Схемы включения и основные параметры биполярных транзисторов. Биполярные транзисторы: схемы включения. Схема включения биполярного транзистора с общим эмиттером

Являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Классификация

Транзисторы разделяют на группы:

  1. По материалам: чаще всего используются арсенид галлия и кремний.
  2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
  3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
  4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

Как работают транзисторы?

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей - электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками - основными носителями. Образуется базовый ток I б. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: I э = I б + I к.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению U эк /U бэ и току: β = I к /I б (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика - работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения с общим коллектором: сигнал поступает на резистор R L , который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С 1 , а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор R L , а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (V in), а в коллекторной цепи он становится уже больше по величине (V CE). Основные элементы схемы: транзистор, резистор R L и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С 1 , препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R 1 , через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе R L вместе равны величине ЭДС: V CC = I C R L + V CE .

Таким образом, небольшим сигналом V in на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения - в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения V БЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания V CC , а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: I C = (V CC - V CE)/R C . Из рисунка следует, что рабочая точка, определяющая ток коллектора I C и напряжение V CE , будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы I В.

Зона между осью V CE и первой характеристикой выхода (заштрихована), где I В = 0, характеризует режим отсечки. При этом обратный ток I C ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении I В коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью I C и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

Название полупроводникового прибора транзистор образовано из двух слов: transfer – передача + resist – сопротивление. Потому что его действительно можно представить в виде некоторого сопротивления, которое будет регулироваться напряжением одного электрода. Транзистор иногда еще называют полупроводниковым триодом.

Создан первый биполярный транзистор был в 1947 году, а в 1956 году за его изобретение трое ученых были удостоены нобелевской премии по физике.

Биполярный транзистор – это полупроводниковый прибор, который состоит из трех полупроводников с чередующимся типом примесной проводимости. К каждому слою подключен и выведен электрод. В биполярном транзисторе используются одновременно заряды, носители которых электроны (n - “ negative ”) и дырки (p – “ positive ”), то есть носители двух типов, отсюда и образование приставки названия «би» - два.

Транзисторы различаются по типу чередования слоев:

P n p -транзистор (прямая проводимость);

Npn- транзистор (обратная проводимость).

База (Б) – это электрод, который подключен к центральному слою биполярного транзистора. Электроды от внешних слоев именуются эмиттер (Э) и коллектор (К).

Рисунок 1 – Устройство биполярного транзистора

На схемах обозначаются « VT », в старой русскоязычной документации можно встретить обозначения «Т», «ПП» и «ПТ». Изображаются биполярные транзисторы на электрических схемах, в зависимости от чередования проводимости полупроводников, следующим образом:


Рисунок 2 – Обозначение биполярных транзисторов

На рисунке 1, изображенном выше, отличие между коллектором и эмиттером не видны. Если посмотреть на упрощенное представление транзистора в разрезе, то видно, что площадь p - n перехода коллектора больше чем у эмиттера.


Рисунок 3 – Транзистор в разрезе

База изготовляется из полупроводника со слабой проводимостью, то есть сопротивление материала велико. Обязательное условие – тонкий слой базы для возможности возникновения транзисторного эффекта. Так как площадь контакта p - n перехода у коллектора и эмиттера разные, то менять полярность подключения нельзя. Эта характерность относит транзистор к несимметричным устройствам.

Биполярный транзистор имеет две ВАХ (вольт амперные характеристики): входную и выходную.

Входная ВАХ – это зависимость тока базы (I Б ) от напряжения база-эмиттер (U БЭ ).



Рисунок 4 – Входная вольтамперная характеристика биполярного транзистора

Выходная ВАХ – это зависимость тока коллектора (I К ) от напряжения коллектор-эмиттер (U КЭ ).



Рисунок 5 – Выходная ВАХ транзистора

Принцип работы биполярного транзистора рассмотрим на npn типе, для pnp аналогично, только рассматриваются не электроны, а дырки. Транзистор имеет два p-n перехода . В активном режиме работы один из них подключен с прямым смещением, а другой – обратным. Когда переход ЭБ открыт, то электроны с эмиттера легко перемещаются в базу (происходит рекомбинация). Но, как говорилось ранее, слой базы тонкий и проводимость ее мала, по этому часть электронов успевает переместиться к переходу база-коллектор. Электрическое поле помогает преодолеть (усиливает) барьер перехода слоев, так как электроны здесь неосновные носители. При увеличении тока базы, переход эмиттер-база откроется больше и с эмиттера в коллектор сможет проскочить больше электронов. Ток коллектора пропорционален току базы и при малом изменении последнего (управляющий), коллекторный ток значительно меняется. Именно так происходит усиления сигнала в биполярном транзисторе.



Рисунок 6 – Активный режим работы транзистора

Смотря на рисунок можно объяснить принцип действия транзистора чуть проще. Представьте себе, что КЭ – это водопроводная труба, а Б – кран, с помощью которого Вы можете управлять потоком воды. То есть, чем больше ток вы подадите на базу, тем больше получите на выходе.

Значение коллекторного тока почти равно току эмиттера, исключая потери при рекомбинации в базе, которая и образовывает ток базы, таким образом справедлива формула:

І Э =І Б +І К.

Основные параметры транзистора:

Коэффициент усиления по току – отношение действующего значения коллекторного тока к току базы.

Входное сопротивление – следуя закону Ома оно будет равно отношению напряжения эмиттер-база U ЭБ к управляющему току I Б .

Коэффициент усиления напряжения – параметр находится отношением выходного напряжения U ЭК к входному U БЭ .

Частотная характеристика описывает способность работы транзистора до определенной, граничной частоты входного сигнала. После превышения предельной частоты физические процессы в транзисторе не будут успевать происходить и его усилительные способности сведутся на нет.

Схемы включения биполярных транзисторов

Для подключения транзистора нам доступны только его три вывода (электрода). По этому для его нормальной работы требуются два источника питания. Один электрод транзистора будет подключаться к двум источникам одновременно. Следовательно, существуют 3 схемы подключения биполярного транзистора: ОЭ – с общим эмиттером, ОБ – общей базой, ОК – общим коллектором. Каждая обладает как преимуществами, так и недостатками, в зависимости от области применения и требуемых характеристик делают выбор подключения.

Схема включения с общим эмиттером (ОЭ) характеризуется наибольшим усилением тока и напряжения, соответственно и мощности. При данном подключении происходит смещение выходного переменного напряжения на 180 электрических градусов относительно входного. Основной недостаток – это низкая частотная характеристика, то есть малое значение граничной частоты, что не дает возможность использовать при высокочастотном входном сигнале.

(ОБ) обеспечивает отличную частотную характеристику. Но не дает такого большого усиления сигнала по напряжению как с ОЭ. А усиление по току не происходит совсем, поэтому данную схему часто называют токовый повторитель, потому что она имеет свойство стабилизации тока.

Схема с общим коллектором (ОК) имеет практически такое же усиление по току как и с ОЭ, а вот усиление по напряжению почти равно 1 (чуть меньше). Смещение напряжения не характерно для данной схемы подключения. Ее еще называю эмиттерный повторитель, так как напряжение на выходе (U ЭБ ) соответствуют входному напряжению.

Применение транзисторов:

Усилительные схемы;

Генераторы сигналов;

Электронные ключи.

Сибирская государственная автомобильно-дорожная академия

Кафедра АПП и Э

КУРСОВОЙ ПРОЕКТ

“РАСЧЕТ ТРАНЗИСТОРНОГО УСИЛИТЕЛЯ

ПО СХЕМЕ С ОБЩИМ ЭМИТТЕРОМ”

по дисциплине: “Электротехника ”

Вариант-17

Выполнил: ст. гр. 31АП

Цигулев С.В.

Проверил: Денисов В.П.

1. Основные понятия

2. Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ

3. Задание на работу

4. Порядок расчета транзисторного усилителя по схеме с ОЭ

Библиографический список

1. Основные понятия

Усилители являются одним из самых распространенных электронных устройств, применяемых в системах автоматики и радиосхемах. Усилители подразделяются на усилители предварительные (усилители напряжения) и усилители мощности. Предварительные транзисторные усилители, как и ламповые, состоят из одного или нескольких каскадов усиления. При этом все каскады усилителя обладают общими свойствами, различие между ними может быть только количественное: разные токи, напряжения, различные значения резисторов, конденсаторов и т. п.

Для каскадов предварительного усилителя наиболее распространены резистивныесхемы (с реостатно-емкостной связью). В зависимости от способа подачи входного сигнала и получения выходного сигнала усилительные схемы получили следующие названия:

1) с общей базой ОБ (рис. 1, а);

2) с общим коллектором ОК (эмиттерный повторитель) (рис. 1, б);

3) с общим эмиттером - ОЭ (рис. 1, в).


Наиболее распространенной является схема с ОЭ. Схема с ОБ в предварительных усилителях встречается редко. Эмиттерный повторитель обладает наибольшим из всех трех схем входным и наименьший выходным сопротивлениями, поэтому его применяют при работе с высокоомными преобразователями в качестве первого каскада усилителя, а также для согласования с низкоомным нагрузочным резистором. В табл. 1 дается сопоставление различных схем включения транзисторов.


Таблица 1

2. Назначение элементов и принцип работы усилительного каскада по схеме с ОЭ

Существует множество вариантов выполнения схемы усилительного каскада на транзисторе ОЭ. Это обусловлено главным образом особенностями задания режима покоя каскада. Особенности усилительных каскадов и рассмотрим на примере схемы рисунок 2, получившей наибольшее применение при реализации каскада на дискретных компонентах.

Основными элементами схемы являются источник питания

, управляемый элемент - транзистор и резистор . Эти элементы образуют главную цепь усилительного каскада, в которой за счет протекания управляемого по цепи базы коллекторного тока создается усиленное переменное напряжение на выходе схемы. Остальные элементы каскада выполняют вспомогательную роль. Конденсаторы , являются разделительными. Конденсатор исключает шунтирование входной цепи каскада цепью источника входного сигнала по постоянному току, что позволяет, во-первых, исключить протекание постоянного тока через источник входного сигнала по цепи → → и, во-вторых, обеспечить независимость от внутреннего сопротивления этого источника напряжения на базе в режиме покоя. Функция конденсатора сводится к пропусканию в цепь нагрузки переменной составляющей напряжения и задержанию постоянной составляющей.

Резисторы

и используются для задания режима покоя каскада. Поскольку биполярный транзистор управляется током, ток покоя управляемого элемента (в данном случае ток ) создается заданием соответствующей величины тока базы покоя . Резистор предназначен для создания цепи протекания тока . Совместно с резистор обеспечивает исходное напряжение на базе относительно зажима ”+” источника питания.

Резистор

является элементом отрицательной обратной связи, предназначенным для стабилизации режима покоя каскада при изменении температуры. Температурная зависимость параметров режима покоя обусловливается зависимостью коллекторного тока покоя от температуры. Основными причинами такой зависимости являются изменения от температуры начального тока коллектора , напряжения и коэффициента . Температурная нестабильность указанных параметров приводит к прямой зависимости тока от температуры. При отсутствии мер по стабилизации тока , его температурные изменения вызывают изменение режима покоя каскада, что может привести, как будет показано далее, к режиму работы каскада в нелинейной области характеристик транзистора и искажению формы кривой выходного сигнала. Вероятность появления искажений повышается с увеличением амплитуды выходного сигнала.

Проявление отрицательной обратной связи и ее стабилизирующего действия на ток


Схема включения транзистора с общим эмиттером (ОЭ). При исследовании свойств обычно используют схему включения транзистора с общим эмиттером, то есть когда эмиттер подключен к "земле", коллектор, через сопротивление нагрузки, подключен к источнику питания, а на базу подаётся напряжение смещения. Соберём схему, показанную на рисунке:

В схеме используется транзистор структуры n-p-n, нагрузочное сопротивление - 1 кОм, источник питания напряжением 12 вольт и амперметр.
Мы видим, что амперметр показывает очень низкое значение тока протекающего через нагрузочное сопротивление и переход коллектор - эмиттер транзистора. Этот ток называется током утечки n-p-n перехода.
По определению транзистора, малый ток базы управляет большим током в цепи коллектор - эмиттер (в схеме с ОЭ).
Для создания усилительного каскада по схеме с ОЭ, следует создать начальный ток базы, такой, чтобы транзистор находился рабочем режиме. В нашей схеме транзистор находится в режиме отсечки (сопротивление К - Э стремится к бесконечности). Второй крайний режим называется режимом насыщения, то есть когда на базу поступает максимальный ток, который уже никак не влияет на ток проходящий в цепи К-Э (ток коллектора). В этом случае говорят, что транзистор открыт и коллекторный ток определяется сопротивлением нагрузки, а сопротивление перехода К - Э можно принять равным 0. Между двумя этими точками, посередине находится рабочий ток (рабочая точка) базы транзистора.
На практике, для определения рабочего режима транзистора используют измерение не тока, а напряжения на базе и на участке К-Э. Включение вольтметра не требует разрыва цепи.
Для определения рабочей точки следует собрать схему, показанную на рисунке:

Через резистор R1 подаётся напряжение смещения, которое создаёт ток базы. Сопротивление R1, в процессе эксперимента, мы будем изменять от 40 до 300 кОм, с шагом 20 кОм. Вольтметром V1 будем измерять напряжение база - эмиттер, а вольтметром V2, напряжение коллектор - эмиттер.
Результаты измерений лучше заносить в таблицу, например в Microsoft Excel или Open Office Calc.

По результатам измерений построим график для изменения напряжения коллектор - эмиттер (КЭ):

Мы видим, что при измерениях 1-2-3 напряжение КЭ практически не меняется и близко к 0. Этот режим называется режим насыщения. В таком режиме каскад усилителя будет работать с сильными искажениями сигнала, так как усиление будет производиться только отрицательных полуволн сигнала.
На участке 12-13-14, тоже график постепенно приобретает линейную зависимость, а напряжение на коллекторе практически не меняется. В такой режим называется режимом отсечки. В этом режиме усиление сигнала будет производиться, так же с большими искажениями, так как усиливаться будут только положительные полуволны сигнала. Каскады с режимом отсечки используются в цифровой технике как ключ с инверсией - логический элемент "НЕ".
Для выбора рабочей точки транзистора в качестве усилителя следует рассчитать точку В на графике. Для этого, следует напряжение базы в точке А сложить с напряжением базы в точке С и поделить пополам (найти среднее арифметическое. (820 + 793)/2 = 806,5. Мы видим, что напряжение базы 806,5 мВ, примерно соответствует 6-му измерению - 807 мВ. Это напряжение на базе транзистора и соответствует рабочей точке каскада с общим эмиттером.
Подключим ко входу усилителя генератор, а ко входу и выходу осциллограф. Вход соединим с каналом А, а выход усилителя с каналом В. Для развязки усилительного каскада по переменному току на входе каскада установим конденсаторы С1 и С1.
Примем частоту генератора 1000 Гц (1 кГц), а амплитуду сигнала 10 мВ. На осциллографе установим время развёртки 0,5 миллисекунд на деление, чувствительность канала А - 10 милливольт на деление и чувствительность канала В - 1 вольт на деление.

Далее следует включить питание схемы и через 2 - 5 секунд выключить. Для удобного считывания показаний осциллографа, следует синусоиду входного сигнала опустить ниже оси Y (счётчиком Y position), а синусоиду выходного сигнала выше оси Y аналогичным образом. Мы видим, что выходной сигнал перевёрнут относительно входного на 180 градусов.
Рассмотрим амплитудные значения входного и выходного сигналов. Входной сигнал имеет амплитуду 10 мВ (такое значение мы установили на генераторе), а выходной сигнал получился с амплитудой в 1,5 вольта (3 деления по оси Y / 2. Одно деление - 1 вольт). Отношение выходного напряжения сигнала к входному называется коэффициентом усиления по напряжению транзистора в схеме с общим эмиттером. Рассчитаем усиление нашего транзистора Ku = Uвх / Uвых = 1,5 / 0,01 = 150. То есть, каскад на транзисторе, включенном по схеме ОЭ, усиливает входной сигнал в 150 раз.
Для транзисторного каскада с ОЭ справедливы следующие значения:
Ku - от 50 до 1500
Ki (коэффициент усиления тока) - 10-20
Kp (коэффициент усиления мощности) - 1000-10000
Rвх (входное сопротивление) - 100 ом - 10 ком
Rвых (выходное сопротивление) - 100 ом - 100 ком
Каскад с ОЭ используется, обычно, как усилитель назко- и высокочастотных сигналов.

Усилитель представляет собой четырехполюсник, два вывода которого предназначены для подключения входного сигнала и два оставшихся вывода служат для снятия с них усиленного сигнала (напряжения или тока). У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя. В зависимости от того, какой вывод транзистора является общим как для входа, так и для выхода усилителя, схемы включения транзистора называются:

  • Схема с общим эмиттером
  • Схема с общей базой
  • Схема с общим коллектором

Следует отметить, что данные схемы включения применяются не только для биполярных транзисторах, но и для всех типов полевых транзисторов. В них эти схемы будут называться схемами с общим истоком, общим затвором и общим стоком соответственно. Во всех последующих схемах границы четырехполюсника усилителя будут показаны пунктирной линией. Для подключения источника сигнала и нагрузки в них предусмотрено по два вывода.

Схема с общим эмиттером

Наиболее распространенной схемой включения транзистора является (ОЭ). Это связано с наибольшим усилением этой схемы по мощности. Схема с общим эмиттером обладает усилением, как по напряжению, так и по току. Функциональная схема включения транзистора с общим эмиттером приведена на рисунке 1.


Рисунок 1. Функциональная схема включения транзистора с общим эмиттером

На данной схеме цепи питания коллектора и базы транзистора не показаны. Мы рассмотрим их позднее при подробном изучении с общим эмиттером. Входное сопротивление схемы включения транзистора с общим эмиттером определяется входной характеристикой транзистора. Оно зависит от базового, а, следовательно, и коллекторного тока транзистора. Для большинства маломощных усилителей оно составляет значение порядка 2,5 кОм.

Схема с общей базой

Схема с общим коллектором

Обычно применяется для получения высокого входного сопротивления. Коэффициент усиления по мощности данной схемы включения транзистора меньше по сравнению со схемой с общим эмиттером и соизмерим с коэффициентом усиления схемы с общей базой. Это связано с тем, что схема включения транзистора с общим коллектором не усиливает по напряжению. В данной схеме производится усиление только по току. Функциональная схема включения транзистора с общим коллектором приведена на рисунке 3.


Рисунок 3. Функциональная схема включения транзистора с общим коллектором

На схеме, приведенной на рисунке 5, цепи питания коллектора и базы не показаны. В качестве входного сопротивления схемы включения транзистора с общим коллектором служит сумма сопротивления базы транзистора (как в схеме с общим эмиттером) и пересчитанного ко входу сопротивления в цепи эмиттера, поэтому входное сопротивление схемы с общим коллектором очень велико. Её входное сопротивление самое большое из всех схем включения транзистора.

Литература:

Вместе со статьей "Схемы включения транзистора" читают:


http://сайт/Sxemoteh/ShTrzKask/KollStab/


http://сайт/Sxemoteh/ShTrzKask/EmitStab/

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то