньше 25 кВт энергии и занимала 60 квадратных метров. Имела сложную трёхадресную систему команд и считывала данные не только с перфокарт, но и с магнитных лент.

ЭВМ “М”

Пока в Киеве кипит работа над созданием МЭСМ, в Москве образуется отдельная группа электротехников. Исаак Брук и Башир Рамеев начали работу над компьютером типа “М”. Он был заметно слабее МЭСМ, но в отличии от своего конкурента был намного меньше и потреблял меньше энергии.

В 1960 году разработчики довели производительность машины до 1000 операций в секунду. Данную технологию заимствовали далее для электронно-вычислительных машин «Арагац», «Раздан», «Минск» (произведены в Ереване и ). Эти проекты, реализованные параллельно с ведущими московскими и киевскими программами, показали серьёзные результаты уже позже, в период перехода ЭВМ на транзисторы.

БЭСМ

В 1952 году Лебедев приступил к работе над Большой Электронной Счетной Машиной . БЭСМ осуществляла уже до 10 000 исчислений в секунду. При этом использовалось всего 5000 ламп, а потребляемая мощность составляла 35 кВт. БЭСМ являлась первой советской ЭВМ «широкого профиля» - её изначально предполагалось предоставлять учёным и инженерам для проведения расчетов различной сложности.

ДНЕПР

Следующий шаг в советском компьютеростроении связан с появлением электронно-вычислительного устройства «Днепр». Этот аппарат стал первым для всего Союза полупроводниковым управляющим компьютером общего назначения. Именно на базе «Днепра» появились попытки серийного производства компьютерно-вычислительной техники в СССР.

Эта машина была разработана и сконструирована всего за три года, что считалось очень незначительным временем для такого проектирования.

«Днепр» отвечал следующим техническим характеристикам:

  • двухадресная система команд (88 команд);
  • двоичная система счисления;
  • 26 двоичных разрядов с фиксированной запятой;
  • оперативное запоминающее устройство на 512 слов (от одного до восьми блоков);
  • вычислительная мощность: 20 тысяч операций сложения (вычитания) в секунду, 4 тысячи операций умножения (деления) в тех же временных частотах;
  • размер аппарата: 35-40 м 2 ;
  • энергопотребление: 4 кВт.

МИР

Следующее поколение компьютеров МИР также имело ряд новшеств для того времени. Например, МИР-1 имел 120-разрядные микрокоманды, которые записывались на сменных микропрограммных матрицах. Это существенно повлияло на характер использования машины, а также на набор арифметических и логических операций, которые она выполняла. МИР-1 имел оперативную память на ферритовом сердечнике, внешнюю память обеспечивали 8-трековые перфоленты. Эти компьютеры нельзя было назвать супермощными, но их вычислительных ресурсов (200-300 операций в секунду) хватало для осуществления типичных инженерных расчетов. Потребляемая энергия не превышала показателя 1,5 кВт. Вес составлял 400 килограмм.

МИР-2 уже производил до 12 000 операций в секунду, а МИР-3 обладал возможностями, в 20 раз превышающими показатели предыдущей модели.

ЭЛЬБРУС

Выдающийся советский разработчик В.С. Бурцев в истории кибернетики считается главным конструктором первых в СССР суперкомпьютеров и вычислительных комплексов для систем управления реального времени. Он разработал принцип селекции и оцифровки сигнала радиолокации. Это позволило произвести первую в мире автоматическую съемку данных с обзорной радиолокационной станции для наведения истребителей на воздушные цели.

« » вообще несли в себе ряд революционных новшеств: суперскалярность процессорной обработки, симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных - все эти возможности появились в отечественных машинах раньше, чем на Западе.

Но история развития компьютеростроения в СССР неизменно вела к тому, что дома люди смогут увидеть домашний ПК отечественного производства.

МИКРО-80

«Микро-80» - советский любительский 8-разрядный микрокомпьютер на основе К580ИК80А. Задумка о необходимости ознакомления и приобщения радиолюбителей СССР к массовому использованию микрокомпьютеров появилась в начале 1980-х годов и реализовалась в цикле статей под общим названием «Радиолюбителю о микропроцессорах и микро-ЭВМ». Начало публикаций было положено в сентябре 1982 года в популярном журнале «Радио», издававшемся в СССР тиражами около 1 миллиона экземпляров. Первые статьи цикла публикаций рассказывали об архитектуре микропроцессора и принципах построения устройств на нем.

КОРВЕТ

«Корвет» - 8 разрядный персональный компьютер. Разработан сотрудниками Института ядерной физики Московского государственного университета. Выпускался серийно с 1988 года на Бакинском производственном объединении «Радиостроение», в Московском экспериментально-вычислительном центре ЭЛЕКС ГКВТИ и в кооперативе ЭНЛИН, на Каменск-Уральском ПО «Октябрь»

Изначально компьютер предназначался для автоматизации управления установкой по дистанционному измерению параметров низкотемпературной плазмы методами лазерной спектроскопии, а также для обработки получаемой информации и теоретических расчетов, ведения архива данных и ряда других нужд. Разработка была начата в конце 1985 года.

ПК « » был принят Министерством образования СССР в качестве базового для обучения информатике в школе. На основе ПК «Корвет» выпускался комплекс учебной вычислительной техники, в который входило рабочее место преподавателя и до 15 рабочих мест учащихся, связанных в локальную сеть. Однако, серийное производство ПК было сопряжено с рядом трудностей, из-за чего компьютер «запоздал» и не получил ожидаемого широкого распространения.

ZX SPECTRUM

В конце 80-х - начале 90-х годов прошлого века в СССР завоевали широкую популярность компьютеры , которые впоследствии с успехом тиражировали многочисленные кооперативы и военные предприятия «вставшие на рельсы конверсии». У аналогов ZX Spectrum было очень много разных названий, некоторые из них: «Хобби», «Львов», «Москва», «Ленинград», «Пентагон», «Скорпион», «Дельта», «Композит», «Согдиана», «Компаньон».

Первые ZX Spectrum появились в СССР в конце 1980-х и быстро завоевали популярность благодаря цвету, музыкальным возможностям и, главное, обилию игр. Попали в СССР они, вероятнее всего, из Польши, по крайней мере, первые игры и документация шли с примечаниями на польском языке.

ЭЛЕКТРОНИКА МС 1504

Электроника МС 1504 - первый советский портативный персональный компьютер в форм-факторе лэптоп.

Первоначально имел название ПК-300 и цену в 550 долларов США. В качестве прототипа использован небольшой портативный компьютер «T1100 PLUS» фирмы Toshiba. Это уникальный компьютер умещающийся в портфель, с полноформатной клавиатурой, жидкокристаллическим экраном (640x200 точек), оперативной памятью на 640 кБайт, двумя дисководами для дискет 3½" ёмкостью 720 Кбайт. Устанавливаемая операционная система - MS DOS 3.3. Автономность работы - 4 часа. Превосходное изобретение!

Так что если бы вам довелось работать на компьютере в СССР, это вовсе не значит, что вы пользовались бы отсталой и технически несовершенной машиной. Правда, стать одним из тех, кому были доступны компьютеры, оказалось бы совсем не просто. Но это тема уже совсем другой статьи.

От «Apple») создаёт персональный компьютер и получает на него патент!

Знаете ли вы, что первый в мире персональный компьютер был создан, отнюдь, не Стивом Джобсом и Стивом Возняком в гараже Пало-Альто, а простым советским конструктором Арсением Анатольевичем Гороховым в Омском НИИ авиационных технологий?

Мотаем время назад.

1950-е годы . Компьютеры огромные, громоздкие, дорогие. Советский «Вихрь» 1951 года, первая машина с выводом данных на экран, обладает оперативной памятью всего в 512 байт , занимает при этом двухэтажный дом. Американский «ровесник» – «Univac» – имеет накопитель на магнитной металлической ленте, быстродействующий принтер, но весит 13 тонн и стоит около 1,5 миллионов долларов. «Bendix G-15» , выпущенный в в 1956 году, получает название мини-компьютера – на деле весит 450 кг и стоит не менее 50 000 $. На звание персональной не тянет ни одна машина.

1960-е годы . Компьютеры становятся быстрее, мощнее, компактнее. В США выпускают первый коммерческий компьютер, оснащённый клавиатурой и монитором – «PDP-1» . Габариты нового аппарата – с три холодильника, цена – в десятки раз ниже стоимости обычного большого компьютера. Широкий шаг вперёд, но недостаточный для повсеместного внедрения техники. Всего было продано лишь 50 экземпляров .

Первым «домашним» компьютером претендует стать «Honeywell Kitchen Computer» , представленный в США в 1969 году. Весил он около 65 кг, стоил 10600$ , представлял из себя постамент со встроенной разделочной доской, панелью лампочек и кнопочек. Выполнял всего одну функцию – хранение различных рецептов. Для работы с «кухонным компьютером» требовались двухнедельные курсы, потому как рецепты выводились на экран в двоичном коде. Желающие приобрести столь дорогую «поваренную книгу» не нашлись.

1970-е годы . С созданием первого микропроцессора начинается эпоха персональных компьютеров. Изобретатели по всему миру соревнуются в сборке собственных моделей. Американский предприниматель Эдвард Робертс первым понимает, сколь велик потенциал 8-битного микропроцессора Intel 8080 , выпущенного в 1974 году, и создаёт на его базе микрокомпьютер «Altair 8800» . Благодаря заключённой сделке с компанией «Intel» на оптовую покупку микропроцессоров (75$ за штуку, при розничной стоимости – 360$), Робертс устанавливает на своё рекордную цену – всего 397 «баков»! Реклама на обложке уважаемого журнала «Popular Electronics» за 1975 год делает своё дело. В первый же месяц разработчики продают несколько тысяч экземпляров «Altair 8800» . Однако полученный заказ становится сюрпризом для покупателей: комплект представляет из себя набор деталей и ящик для корпуса. Пользователям приходится самим паять, тестировать, создавать программы на машинном языке. (Что, конечно, тоже неплохо, ведь именно на «Altair 8800» основатели «Microsoft» Бил Гейтс и Пол Аллен испытывают свою знаменитую программу – «Basic» ).

Как бы то ни было, компьютер Робертса – находка для изобретателей, а «простые смертные» по-прежнему остаются без техники. На помощь им в 1976 году приходят Стив Возняк и Стив Джобс, решающие продать свой «Apple I» , собранный для личного пользования в гараже Пало-Альто (Калифорния). Стоимость нового компьютера составляет 666,66$ . А главным достоинством является то, что, в отличие от «Altair 8800» и многих других машин того времени, «Apple I» предлагается уже собранным . Для работы требуются только корпус, клавиатура и монитор. Но и они будут включены в комплект 2 года спустя, в серийном выпуске цветного, звукового «Apple II» . Такова история персонального компьютера.

Стоп, стоп, стоп… А как же советский учёный, Омск и НИИ авиационных технологий?!

Ах, да! Совсем забыла. Есть в истории персональных компьютеров и тёмная страница .

Дело было так. В далёком 1968 году, за 8 лет до первого «яблока», советский инженер-электромеханик Арсений Анатольевич Горохов изобрёл машину под названием «Устройство для задания программы воспроизведения контура детали». Так, во всяком случае, указано в патенте, авторском свидетельстве № 383005 , от 18 мая 1968 года. Название не случайно, потому как предназначался разработанный аппарат, прежде всего, для создания сложных инженерных чертежей. Сам изобретатель предпочитает называть аппарат «программируемый прибор интеллектор».

Согласно чертежам, «интеллектор» имел монитор, отдельный системный блок с жёстким диском, устройством для решения автономных задач и персонального общения с ЭВМ, материнской платой, памятью, видеокартой и прочим, за исключением компьютерной мыши.

Изобретение запатентовали , но денег на опытный образец не дали , попросили подождать . Самому раздобыть необходимые 80 000 рублей простому советскому инженеру не удалось. Он взялся за новые проекты, а великое открытие так и осталось на бумаге. В 1970 году схема «интеллектора» была опубликована в «Бюллетене изобретений, открытий и товарных знаков», став доступной всем желающим.

Могла ли она попасть в руки американских инженеров? Судите сами: советские бюллетени и патенты в США всегда переводили с особым тщанием.

Мог ли советский инженер принести Родине почёт и славу? Риторический вопрос. Сам Арсений Анатольевич как-то заметил: «При наличии финансирования, можно было бы за семь лет создать в отрасль по компьютеризации» . Можно. Было бы. Ему ли, обладателю 40 авторских свидетельств и патентов, не знать этого. Вот только нужны ли эти свидетельства и патенты, когда гарантийные обязательства государства сильны лишь на бумаге?

Отложили в долгий ящик – упустили навсегда . Потому история персонального компьютера для США – время настоящее, а для России – прошедшее.

Омский инженер-электромеханик Арсений Горохов 45 лет назад изобрёл устройство, которое теперь называется Персональной ЭВМ

Как сообщает интернет-сайт «Время омское», посмотреть первый в мире персональный компьютер, сегодня, увы, невозможно, учреждение, где он был создан – «почтовый ящик» Омский НИИ авиационных технологий, несколько лет как закрыт. У автора изобретения остались патент , с описанием «Программируемого прибора интеллектора» и запись в российской книге рекордов ДИВО: 45 лет тому назад в 1968-м году омский инженер-электромеханик Арсений Горохов изобрёл устройство, которое теперь называется Персональной ЭВМ.

Сейчас личную «персоналку» Горохов использует в основном как пишущую машинку. По его словам, новой она была 5 лет назад, а сделать «ап-грейд», то есть модернизировать, дорого, пенсии не хватит.

Составные части современного компьютера – монитор, системный блок, клавиатура – были и в «интеллекторе» Горохова, правда, под другими названиями. Предназначался аппарат, прежде всего, для создания сложных инженерных чертежей. Был разработан Гороховым и свой «софт» – способ диалога с машиной без толстых пачек перфокарт и бригады программистов. Но дальше всесоюзного патента дело не пошло – «зелёный свет» не включили, и в 1975 году узнали, что термин «персональный компьютер» подарила миру американская компания «Эппл».

40 авторских свидетельств и патентов Арсения Горохова за три десятка лет – лишь моральное удовлетворение от работы. Следы материального остались в патентных ведомостях – 20 рублей за каждое изобретение , не вошедшее в серию. Если новинке всё-таки давали пробиться в «серию», автор получал в 1000 раз больше. Вот только распознать таинственный «закон везения» изобретателю удавалось далеко не всегда. И вероятные прибыли сейчас Горохов считает от противного, не «сколько получили, а сколько не смогли».

«Не нефть – будущее России, а изобретатели» – лейтмотив очередной статьи Горохова «Система ускоренного освоения изобретений», опубликованной в последнем, 12-м, номере 2003 года журнала «Интеллектуальная собственность». Жаль, что в России нет практики, как в США, где Президент дважды в год встречается с руководителем Патентного ведомства. Всё чаще вместо чувства гордости приходится применять иронию, говорит автор. Перспективы уплывают.

Сейчас на рабочем столе у изобретателя – новый вид таблицы Менделеева, и заготовка для пространственного телевидения . Вот только интересующихся идеей, кроме редких гостей-журналистов, как не было, так и нет.

Об изобретении сотового телефона статья «Тайна соты» …

В 1985 году окончательно разработан, и, в 1986 году запушен в производство первый персональный компьютер в СССР. Это была модель ЕС ПЭВМ, что означает - Единая система персональных электронных вычислительных машин. Собственно, это была скопированная с американских IBM System модель, основанная на микропроцессоре К1810ВМ86 (клон Intel 8086). Имела она накопители на гибких магнитных дисках, 90-клавишную клавиатуру, монохромный текстовый монитор и матричный принтер. Выпускался ЕС-1840 на Минском производственном объединении вычислительной техники. В 1987 году вышла модель ЕС-1841, в которой уже имелись и жесткий диск размером 5 или 10 мегабайт, и манипулятор, выполнявший роль мыши. Этих ЕС - компьютеров было выпущено втрое больше, чем других машин серии ЕС ПЭВМ, - почти 90 тысяч экземпляров. Были и другие разработки простеньких домашних компьютеров. «Надежный помощник, учитель и друг!» . Так написано на вкладыше-инструкции к персональному компьютеру «ПК-01 ЛЬВОВ». Это также, один из первых компьютеров в СССР, выпущен в 1986 году Львовским производственным объединением им. В.И.Ленина.
«XX век - это время проникновения вычислительной техники во все сферы жизни. Скоро в работе, учебе и отдыхе будет трудно обойтись без ЭВМ. Открыть доступ Вам и Вашим, детям к вычислительной технике поможет персональный компьютер ПК-01 «Львов» . Достаточно было подключить его к любому бытовому магнитофону, выполнявшего роль запоминающего устройства, и любому бытовому телевизору.
Разнообразные модели первых персональных компьютеров СССР посыпались на жаждущих прогресса потребителей. «БК» - семейство советских 16-разрядных домашних и учебных компьютеров.
Производился «БК» серийно с января 1985 года. Дисплеем работал черно-белый или цветной телевизор или, реже, специальный монитор, внешней памятью служил все тот же бытовой кассетный магнитофон. Существовали и принтеры для «БК», но достать их было практически нереально, пресловутый «дефицит» охватил теперь и сферу «научно технического прогресса». Иметь или не иметь компьютер в СССР было уже не только вопросом престижа. Границы в «современный мир » приоткрывались, и все прогрессивные слои населения мечтали стать его частью.
«Агат»- первый серийный универсальный 8-разрядный советский персональный компьютер, был разработан в 1981-1983 гг. Производился он с 1984 по 1990 гг. Лианозовским электромеханическим заводом (а также Волжским и Загорским заводами). Известнейший «школьный компьютер», на нем обучались вплоть до 2001 года.
Существовали специализированные кооперативы, выпускавшие модели и варианты польских ZX Spectrum - компьютеров, популярных в конце 80-х. Эти «артели» удовлетворяли спрос наших голодных до всего нового, еще тогда, советских «юзеров». Появилось много умельцев, собиравших собственное «железо», из всего, что можно было раздобыть на первых, открывшихся в Москве рынках радиоэлектроники. Все отлично работало, усовершенствовалось, и в итоге, из этих первопроходцев сформировалась нынешняя отечественная IT элита, сливки компьютерного дизайна, PR-щики знаменитые теперь уже во всем мире.

На первоначальном этапе своего развития сфера разработки компьютеров в СССР шла в ногу с мировыми тенденциями. О история развития советских ЭВМ до 1980-го года и пойдёт речь в этой статье.

Предыстория ЭВМ

В современной разговорной – да и научной тоже – речи выражение «электронная вычислительная машина» повсеместно изменено на слово «компьютер». Это не совсем верно теоретически – компьютерные вычисления могут быть основаны не на использовании электронных приспособлений. Однако исторически сложилось, что ЭВМ стали основным инструментом для проведения операций с большими объёмами численных данных. А поскольку над их совершенствованием работали исключительно математики, все типы информации стали кодироваться численными «шифрами», и удобные для их обработки ЭВМ из научно-военной экзотики превратились в универсальную широко распространённую технику.

Инженерная база для создания электронных вычислительных машин была заложена в Германии в годы Второй мировой войны. Там прототипы современных компьютеров использовались для шифрования. В Британии в те же годы совместными усилиями шпионов и учёных была спроектирована аналогичная машина для расшифровки – Colossus. Формально ни немецкие, ни британские аппараты электронными вычислительными машинами считаться не могут, скорее электронно-механическими – операциям отвечали переключения реле и вращение роторов-шестерёнок.

После завершения войны разработки нацистов попали в руки Советского Союза и, в основном, США. Сложившееся в то время научное сообщество отличалось сильной зависимостью от «своих» государств, но что важнее – высоким уровнем проницательности и трудолюбия. Ведущие специалисты сразу нескольких областей заинтересовались возможностями электронно-вычислительной техники. А правительства согласились, что устройства для быстрых, точных и сложных вычислений – это перспективно, и выделили средства на соответствующие исследования. В США до и во время войны велись свои кибернетические разработки – непрограммируемый, но полностью электронный (без механической компоненты) компьютер Атанасова-Берри (ABC), а также электромеханический, но программируемый под разные задачи ЭНИАК. Их модернизация с учётом трудов европейских (немецких и британских) учёных привела к появлению первых «настоящих» ЭВМ. В это же время (в 1947-м году) в Киеве был организован Институт электротехники АН УССР, во главе которого встал Сергей Лебедев, инженер-электротехник и родоначальник советской информатики. В один год с появлением института Лебедев открывает под его крышей лабораторию моделирования и вычислительной техники, в которой в последующие несколько десятилетий разрабатываются лучшие ЭВМ Союза.


ЭНИАК

Принципы первого поколения ЭВМ

В 40-х годах известный математик Джон фон Нейман пришёл к выводу, что вычислительные машины, в которых программы задаются буквально вручную, переключением рычагов и проводов, чрезмерно сложны для практического использования. Он создаёт концепцию, по которой исполняемые коды хранятся в памяти так же, как и обрабатываемые данные. Отделение процессорной части от накопителя данных и принципиально одинаковый подход к хранению программ и информации стали краеугольными камнями архитектуры фон Неймана. Эта компьютерная архитектура до сих пор является самой распространённой. Именно от первых устройств, построенных на архитектуре фон Неймана, отсчитываются поколения ЭВМ.

Одновременно с формулировкой постулатов архитектуры фон Неймана в электротехнике начинается массовое применение вакуумных ламп. На тот момент только они позволяют в полной мере реализовать автоматизацию вычислений, предлагаемую новой архитектурой, поскольку время реакции электронных ламп чрезвычайно мало. Однако каждая лампа требовала для работы отдельного питающего провода, кроме того, физический процесс, на котором основано функционирование вакуумных ламп – термоэлектронная эмиссия – накладывал ограничения на их миниатюризацию. Как следствие, ЭВМ первого поколения потребляли сотни киловатт энергии и занимали десятки кубометров пространства.

В 1948-м году Сергей Лебедев, занимавшийся на своём директорском посту не только административной работой, но и научной, подал в АН СССР докладную записку. В ней говорилось о необходимости в кратчайшие сроки разработать свою электронную вычислительную машину, и ради практического использования, и ради научного прогресса. Разработки этой машины велись полностью с нуля – об экспериментах западных коллег Лебедев и его сотрудники информации не имели. За два года машина была спроектирована и смонтирована – для этих целей под Киевом, в Феофании, институту отвели здание, ранее принадлежавшее монастырю. В 1950-м ЭВМ, названная (МЭСМ), произвела первые вычисления – нахождение корней дифференциального уравнения. В 1951-м году инспекция академии наук, возглавляемая Келдышем, приняла МЭСМ в эксплуатацию. МЭСМ состояла из 6000 вакуумных ламп, выполняла 3000 операций в секунду, потребляла чуть меньше 25 кВт энергии и занимала 60 квадратных метров. Имела сложную трёхадресную систему команд и считывала данные не только с перфокарт, но и с магнитных лент.

Пока Лебедев строил свою машину в Киеве, в Москве образовалась своя группа электротехников. Электротехник Исаак Брук и изобретатель Башир Рамеев, оба – сотрудники Энергетического института им. Кржижановского, ещё в 1948-м подали в патентное бюро заявку на регистрацию проекта собственной ЭВМ. К 1950-му году Рамеева поставили во главе особой лаборатории, где буквально за год была собрана М-1– ЭВМ значительно менее мощная, чем МЭСМ (выполнялось всего 20 операций в секунду), но зато и меньшая по размерам (около 5 метров квадратных). 730 ламп потребляли 8 кВт энергии.


В отличие от МЭСМ, которая использовалась главным образом в военных и промышленных целях, вычислительное время серии «М» отводилось и учёным-ядерщикам, и организаторам экспериментального шахматного турнира между ЭВМ. В 1952-м году появилась М-2, производительность которой выросла в сто раз, а число ламп – всего лишь вдвое. Этого удалось достичь активным использованием управляющих полупроводниковых диодов. Энергопотребление увеличилось до 29 кВт, площадь – до 22 квадратных метров. Несмотря на явную успешность проекта, в массовое производство ЭВМ не запустили – этот приз ушёл ещё одному кибернетическому творению, созданному при поддержке Рамеева – «Стреле».

ЭВМ «Стрела» создавалась в Москве, под руководством Юрия Базилевского. Первый образец устройства завершили к 1953-му году. Как и М-1, «Стрела» использовала память на электронно-лучевых трубках (МЭСМ использовала триггерные ячейки). «Стрела» оказалась наиболее удачным из этих трёх проектов, поскольку её сумели запустить в серию – за сборку взялся Московский завод счётно-аналитических машин. За три года (1953-1956) было выпущено семь «Стрел», которые затем отправились в МГУ, в вычислительные центры АН СССР и нескольких министерств.

Во многих смыслах «Стрела» была хуже, чем М-2. Она выполняла те же 2000 операций в секунду, но при этом использовалось 6200 ламп и больше 60 тысяч диодов, что в сумме давало 300 квадратных метров занимаемой площади и порядка 150 кВт энергопотребления. М-2 подвели сроки: её предшественница хорошей производительностью не отличалась, а к моменту ввода в эксплуатацию доведенной до ума версии «Стрелы» уже были отданы в производство.

М-3 вновь была «урезанным» вариантом – ЭВМ выполняла 30 операций в секунду, состояла из 774-х ламп и потребляла 10 кВт энергии. Зато и занимала эта машина только 3 кв.м., благодаря чему пошла в серийное производство (было собрано 16 ЭВМ). В 1960-м году М-3 модифицировали, производительность довели до 1000 операций в секунду. На базе М-3 в Ереване и Минске разрабатывались новые ЭВМ «Арагац», «Раздан», «Минск». Эти «окраинные» проекты, шедшие параллельно с ведущими московскими и киевскими программами, добились серьёзных результатов уже позже, после перехода на транзисторные технологии.


В 1950-м году Лебедева перевели в Москву, в Институт точной механики и вычислительной техники. Там за два года была спроектирована ЭВМ, прообразом которой в своё время считалась МЭСМ. Новую машину назвали БЭСМ – Большая электронная счётная машина. Этот проект положил начало самой успешной серии советских компьютеров.

Доработанная ещё за три года БЭСМ отличалась великолепным по тем временам быстродействием – до 10 тысяч операций в минуту. При этом использовалось всего 5000 ламп, а потребляемая мощность составляла 35 кВт. БЭСМ являлась первой советской ЭВМ «широкого профиля» – её изначально предполагалось предоставлять учёным и инженерам для проведения их расчётов.

БЭСМ-2 разрабатывалась для серийного производства. Число операций в секунду довели до 20 тысяч, оперативная память, после испытаний ЭЛТ, ртутных трубок, была реализована на ферритовых сердечниках (на следующие 20 лет этот тип ОЗУ стал ведущим). Выпуск начался в 1958-м году, и за четыре года с конвейеров завода им. Володарского сошло 67 таких ЭВМ. С БЭСМ-2 началась разработка военных компьютеров, руководивших системами ПВО – М-40 и М-50. В рамках этих модификаций был собран первый советский компьютер второго поколения – 5Э92б, и дальнейшая судьба серии БЭСМ уже оказалась связана с транзисторами.


С 1955-го года Рамеев «передислоцировался» в Пензу для разработки ещё одной ЭВМ, более дешёвой и массовой «Урал-1». Состоящая из тысячи ламп и потребляющая до 10 кВт энергии, эта ЭВМ занимала порядка ста квадратных метров и стоила куда дешевле мощных БЭСМ. «Урал-1» выпускался до 1961-го года, всего было произведено 183 компьютера. Их устанавливали в вычислительных центрах и конструкторских бюро по всему миру, в частности, в центре управления полётами космодрома «Байконур». «Урал 2-4» также являлись ЭВМ на электронных лампах, но уже использовали ферритовую оперативную память, выполняли по несколько тысяч операций в секунду и занимали 200-400 квадратных метров.

В МГУ разрабатывали собственную ЭВМ – «Сетунь». Она также пошла в массовое производство – на Казанском заводе вычислительных машин было выпущено 46 таких ЭВМ. Их спроектировал математик Соболев совместно с конструктором Николаем Брусенцовым. «Сетунь» – ЭВМ на троичной логике; в 1959-м году, за несколько лет до массового перехода на транзисторные компьютеры, эта ЭВМ со своими двумя десятками вакуумных ламп выполняла 4500 операций в секунду и потребляла 2,5 кВт электричества. Для этого использовались ферритодиодные ячейки, которые советский инженер-электротехник Лев Гутенмахер опробовал ещё в 1954-м году при разработке своей безламповой электронной вычислительной машины ЛЭМ-1. «Сетуни» благополучно функционировали в различных учреждениях СССР, но будущее было за ЭВМ взаимно совместимыми, а значит – основанными на одной и той же, двоичной логике. Тем более что мир получил транзисторы, убравшие вакуумные лампы из электротехнических лабораторий.


ЭВМ первого поколения США

Серийное производство ЭВМ в США началось раньше, чем в СССР – в 1951-м году. Это был UNIVAC I, коммерческий компьютер, созданный скорее для обработки статистических данных. Его производительность была примерно такой же, что и у советских разработок: использовалось 5200 вакуумных ламп, выполнялось 1900 операций в секунду, потреблялось 125 кВт энергии.

Зато научные и военные компьютеры отличались куда большей мощностью (и размерами). Разработка ЭВМ Whirlwind началась ещё до Второй мировой, причём её назначением было ни много ни мало – подготовка пилотов на авиационных симуляторах. Естественно, в первой половине 20-го века это было нереальной задачей, поэтому война прошла, а Whirlwind так и не построили. Но затем началась холодная война, и разработчики из Массачусетского технологического института предложили вернуться к грандиозной идее.

В 1953-м году (тогда же, когда в свет вышли М-2 и «Стрелы») Whirlwind был завершён. Этот компьютер выполнял 75000 операций в секунду и состоял из 50 тысяч вакуумных ламп. Потребление энергии достигало нескольких мегаватт. В процессе создания ЭВМ были разработаны ферритовые накопители данных, оперативная память на электронно-лучевых трубках и нечто вроде примитивного графического интерфейса. На практике от Whirlwind так и не было проку – его модернизировали под перехват самолётов-бомбардировщиков, а на момент сдачи в эксплуатацию воздушное пространство уже перешло под власть межконтинентальных ракет.

Бесполезность Whirlwind для военных не поставила крест на подобных ЭВМ. Создатели компьютера передали основные наработки компании IBM. В 1954-м году на их основе был спроектирован IBM 701 – первый серийный компьютер этой корпорации, на тридцать лет обеспечивший ей лидерство на рынке вычислительной техники. Его характеристики были полностью аналогичны Whirlwind. Таким образом, быстродействие у американских компьютеров было выше, чем у советских, да и многие конструктивные решения были найдены раньше. Правда, это касалось скорее использования физических процессов и явлений – архитектурно ЭВМ Союза зачастую были совершеннее. Возможно, потому, что Лебедев и его последователи разрабатывали принципы построения ЭВМ практически с нуля, опираясь не на старые идеи, а на последние достижения математической науки. Однако обилие нескоординированных проектов не позволило СССР создать свою IBM 701 – удачные особенности архитектур были рассредоточены по разным моделям, и таким же распылением отличалось финансирование.


Принципы второго поколения ЭВМ

ЭВМ на вакуумных лампах отличались сложностью программирования, большими габаритами, высоким энергопотреблением. При этом ломались машины часто, ремонт их требовал участия профессиональных электротехников, а правильность исполнения команд серьёзно зависела от исправности аппаратной части. Узнать, вызвана ошибка неправильным подключением какого-то элемента или «опечаткой» программиста было крайне тяжёлой задачей.

В 1947-м году в лаборатории Белла, обеспечившей США в 20-м веке добрую половину передовых технологических решений, Бардин, Браттейн и Шокли изобрели биполярный полупроводниковый транзистор. 15 ноября 1948 года в журнале «Вестник информации» А.В. Красилов опубликовал статью «Кристаллический триод». Это была первая публикация в СССР о транзисторах. был создан независимо от работы американских учёных.

Кроме пониженного энергопотребления и большей скорости реакции, транзисторы выгодно отличались от вакуумных ламп своими долговечностью и на порядок меньшими габаритами. Это позволяло создавать вычислительные блоки промышленными методами (конвейерная сборка ЭВМ на вакуумных лампах представлялась маловероятной из-за их размеров и хрупкости). Заодно решалась проблема динамического конфигурирования компьютера – небольшие периферийные устройства легко было отключать и заменять другими, что в случае с массивными ламповыми компонентами не являлось возможным. Себестоимость транзистора была выше, чем себестоимость вакуумной лампы, однако при массовом производстве транзисторные компьютеры окупались значительно быстрее.

Переход на транзисторные вычисления в советской кибернетике прошёл плавно – не было создано никаких новых КБ или серий, просто старые БЭСМы и «Уралы» перевели на новую технологию.

Полностью полупроводниковая ЭВМ 5Э92б, спроектированная Лебедевым и Бурцевым, была создана под конкретные задачи противоракетной обороны. Она состояла из двух процессоров – вычислительного и контроллера периферийных устройств – имела систему самодиагностики и допускала «горячую» замену вычислительных транзисторных блоков. Производительность равнялась 500000 операций в секунду для основного процессора и 37000 – для контроллера. Столь высокая производительность дополнительного процессора была необходима, поскольку в связке с ЭВМ работали не только традиционные системы ввода-вывода, но и локаторы. ЭВМ занимала больше 100 квадратных метров. Её проектирование началось в 1961-м, а завершилось в 1964-м году.

Уже после 5Э92б разработчики занялись универсальной транзисторной ЭВМ – БЭСМами. БЭСМ-3 осталась макетом, БЭСМ-4 дошла до серийного производства и была выпущена в количестве 30 машин. Она выполняла до 40 операций в секунду и являлась «подопытным образцом» для создания новых языков программирования, пригодившихся с появлением БЭСМ-6.


За всю историю советской вычислительной техники БЭСМ-6 считается самой триумфальной. На момент своего создания в 1965-м году эта ЭВМ была передовой не столько по аппаратным характеристикам, сколько по управляемости. Она имела развитую систему самодиагностики, несколько режимов работы, обширные возможности по управлению удалёнными устройствами (по телефонным и телеграфным каналам), возможность конвейерной обработки 14 процессорных команд. Производительность системы достигала миллиона операций в секунду. Имелась поддержка виртуальной памяти, кеша команд, чтения и записи данных. В 1975-м году БЭСМ-6 обрабатывала траектории полёта космических аппаратов, участвовавших в проекте «Союз-Аполлон». Выпуск ЭВМ продолжался до 1987-го года, а эксплуатация – до 1995-го.

С 1964-го года на полупроводники перешли и «Уралы». Но к тому времени монополия этих ЭВМ уже прошла – почти в каждом регионе производили свои компьютеры. Среди них были украинские управляющие ЭВМ «Днепр», выполняющие до 20000 операций в секунду и потребляющие всего 4 кВт, ленинградские УМ-1, тоже управляющие, и требующие всего 0,2 кВт электричества при производительности 5000 операций в секунду, белорусские «Мински», «Весна» и «Снег», ереванские «Наири» и многие другие. Особого внимания заслуживают разработанные в киевском Институте кибернетики ЭВМ «МИР» и «МИР-2».


Эти инженерные ЭВМ стали выпускаться серийно в 1965-м году. В известном смысле глава Института кибернетики, академик Глушков, опередил Стива Джобса и Стива Возняка с их пользовательскими интерфейсами. «МИР» представлял собой ЭВМ с подключенной к ней электрической печатной машинкой; задавать команды процессору можно было на человекочитаемом языке программирования АЛМИР-65 (для «МИР-2» использовался язык высокого уровня АНАЛИТИК). Команды задавались как латинскими, так и кириллическими символами, поддерживались режимы редактирования и отладки. Вывод информации предусматривался в текстовом, табличном и графическом видах. Производительность «МИРа» составляла 2000 операций в секунду, для «МИР-2» этот показатель достигал 12000 операций в секунду, потребление энергии составляло несколько киловатт.

ЭВМ второго поколения США

В США электронные вычислительные машины продолжала разрабатывать IBM. Впрочем, у этой корпорации был и конкурент – небольшая компания Control Data Corporation и её разработчик Сеймур Крэй. Крэй одним из первых брал на вооружение новые технологии – сперва транзисторы, а затем и интегральные схемы. Он же собрал первые в мире суперкомпьютеры (в частности, самый быстрый на момент своего создания CDC 1604, который долго и безуспешно пытался приобрести СССР) и первым стал применять активное охлаждение процессоров.

Транзисторный CDC 1604 появился на рынке в 1960-м году. Он был основан на германиевых транзисторах, выполнял больше операций, чем БЭСМ-6, но имел худшую управляемость. Однако уже в 1964-м (за год до появления БЭСМ-6) Крэй разработал CDC 6600 – суперкомпьютер, отличавшийся революционной архитектурой. Центральный процессор на кремниевых транзисторах выполнял лишь простейшие команды, всё «преобразование» данных переходило в ведомство десяти дополнительных микропроцессоров. Для его охлаждения Крэй применял циркулирующий в трубках фреон. В итоге CDC 6600 стал рекордсменом по быстродействию, обогнав IBM Stretch в три раза. Справедливости ради, «соревнования» БЭСМ-6 и CDC 6600 никогда не проводилось, а сравнение по числу выполняемых операций на том уровне развития техники уже не имело смысла – слишком многое зависело от архитектуры и системы управления.


Принципы третьего поколения ЭВМ

Появление вакуумных ламп ускорило выполнение операций и позволило воплотить в жизнь идеи фон Неймана. Создание транзисторов решило «габаритную проблему» и позволило снизить энергопотребление. Однако оставалась проблема качества сборки – отдельные транзисторы буквально припаивались друг к другу, а это было плохо и с точки зрения механической надёжности, и с точки зрения электроизоляции. В начале 50-х годов инженерами высказывались идеи интеграции отдельных электронных компонентов, но только к 60-м появились первые опытные образцы интегральных микросхем.

Вычислительные кристаллы стали не собирать, а выращивать на специальных подложках. Электронные компоненты, выполняющие различные задачи, стали соединять при помощи металлизации алюминием, а роль изолятора была отведена p-n-переходу в самих транзисторах. Интегральные микросхемы стали плодом интеграции же трудов как минимум четырёх инженеров – Килби, Леговеца, Нойса и Эрни.

Поначалу микросхемы проектировались по тем же принципам, по которым осуществлялась «маршрутизация» сигналов внутри ламповых ЭВМ. Затем инженеры стали применять так называемую транзисторно-транзисторную логику (ТТЛ), более полно использовавшую физические преимущества новых решений.

Немаловажным было обеспечение совместимости, аппаратной и программной, различных ЭВМ. Особенно много внимания уделялось совместимости моделей одних и тех же серий – до межкорпоративного и тем более межгосударственного сотрудничества ещё было далеко.

Советская промышленность была в полной мере обеспечена ЭВМ, однако многообразие проектов и серий начинало создавать проблемы. По сути, универсальная программируемость компьютеров ограничивалась их аппаратной несовместимостью – у всех серий были разные разрядности процессоров, наборы команд и даже размеры байтов. Кроме того, серийность производства ЭВМ была весьма условной – компьютерами обеспечивались лишь крупнейшие вычислительные центры. В то же время, отрыв американских инженеров увеличивался – в 60-х годах в Калифорнии уже уверенно выделялась Кремниевая долина, где вовсю создавались прогрессивные интегральные микросхемы.

В 1968-м году была принята директива «Ряд», по которой дальнейшее развитие кибернетики СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» скептически – путь копирования по определению являлся дорогой отстающих. Однако другого способа быстро «подтянуть» отрасль никто не видел. Был учреждён Научно-исследовательский центр электронной вычислительной техники в Москве, основной задачей которого было выполнение программы «Ряд» – разработки унифицированной серии ЭВМ, подобных S/360. Результатом работы центра стало появление ЕС ЭВМ в 1971-м году. Несмотря на сходство идеи с IBM S/360, прямого доступа к этим компьютерам советские разработчики не имели, поэтому проектирование ЭВМ начиналось с дизассемблирования программного обеспечения и логического построения архитектуры на основании алгоритмов её работы.


Разработка ЕС ЭВМ велась совместно со специалистами из дружественных стран, в частности, ГДР. Однако попытки догнать США в сфере разработки компьютеров завершились крахом в 1980-х годах. Причиной фиаско послужил как экономический и идеологический спад СССР, так и появление концепции персональных компьютеров. К переходу на индивидуальные ЭВМ кибернетика Союза была не готова ни технически, ни идейно.

Был пройден очень непростой путь от создания первых громоздких и медленных ламповых ЭВМ до суперкомпьютеров - высокоскоростных, основанных на интегральных микросхемах. Советские компьютеры всё-таки состоялись, и на них могли работать специалисты разных областей промышленности, науки, а не только программисты. Потребность в удобных, недорогих и компактных ЭВМ возникла к середине семидесятых годов прошлого века. В них нуждалась и военная отрасль, и многие другие сферы хозяйства страны.

Микро-ЭВМ "Электроника"

Советские компьютеры имели своих предшественников. Это созданные ещё в шестидесятые годы ЭВМ, простые в использовании и довольно компактные машины из серии "Мир". Они использовались в основном для инженерных расчётов. К середине семидесятых появились микропроцессоры, и это позволило начать выпуск "Электроники НЦ" и "Электроники С5" - универсальных микро-ЭВМ. Они уже по многим параметрам были близки к персональным ЭВМ, но первые советские компьютеры использовались только в производстве - с их помощью управляли технологическими процессами, оборудованием и так далее.

В конце семидесятых годов в промышленных масштабах начался выпуск настольных шестнадцатибитных ЭВМ - достаточно мощных и компактных. Это такие модели, как "Электроника Т3-29" и "Искра 1256", предназначенные для военных, а также модели попроще - "Искра 226", "Электроника ДЗ-28" и другие. В начале восьмидесятых на основе одноплатных шестнадцатибитных микро-ЭВМ и стандартных терминалов выпускались аналоги диалоговых вычислительных комплексов - ДВК.

Середина восьмидесятых

В СССР начинается серийное производство таких универсальных ЭВМ, как ЕС-1840, "Электроника-85", ДВК-3, БК-0010, "Агат", "Микроша". Компьютер претерпевает бурное развитие в нашей стране, и этот процесс продолжается вплоть до распада Советского Союза. К началу девяностых выпускались многие десятки моделей.

Советские компьютеры были разнообразных классов и архитектур, в том числе и IBM-совместимые, и без аналогов среди любых как советских, так и зарубежных персональных компьютеров. Например, "Корвет" - компьютер совершенно уникальный, а также "Львов ПК-01", "Вектор-06Ц" и некоторые другие. С той поры недолгое время в истории отечественного компьютеростроения происходили многие важные события, о которых лучше говорить по порядку.

Киев

Заглянем в прошлое. Год 1948-й, местечко Феофания, неподалёку от столицы Украинской ССР, секретная лаборатория, где руководит Сергей Александрович Лебедев - директор Института электротехники и руководитель данной лаборатории Института вычислительной техники и точной механики Академии наук Украины. Именно там в данный момент создаётся малая электронная (МЭСМ). Именно Лебедев выдвинул, обосновал и реализовал - вне зависимости от Неймана - основные принципы работы ЭВМ с программой, хранимой в памяти.

Первая созданная им машина имела память, арифметические устройства, а также устройства ввода, вывода, управления. Она умела кодировать и хранить программы в памяти, как числа. Она пользовалась двоичной системой счисления, чтобы кодировать команды и числа, и автоматически выполняла вычисления. В ней присутствовали и арифметические, и логические программы. Она имела построение памяти по иерархическому принципу. На ней легко было использовать численные методы, чтобы реализовать вычисления. Проект, монтаж и отладка были сделаны в два года коллективом из семнадцати человек - пяти техников и двенадцати научных сотрудников. Пробы состоялись в ноябре 1950 года, а в 1951 году началась регулярная эксплуатация. Именно так начинались советские компьютеры.

Ещё Киев

1965-й - год создания машины для инженерных расчётов ЭВМ "МИР", разработчиками которой стали учёные из Киевского института кибернетики - Глушков, Благовещенский, Лосев, Летинский, Погребинский, Молчанов, Рабинович, Стогний. Тогда же для этой машины был реализован на микрокомандном уровне язык программирования - АЛМИР-65. ЭВМ была способна производить около тысячи операций в секунду, вводить и выводить данные при помощи электрической пишущей машинки, хранить оперативную память на ферритовых сердечниках, а внешнюю - на перфолентах.

В 1969 году начала выпускаться персональная ЭВМ "МИР-2", созданная там же, в Киеве. Это получилась модель усовершенствованная, она действовала более чем в десять раз быстрее предыдущих. Была увеличена и постоянная, и оперативная память. Теперь к ЭВМ подключались помимо перфоленты и пишущей машинки векторный графический дисплей, имеющий световое перо, и магнитные карты. Языком программирования стал аналитик - можно сказать, "внук" АЛМИРЫ-65.

Микропроцессоры

В 1974 году выпустились первые советские микропроцессоры - секционные модели с микропрограммным управлением и четырёх- или восьмибитной разрядностью секции. Для серии К532, например, было характерно низкое энергопотребление, широкий диапазон питающих напряжений и скорость до двухсот пятидесяти тысяч операций в секунду.

А серия К536 отличалась дешевизной технологии, так же не слишком высоким энергопотреблением, но и не настолько была быстра. На основе комплекта К532 сразу же были выпущены шестнадцатиразрядные микро-ЭВМ ("Электроника НЦ"), а К536 стал основой серийных выпусков первых советских универсальных микро-ЭВМ "Электроника С5", тоже шестнадцатиразрядных.

Секционник

Это был первый советский компьютер! Секционные микропроцессоры считались перспективными, поскольку позволяли на их основе создавать ЭВМ любой разрядности от восьми до тридцати двух. При этом реализовалась любая командная система посредством микропрограммного управления.

Но позже, уже к концу восьмидесятых годов, микроэлектроника бурно развила свои возможности, и советская компьютерная промышленность переориентировалась на аналоги зарубежных ЭВМ. Универсальные секционные процессоры были вытеснены однокристальными моделями. Однако ещё долго секционники применялись, особенно в военной промышленности.

В 1977 году состоялся выпуск восьмиразрядного однокристального микропроцессора К580ВМ80А, который был полным аналогом весьма известной модели Intel 8080. Такой процессор не предполагали использовать для универсальной ЭВМ, он применялся в управляющих микро-ЭВМ, микроконтроллерах, периферийных устройствах и измерительной технике - множество мест применения. Однако он был дёшев и прост, а потому не один советский читатель журнала "Радио" сконструировал на его основе домашний компьютер.

Производительность у него была высокая, система команд универсальная, потому и стал этот микропроцессор одним из самых распространённых в СССР. Помимо персонального компьютера, ему подходили многие другие микропроцессорные устройства, поэтому во второй половине восьмидесятых годов прошлого века этот процессор использовался едва ли не в сотнях моделей советских машин - это и домашний компьютер, и учебный, и не одна профессиональная модель.

"Электроника-60"

В 1978 году родилась шестнадцатиразрядная микро-ЭВМ быстродействующая "Электроника-60". По системе команд "Электроника-60" была совместима с DEC PDP-11/LSI-11 - американской ЭВМ. Производительность - до миллиона операций в секунду. Использовались такие машины на производстве, управляли технологическими процессами, устанавливались в станки с ЧПУ и - главное - долго и честно трудились в науке и военной отрасли.

В 1983 году журнал с миллионным тиражом "Радио" опубликовал схему любительского компьютера "Микро-80" с процессором К580ИК80А, что и послужило первым шагом к массовому увлечению радиолюбителей микропроцессорной и компьютерной техникой. В это время советские персональные компьютеры были способны работать с любым магнитофоном для хранения данных и программ и с любым телевизором, который служил монитором.

Именно с помощью "Электроники-60" в 1984 году была написана всеми любимая игра "Тетрис". Занимаясь в вычислительном центре Академии наук СССР распознаванием речи и прочими проблемами искусственного интеллекта, он часто применял в своей работе головоломки для обкатки той или иной идеи.

Позже эта игра была переписана для IBM PC на языке программирования Turbo Pascal, а сделал это шестнадцатилетний советский школьник - Вадим Герасимов, ныне проживающий в Австралии и работающий в Google.

Первый кабинет информатики

В восьмидесятых годах была разработана и выпущена партия простых, то есть доступных универсальных персональных компьютеров для домашнего и учебного применения. Это была, конечно, шестнадцатибитная "Электроника БК-0010", где аббревиатурой БК обозначался бытовой компьютер. На тот момент ещё не было в мире персональных компьютеров на шестнадцатиразрядных процессорах.

Что же в ней особенного? Специализированные микросхемы с большой степенью интеграции - вентильные матрицы, служившие контроллерами дисплея, клавиатуры, памяти и много ещё. Использовался интерпретарор языка "Фокал". Поддерживалась монохромная графика с высоким разрешением или четырёхцветная. Именно такие машины оснащали первый кабинет информатики, а их потомки вплоть до 1993 года служили основными бытовыми и учебными компьютерами в Советском Союзе.

Академгородок

Новосибирские школьники были привлечены к работе вычислительного центра сибирского отделения Академии наук СССР, и при их непосредственном участии появилась программная система для школ, так и называвшаяся - "Школьница" для персональной ЭВМ "Агат". Она работала с языками программирования "Рапира" и "Робик", включала в себя графическую систему "Шпага" и множество разнообразных пакетов обучающих программ.

"Агат" - детище 1984 года, считается первым серийным персональным компьютером, совместимым с Apple II+ и представлявшим собой уже серьёзный ПК с оперативной памятью в сто двадцать восемь килобайт, с флоппи-дисководами и цветным монитором, отображавшим шестнадцать цветов. Именно в 1984 году пленумом ЦК КПСС принято постановление, после которого началась компьютеризация школьного образования.

Переломный год

В 1985 году вся страна почувствовала не то ломку, не то перестройку, и это не могло не коснуться компьютерной сферы. Многие знаковые модели советских компьютеров были разработаны именно тогда. Развивались довольно успешно прогрессивные шестнадцатибитные "Электроники", новые модели ДВК, появились совместимые с IBM советские компьютеры. Особенно характерны для этого времени трёхпроцессорная "Истра-4816" - до четырёх мегабайт ОЗУ, а также карманный шестнадцатиразрядный микрокалькулятор "Электроника МК-85".

Но не прекращались работы и над ПК, для которых основой служили простейшие восьмибитные процессоры. Так появились модели "Специалист", "Океан-240", "Ириша". Компьютеры были восьмибитными. Значит ли это, что они плохие? Нет. Среди восьмибитных были модели просто замечательные, несмотря на то, что процессор слегка устарел. Например, "Корвет" - компьютер просто превосходный.

«Микроша» и другие

Компьютер из самых цветастых и голосистых среди советских домашних персональных машин - это восьмибитный "Вектор-06Ц". Опять же, журнал "Радио" за 1986 год опубликовал несколько схем микрокомпьютера "Радио-86РК", и эта модель была настолько простой, что мгновенно завоевала огромную популярность. Появились аналоги и варианты, среди которых было несколько таких, что удостоились промышленного выпуска. Например, "Микроша" - компьютер с ласковым названием. "Радио-86РК" хорошо совмещался с "Микро-80", отсюда оно и появилось.

Один из основных ПК для учёбы - "Корвет". Компьютер был очень сложным и многофункциональным, несмотря на всю свою восьмибитность. Оперативная память невелика - всего 257 Кб, но для тех времён это был шикарный показатель. Кроме того, цветная графика с разрешением довольно высоким - 512х256 точек, аппаратное ускорение, текстовый видеоконтроллер, звуковой генератор - аналог IBM PC, локальная сеть, мышь, джойстики, принтер, дисководы - всё это и многое другое было изначально предусмотрено. Настолько же хорош был любительский "Орион-128", тоже восьмиразрядный, созданный подмосковным радиолюбителем Вячеславом Сафроновым и его друзьями. В 1990-м их разработки опубликовал журнал "Радио".

Последний всплеск

Середина восьмидесятых ознаменовалась необычайным подъёмом в отечественном компьютеростроении, наблюдалось огромное количество прекрасных оригинальных идей. Казалось - прорыв! Но не тут-то было. Горбачёвское сближение СССР и мировой экономики не привело страну к расцвету. Парадокс - случилось обратное. и лишилась всех своих прогрессивных достижений.

Случился массовый переход на выпуск уже давно устаревших и простейших моделей - спектрум-совместимых. Впрочем, самые простые модели, совместимые с IBM, тоже выпускались. Зато чисто советские разработки прекратились вообще уже к 1992 году. Все производители перешли на единый мировой стандарт - выпуск исключительно совместимых с IBM персональных компьютеров.

Выводы

Об отечественной вычислительной технике в последние десятилетия принято высказываться негативно. Только про пороки социализма и его плановой экономики, при которых мы "отстали навсегда", да про то, что на Западе технологии всегда были лучше, а русские - криворукие и компьютеры делать не могут.

Но все, буквально все вышеперечисленные компьютеров вовсе не являлись лучшими разработками. Они просто были распространёнными. На самом деле электроника в СССР развивалась вполне на мировом уровне и во многом опережала эту же отрасль на Западе, о чём могут свидетельствовать наши военные и космические программы.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то