Схемы включения. Биполярный транзистор

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки»). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто . Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги ).

  1. Коллектор имеет более положительный потенциал, чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

Коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока ! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине . Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Между простой переключающей схемой и линейным усилителем на транзисторе имеется очевидное различие. В нормально работающем линейном усилителе коллекторный ток всегда прямо пропорционален базовому току. В переключающей схеме, такой как на рис. 1., коллекторный ток определяется, главным образом, напряжением питания V CC и сопротивлением нагрузки R L . Режим насыщения транзистора является достаточно важным и заслуживает подробного обсуждения.

Рис. 1 . Иллюстрация режима насыщения. Транзистор действует как ключ для включения лампы.

Рассмотрим, что происходит с коллекторным током в схеме на рис. 1, если базовый ток постепенно увеличивается, начиная от нуля. Когда ключ S 1 разомкнут, базовый ток не течет и ток коллектора ничтожно мал. Замыкание S 1 приводит к появлению тока базы I B = V CC /R B , где мы пренебрегли разностью потенциалов на переходе база-эмиттер. Ток коллектора, протекающий по нагрузке R L , равен I C =h FE V CC /R B . Для конкретной схемы, приведенной на рисунке, при h FE = 100 и при максимальном значении R B (50 кОм) получим:

I C =100x10/5000 А=20 мА

Падение напряжения на R L определяется произведением R L I C и в нашем случае равно 50 х 0,02 = 1 В. Транзистор при этом находится в линейном режиме; уменьшение R B приводит к увеличению тока базы, увеличению тока коллектора и, следовательно, к увеличению падения напряжения на R L . В этих условиях схема могла бы быть использована как усилитель напряжения.

Теперь рассмотрим случай, когда

и ток базы равен

I B =V CC /R B =V CC /(h FE R L)

Следовательно, коллекторный ток равен

I C =(h FE V CC)/(h FE R L)=V CC /R L

С точки зрения нагрузки транзистор ведет себя как пара контактов ключа. Из закона Ома следует, что ток нагрузки в этой ситуации не может превышать величины V CC /R L . Поэтому дальнейшее увеличение тока базы не может увеличить ток коллектора, который определяется теперь только сопротивлением нагрузки и напряжением питания. Транзистор находится в насыщении . На практике при насыщении транзистора между коллектором и эмиттером всегда остается небольшое напряжение, обычно обозначаемое V CE(sat) . Как правило, оно меньше 1 В и может доходить до 0,1 B y транзисторов, специально предназначенных для работы в качестве ключей. Обычно V CE(sat) уменьшается по мере того, как через переход база-эмиттер течет все больший ток, то есть в случае, когда отношение тока коллектора I C к току базы I B становится значительно меньше, чем коэффициент усиления тока транзистора h FE .

Грубо говоря, глубокое насыщение (малое значение V CE(sat)) имеет место, когда

I C /I B < h FE /5

Для схемы типа той, какая показана на рис. 1, когда ток базы задается просто подключением резистора к источнику питания, мы выбираем

R B /R L < h FE /5

Следовательно, для схемы на рис. 1, принимая типичное для транзистора 2N3053 (аналог КТ630Б - см. аналоги отечественных и зарубежных транзисторов) значение коэффициента усиления тока h FE = 150, имеем

R B /R L < 150/5 = 30.

Следовательно, при R L = 50 Ом мы выбираем

R B < 30 х 50 Ом = 1,5 кОм.

Итак, если в качестве нагрузки используется лампа с сопротивлением 50 Ом, то для ее эффективного включения нам следует выбрать сопротивление базового резистора меньше 1,5 кОм. Если это невозможно, когда, например, в качестве R B используется фоторезистор с минимальным сопротивлением 10 кОм, то следует воспользоваться схемой Дарлингтона, чтобы увеличить коэффициент усиления тока.

Если биполярный транзистор работает с током коллектора, близким к максимальному, и нужно поддержать напряжение V CE(sat) на уровне долей вольта, то из-за уменьшения h FE может понадобиться базовый ток больше, чем I с /10.

Возможно покажется неожиданным, что V CE(sat) может быть много меньше, чем напряжение V BE , которое у кремниевого транзистора равно примерно 0,6 В. Происходит это потому, что в режиме насыщения переход коллектор-база смещен в прямом направлении. Следовательно, мы имеем два р-n перехода, смещенных в прямом направлении, включенных навстречу друг другу так, что падения напряжения на них взаимно компенсируются. Эта способность биполярного транзистора иметь в режиме насыщения очень маленькое падение напряжения между коллектором и эмиттером, делает его весьма полезным переключающим прибором. Многие из наиболее важных применений электроники, включая обширную область цифровой электроники, используют переключающие схемы.

В режиме переключений транзистор работает либо с фактически нулевым током коллектора (транзистор выключен) или с фактически нулевым напряжением на коллекторе (транзистор включен). В обоих случаях мощность, рассеиваемая на транзисторе, очень мала. Значительная мощность рассеивается только в то время, когда происходит переключение: в это время и напряжение коллектор-эмиттер и ток коллектора имеют конечные значения.

Маломощный транзистор, такой как 2N3053, с максимально допустимой рассеиваемой мощностью менее одного ватта, может переключать мощность в нагрузке в несколько ватт. Следует обратить внимание на то, что максимальные значения коллекторного напряжения и тока не должны выходить за допустимые пределы; кроме того, желательно осуществлять переключения возможно быстрее, чтобы избежать рассеяния чрезмерно большой мощности.

Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.

Введение

Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.

Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.

Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.

Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.

Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:

Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается H fe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.

Использование NPN транзистора как коммутатора

На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.

1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке V c . Мы найдем значение резистора базы, при котором всё будет правильно.

2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (V ce) взято из документации транзистора. Эмиттер подключен к GND, соответственно V ce = V c - 0 = V c . Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:

Иногда, сопротивления нагрузки R L неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.

3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:

Из неё следует что:

4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.

5. Расчёт необходимого значения R b: Учитывая перегрузку в 10 раз, сопротивление R b может быть рассчитано по следующей формуле:

где V 1 является напряжением управления транзистором (см. рис 2.а)

Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V 1 = 5V, формула может быть упрощена до следующего вида:

Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение R b известно, транзистор "настроен" на работу в качестве переключателя, что также называется "режим насыщения и отсечки ", где "насыщение" - когда транзистор полностью открыт и проводит ток, а "отсечение" – когда закрыт и ток не проводит.

Примечание: Когда мы говорим , мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.

Расчет нагрузки

Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:

H FE (β) меняется в зависимости от тока коллектора и напряжения V CEsat . Но V CEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.

Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший H FE , крупнейший V CEsat и V CEsat .

Типичное применение транзисторного ключа

В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.

2. Подключение транзистора с открытым коллектором:

Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3.B

3. Создание логического элемента ИЛИ-НЕ (NOR):

Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.

На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.

Поиск ошибок в транзисторных схемах

При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:

1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.

2. Измерение V CE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные V CE это быстрый способ обнаружения дефектных транзисторов.

3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.


Термин «биполярный транзистор» связан с тем, что в этих транзисторах используются носители зарядов двух типов: электроны и дырки. Для изготовления транзисторов применяют те же полупроводниковые материалы, что и для .

В биполярных транзисторах с помощью трехслойной полупроводниковой структуры из полупроводников создаются два p–n-перехода с чередующими типами электропроводности (p–n–p или n–p–n).

Биполярные транзисторы конструктивно могут быть беcкорпусными (рис.1,а) (для применения, например, в составе интегральных микросхем) и заключенными в типовой корпус (рис. 1,б). Три вывода биполярного транзистора называются база , коллектор и эмиттер .

Рис. 1. Биполярный транзистор: а) p–n–p-структуры без корпуса, б) n–p–n-структуры в корпусе

В зависимости от общего вывода можно получить три схемы подключения биполярного транзистора : с общей базой (ОБ), общим коллектором (ОК) и общим эмиттером (ОЭ). Рассмотрим работу транзистора в схеме с общей базой, (рис. 2).

Рис. 2. Схема работы биполярного транзистора

Эмиттер инжектирует (поставляет) в базу основные носители, в нашем примере для полупроводниковых приборов n-типа ими будут электроны. Источники выбирают так, чтобы E2 >> E1. Резистор Rэ ограничивает ток открытого p–n-перехода.

При E1 = 0 ток через коллекторный переход мал (обусловлен неосновными носителями), его называют начальным коллекторным током Iк0. Если E1 > 0, электроны преодолевают эмиттерный p–n-переход (E1 включена в прямом направлении) и попадают в область базы.

Базу выполняют с большим удельным сопротивлением (малой концентрацией примеси), поэтому концентрация дырок в базе низкая. Следовательно, немногие попавшие в базу электроны рекомбинируют с ее дырками, образуя базовый ток Iб. Одновременно в коллекторном p–n-переходе со стороны E2 действует много большее поле, чем в эмиттерном переходе, которое увлекает электроны в коллектор. Поэтому подавляющее большинство электронов достигают коллектора.

Эмиттерный и коллекторный токи связаны коэффициентом передачи тока эмиттера

при Uкб = const.

Всегда ∆ Iк ∆ Iэ, а a = 0,9 - 0,999 для современных транзисторов.

В рассмотренной схеме Iк = Iк0 + aIэ » Iэ. Следовательно, схема биполярного транзистора с общей базой обладает низким коэффициентом передачи тока. Из-за этого ее применяют редко, в основном в высокочастотных устройствах, где по усилению напряжения она предпочтительнее других.

Основной схемой включения биполярного транзистора является схема с общим эмиттером, (рис. 3).

Рис. 3. Включение биполярного транзистора по схеме с общим эмиттером

Для нее по можно записать Iб = Iэ – Iк = (1 – a)Iэ – Iк0 .

Учитывая, что 1 – a = 0,001 - 0,1, имеем Iб << Iэ » Iк.

Найдем отношение тока коллектора к току базы:

Это отношение называют коэффициентом передачи тока базы . При a = 0,99 получаем b = 100. Если в цепь базы включить источник сигнала, то такой же сигнал, но усиленный по току в b раз, будет протекать в цепи коллектора, образуя на резисторе Rк напряжение много большее, чем напряжение источника сигнала.

Для оценки работы биполярного транзистора в широком диапазоне импульсных и постоянных токов, мощностей и напряжений, а также для расчета цепи смещения, стабилизации режима используются семейства входных и выходных вольтамперных характеристик (ВАХ) .

Семейство входных ВАХ устанавливают зависимость входного тока (базы или эмиттера) от входного напряжения Uбэ при Uк = const, рис. 4,а. Входные ВАХ транзистора аналогичны ВАХ диода в прямом включении.

Семейство выходных ВАХ устанавливает зависимость тока коллектора от напряжения на нем при определенном токе базы или эмиттера (в зависимости от схемы с общим эмиттером или общей базой), рис. 4, б.

Рис. 4. Вольт-амперные характеристики биполярного транзистора: а – входные, б – выходные

Кроме электрического перехода n–p, в быстродействующих цепях широко используется переход на основе контакта металл–полупроводник – барьер Шоттки (Schottky). В таких переходах не затрачивается время на накопление и рассасывание зарядов в базе, и быстродействие транзистора зависит только от скорости перезарядки барьерной емкости.

Рис. 5. Биполярные транзисторы

Параметры биполярных транзисторов

Для оценки максимально допустимых режимов работы транзисторов используют основные параметры:

1) максимально допустимое напряжение коллектор–эмиттер (для различных транзисторов Uкэ макс = 10 - 2000 В),

2) максимально допустимая мощность рассеяния коллектора Pк макс – по ней транзисторы делят на транзисторы малой мощности (до 0,3 Вт), средней мощности (0,3 - 1,5 Вт) и большой мощности (более 1,5 Вт), транзисторы средней и большой мощности часто снабжаются специальным теплоотводящим устройством – радиатором,

3) максимально допустимый ток коллектора Iк макс – до 100 А и более,

4) граничная частота передачи тока fгр (частота, на которой h21 становится равным единице), по ней биполярные транзисторы делят:

  • на низкочастотные – до 3 МГц,
  • среднечастотные – от 3 до 30 МГц,
  • высокочастотные – от 30 до 300 МГц,
  • сверхвысокочастотные – более 300 МГц.

д.т.н., профессор Л. А. Потапов

– один из двух основных видов транзисторов, изготавливается в виде трёхэлектродного полупроводникового прибора. В каждом из этих проводников имеются последовательно расположенные слои обладающие n-проводимостью (примесной) или p-проводимостью (дырочной). Таким образом, формируются биполярные транзисторы n-p-n или p-n-p типов.

Три электрода в биполярном транзисторе подключены соответственно к каждому из трёх проводящих слоёв.

В момент работы биполярного транзистора происходит одновременная передача разнотипных зарядов, переносимых электронами и дырками. То есть всего задействовано два типа зарядов, потому этот транзистор и носит название «биполярный» («би» означает «два).

Рис.1: Устройство биполярного транзистора.

Соединённый со средним слоем электрод обозначается как «база». Два крайних электрода именуются «коллектор» и «эмиттер». По типу проводимости два этих канала одинаковы. Однако, с целью получения устройства с необходимыми характеристиками, слой, соединённый с эмиттером, делают более легированными примесями, а соединённый с коллектором – наоборот. Как результат, допустимое коллекторное напряжение увеличивается. Учёт уровня обратного напряжения, при котором происходит пробой эмиттерного перехода, не столь важен, поскольку для сборки электронной схемы обычно применяют модели с прямым смещением по эмиттерному p-n-переходу, что превращает схему практически в проводник. Помимо прочего, легированный эмиттерный слой облегчает переход неосновных носителей в центральный проводящий слой, способствуя увеличению коэффициента преобразования по току в схеме с ОБ (общей базой).

Также, в модифицированной конструкции коллекторный p-n-переход по размерам значительно превосходит эмиттерный. Данный параметр обусловлен необходимостью улучшения сбора неосновных носителей, поступающих из слоя базы, и подъёма коэффициента передачи.

Быстродействие биполярных транзисторов зависит от толщины базового слоя: чем он толще, тем медленнее функционирует вся схема. Но крайне истончать этот слой тоже нельзя. При уменьшении толщины уменьшается и временной отрезок, требующийся для прохождения неосновных носителей через тело базового слоя, но вместе с тем происходит значительное уменьшение предельного коллекторного напряжения. Поэтому подбор правильного размера базы осуществляется с учётом обоих этих явлений.

Устройство и принцип действия

Рис.2: Планарный биполярный n-p-n транзистор в поперечном разрезе

Самые первые модели биполярных транзисторов выполнялись с применением металлического германия (полупроводниковый материал). На данный момент для этих целей используется монокристаллический кремний и монокристаллический арсенид галлия.

Рис.3: Монокристаллы кремния и арсенида галлия

Наиболее быстродействующими устройствами являются те, в которых задействован арсенид галлия. По этой причине их наиболее часто применяют как элементы сверхбыстродействующих логических схем и схем сверхвысокочастотных усилителей.

Как уже говорилось выше, структура биполярного транзистора складывается из эмиттерного, базового и коллекторного слоёв с различным уровнем легированности, и каждый слой соединён со своим электродом, представленный омическим (невыпрямляющим) контактом.

Слаболегированный базовый слой транзистора отличается большим уровнем омического сопротивления.

При соотнесении контактов эмиттер-база и коллектор-база можно отметить, что первый уступает по размерам второму.

Подобная конструкция обусловлена следующими моментами:

  • Большой коллекторно-базовый переход позволяет увеличить количество передаваемых от базы к коллектору неосновных носителей заряда (ННЗ);
  • На момент активной работы К-Б-переход функционирует в условиях обратного смещения, что вызывает сильное тепловыделение в зоне коллекторного перехода, поэтому, чтобы улучшить его теплоотводность приходится увеличивать площадь.

Таким образом «идеальный» симметричный биполярный транзистор фигурирует только в теоретических выкладках, а перенос теорию на практическую базу демонстрирует, что наибольшим КПД обладают именно те модели, которые не обладают симметрией.

В режиме активного усиления в транзисторе происходит прямое смещение Э-перехода (он становится открытым), и обратное смещение К-перехода (он становится закрытым). В противоположной ситуации, при закрытии Э-перехода и открытии К-перехода происходит инверсное включение биполярного транзистора.

Если подробнее рассматривать процесс функционирования транзисторов n-p-n типа, то в первую очередь наблюдается переход основных НЗ (носителей заряда) из эмиттерного слоя по Э-Б-переходу в базовый слой. Часть НЗ, представленных электронами взаимодействует с дырками базы, что приводит к нейтрализации обоих зарядов и сопутствующему выделению энергии. Тем не менее, базовый слой достаточно тонок и легирован достаточно слабо, это увеличивает общее время процесса взаимодействия, поэтому гораздо большее количество эмиттерных НЗ успевает проникнуть в коллекторный слой. Кроме того, сказывается действие силы электрического поля, образуемого смещённым коллекторным переходом. Благодаря этой силе значительно увеличивается количество перетягиваемых из базового слоя электронов.

В результате, значение коллекторного тока практически равняется эмиттерному за вычетом потерь в базовом слое, которыми и исчисляется ток самой базы. Для вычисления значения коллекторного тока используется формула:

где Iк – коллекторный ток, Iэ – эмиттеный ток, α– коэффициент передачи тока эмиттера.

Спектр значений коэффициента α варьируется от 0,9 до 0,99. Большие значения позволяют производить более эффективную трансляцию тока транзистором. Величина α при этом не определяется тем, какое напряжение демонстрируют К-Б и Б-Э переходы. Как результат, в условиях множества вариантов рабочего напряжения сохраняется пропорциональное соотношение между Iк и Iб. Для нахождения коэффициента данной пропорциональности применяется формула:

β = α/(1 − α).

Значения β могут находиться в диапазоне 10-100. Отсюда можно сделать вывод о том, что для регуляции работы большого коллекторного тока, вполне можно обходиться током малой силы на базе.

Разновидности порядка действия биполярных транзисторов

Нормальный активный режим

Характеристика:

  1. Открытая эмиттерно-базовая область (смещение по прямому направлению);
  2. Закрытая коллекторно-базовая область (смещение по обратному направлению);
  3. Положительный уровень напряжения в эмиттерно-базовой области;
  4. Отрицательный уровень напряжения в коллекторно-базовой области.

Пункты 3 и 4 приведены для p-n-p транзисторов. Для моделей с n-p-n структурой характеристика будет обратной данной.

Инверсный активный режим

Характеристика:

  1. Обратное смещение на эмиттерном переходе;
  2. Прямое смещение на коллекторным переходе.

Остальные пункты как для нормального активного режима.

Режим насыщения

Характеристика:

  1. Соединение Э-перехода и К-перехода с внешними источниками;
  2. Прямое смещение эмиттерного и коллекторного перехода;
  3. Ослабление диффузного электрического поля из-за электрического поля внешних источников;
  4. Снижение уровня потенциального барьера, что приведёт к ослаблению контроля диффузии основных НЗ, а также смещению большого количества дырок из эмиттерных и коллекторных областей в область базы.

Вследствие последнего пункта происходит формирование эмиттерных и коллекторных токов насыщения (Iэ.нас. и Iк.нас.)

В этом же режиме фигурирует понятие «напряжение насыщения» на переходе К-Э. Благодаря ему можно определить степень падения напряжения для открытого транзистора. Подобным образом напряжение насыщения для перехода Б-Э определяет степень падения напряжения для приведённого участка.

Режим отсечки

Характеристика:

  • Смещение по обратному направлению в К-области;
  • Смещение Э-перехода по любому направлению, при условии, что оно не превысит пороговый показатель, который отграничивает начало процесса испускания электронов эмиттером в базовый слой.

Уровень приведённого показателя в случае с кремниевым биполярным транзистором достигает 0,6-0,7 Вольт, значит режим отсечки возможен при нулевой силе тока на базе, либо при уровне напряжения менее 0,7 Вольт на Э-Б переходе.

Барьерный режим

Характеристика:

  • Соединение базового сегмента и коллектора на коротко, либо с применением малогабаритного резистора;
  • Производится подключение резистора к коллекторной или эмиттерной цепи, чтобы он мог задавать ток посредством транзисторного элемента.

Действие в представленном режиме преобразует полупроводниковый триод в аналог диода с последовательным подключением к токозадающему резистору. Каскад, построенный в соответствии с данной схемой,имеет небольшое количество составляющих и почти не зависит от характеристик используемого устройства.

Схемы включения

Для характеристики включающей транзисторной схемы применяются два значимых показателя:

  • Величина коэффициента фиксирующего усиление по току, которое вычисляется через отношение тока выхода (Iвых) к току входа (Iвх);
  • Значение входного сопротивления (Rвх), которое вычисляется через отношение входного напряжения (Uвх) к току входа (Iвх).

Включение с общей базой (ОБ)

Рис.4: Усилитель с ОБ

Характеристика:

  • Вариант схемы, при котором уровень сопротивления на входе является самым низким, а выходе – самым высоким;
  • По α (коэффициенту усиления по току) приближается к 1;
  • Обладает большим Кu (коэффициентом усиления по напряжению);
  • Не происходит инвертации фазы сигнала.

Для определения коэффициента α необходимо вычислить отношение тока коллектора к току эмиттера (иначе – отношение тока выхода к току входа).

Для определения входного сопротивления Rвх следует вычислить соотношение входного напряжения и входного тока (иначе – соотношение напряжения на переходе Э-Б и эмиттерного тока). Значение этого параметра для схем с ОБ достигает максимум 100 Ом (в биполярном транзисторе малой мощности).

Плюсы применения схем включения с ОБ

  • Хорошее температурное и частотное значение;
  • Высокий уровень допустимого напряжения.

Минусы применения схем включения с ОБ

  • Незначительная степень усиления по току (поскольку, значение коэффициента α не достигает единицы);
  • Низкий уровень входного сопротивления;
  • Работа обеспечивается двумя разными источниками напряжения.

Включение с общим эмиттером (ОЭ)

Характеристика:

  • Ток на выходе соответствует току коллектора;
  • Ток на входе соответствует току базы;
  • Напряжение на входе соответствует напряжению на Б-Э переходе;

Вычислить коэффициент β (усиление по току) для данной схемы можно, через отношение тока выхода к току входа (тока коллектора к току базы; тока коллектора к разности эмиттерного и коллекторного токов).

Для определения входного сопротивления (Rвх) высчитывается отношение напряжения на входе к току на входе (напряжения на Б-Э переходе к току на базе).

  • Большое значение коэффициента β;
  • Большое значение коэффициента усиления по напряжению;
  • Самый высокий уровень усиления мощности;
  • Задействуется только один источник питания;
  • Происходит инвертация выходного напряжения (по отношению к входному).

Плюсы применения схем включения с ОЭ

  • Температурное и частотное значение гораздо ниже относительно схем включения с ОБ.

Включение с общим коллектором (ОК)

Характеристика:

  • Ток на выходе соответствует току на эмиттере;
  • Ток на входе соответствует величине тока в области базы;
  • Напряжение на входе соответствует напряжению на Б-К переходе;
  • Напряжение на выходе соответствует напряжению на К-Э переходе.

Вычисление β показателя осуществляется через отношение тока на выходе к току на входе (тока в области эмиттера к току в области базы; тока эмиттерной области к разнице Э и К тока).

Величина сопротивления на входе определяется по отношению напряжения на входе к току на входе (отношению суммы напряжений на Б-Э и К-Э переходах к токовому показателю на базе).

Схема с данным типом подключения носит название эмиттерного повторителя.

Плюсы эксплуатации схем включения с ОК

  • Значительный уровень сопротивления на входе;
  • Низкий уровень сопротивления на выходе.

Минусы эксплуатации схем включения с ОК

  • Величина показателя, характеризующего усиление по напряжению, не достигает единицы.

Значимые показатели у биполярных транзисторов

  • Величина показателя, характеризующего передачу по току;
  • Уровень сопротивления на выходе;
  • Величина выходной проводимости;
  • Величина обратного К-Э тока;
  • Время, требуемое для включения;
  • Уровень предельной частоты показателя, характеризующего передачу тока базы;
  • Величина обратного тока в коллекторной области;
  • Величина максимально допустимого тока;
  • Уровень граничной частоты показателя, характеризующего передачу тока (для схем с ОЭ).

Существует деление определяющих качеств биполярного транзистора на две основные группы. Первая группа параметров определяет перечень признаков, проявляющихся при работе транзистора, но не зависящих от использованного типа подключения. Сюда относятся:

  • Величина показателя усиления по току α;
  • Общее сопротивление эмиттера;
  • Общее сопротивление коллектора;
  • Значение сопротивления на базе по поперечному направлению.

Если говорить о параметрах второй группы, то они меняются согласно использованной схеме включения. Кроме того, необходимо учитывать отсутствие линейности транзисторных свойств, поэтому перечень вторичных характеристик можно применять только по отношению к низкоуровневым частотам и импульсам с малой амплитудой.

Вторичными параметрами считают:

  • Уровень сопротивления на входе;
  • Значение показателя демонстрирующего обратную связь по напряжению;
  • Величина показателя передачи тока;
  • Уровень выходной проводимости.

Помимо вышеперечисленных моментов следует учитывать, что высокая частота влечёт за собой снижение ёмкостного сопротивления, снижение силы тока и последующее уменьшение величин коэффициентов α и β. Частотный показатель, вызывающий уменьшение α и β на 3 дБ обозначается как граничный.

Сферы применения

Полупроводниковые триоды могут использоваться для создания:

  • Усилителей, каскадов усиления;
  • Генераторов сигналов;
  • Модуляторов;
  • Демодуляторов (детекторов);
  • Инверторов (логических элементов) и т.д.

Дополнительную информацию можно найти на http://www.aistsoft.ru/ . Система АИСТ крупный ресурс данных по специализированной информации(технические описания, паспорта, чертежи, сертификаты и другое).

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то