Школьная энциклопедия. Диапазон радиоволн и их распространение

Доказал, что электромагнитная энергия может быть отправлена в космос в виде радиоволн, которые проходят через атмосферу примерно со скоростью света. Это открытие помогло разработать принципы радиосвязи, которыми пользуются и сегодня. Кроме того, ученый доказал, что радиоволны имеют электромагнитную природу, а главная их характеристика - это частота, при которой энергия колеблется между электрическими и магнитными полями. Частота в герцах (Гц) связана с длиной волны λ, представляющей собой расстояние, которое радиоволна проходит в течение одного колебания. Таким образом, получается следующая формула: λ = C/F (где C равна скорости света).

Принципы радиосвязи основаны на передаче несущих информацию радиоволн. Они могут передавать голос или цифровые данные. Для этого радиостанция должна иметь:

Устройство для сбора информации в электрический сигнал (например, микрофон). Этот сигнал называется основной полосой частот в обычном звуковом диапазоне.

Модулятор внесения информации в полосу частот сигнала на выбранной

Передатчик, сигнала, который посылает его на антенну.

Антенну из проводящего электричество стержня определенной длины, которая будет излучать электромагнитную радиоволну.

Усилитель сигнала на стороне приемника.

Демодулятор, который будет способен восстановить первоначальную информацию из принимаемого радиосигнала.

Наконец, устройство для воспроизведения переданной информации (например, громкоговоритель).

Современный принцип радиосвязи был задуман еще в начале прошлого века. В то время радио разработали в основном для передачи голоса и музыки. Но очень скоро появилась возможность использовать принципы радиосвязи для передачи более сложной информации. Например, такой ​​как текст. Это привело к изобретению телеграфа Морзе.

Общим для голоса, музыки или телеграфа является то, что основная информация зашифрована в которые характеризуются амплитудой и частотой (Гц). Люди могут слышать звуки в диапазоне от 30 Гц и примерно до 12 000 Гц. Этот диапазон называется звуковой спектр.

Радиочастотный спектр делится на различные Каждый из которых имеет конкретные характеристики в отношении излучения и затухания в атмосфере. Выделяют описанные в таблице ниже коммуникационные приложения, которые работают в том или ином диапазоне.

LF-диапазон от 30 кГц до 300 кГц В основном используется для воздушных судов, маяков, навигации, а также для передачи информации.
FM-диапазон от 300 кГц до 3000 кГц Используется для цифрового вещания.
ВЧ-диапазон от 3000 кГц до 30000 кГц Этот диапазон широко подходит для средней и дальней наземной радиосвязи.
УКВ-диапазон от 30000 кГц до 300000 кГц УКВ обычно используется для наземного радиовещания и связи морских и воздушных судов
UHF-диапазон от 300000 кГц до 3000000 кГц С помощью этого спектра работают спутниковые системы позиционирования, а также мобильные телефоны.

Сегодня сложно представить, что делало бы человечество без радиосвязи, которая нашла свое применение во многих современных устройствах. Например, принципы радиосвязи и телевидения используются в мобильных телефонах, клавиатуре, GPRS, Wi-Fi, беспроводных компьютерных сетях и так далее.

В учебниках по физике приведены заумные формулы на тему диапазона радиоволн, которые порой не до конца понятны даже людям со специальным образованием и опытом работы. В статье постараемся разобраться с сутью, не прибегая к сложностям. Первым, кто обнаружил радиоволны, был Никола Тесла. В своем времени, где отсутствовало высокотехнологичное оборудование, Тесла не до конца понимал, что это за явление, которое он впоследствии назвал эфиром. Проводник с переменным электрическим током является началом радиоволны.

Источники радиоволн

К природным источникам радиоволн относятся астрономические объекты и молнии. Искусственным излучателем радиоволн является электрический проводник с движущимся внутри переменным электрическим током. Колебательная энергия распространяется в окружающее пространство посредством радиоантенны. Первым рабочим источником радиоволн был радиопередатчик-радиоприёмник Попова. В этом устройстве функцию высокочастотного генератора выполнял высоковольтный накопитель, подключенный на антенну − вибратор Герца. Созданные искусственным способом радиоволны применяются для стационарной и мобильной радиолокации, радиовещания, радиосвязи, спутников связи, навигационных и компьютерных систем.

Диапазон радиоволн

Применяемые в радиосвязи волны находятся в диапазоне частот 30 кГц − 3000 ГГц. Исходя из длины и частоты волны, особенностей распространения, диапазон радиоволн подразделяется на 10 поддиапазонов:

  1. СДВ - сверхдлинные.
  2. ДВ - длинные.
  3. СВ - средние.
  4. КВ - короткие.
  5. УКВ - ультракороткие.
  6. МВ - метровые.
  7. ДМВ - дециметровые.
  8. СМВ - сантиметровые.
  9. ММВ - миллиметровые.
  10. СММВ - субмиллиметровые

Диапазон частот радиоволн

Спектр радиоволн условно поделен на участки. В зависимости от частоты и длины радиоволны подразделяются на 12 поддиапазонов. Диапазон частот радиоволн взаимосвязан с частотой переменного тока сигнала. радиоволн в международном регламенте радиосвязи представлены 12 наименованиями:


При увеличении частоты радиоволны ее длина уменьшается, при уменьшении частоты радиоволны - увеличивается. Распространение в зависимости от своей длины - это важнейшее свойство радиоволны.

Распространение радиоволн 300 МГц − 300 ГГц называют сверхвысокими СВЧ вследствие их довольно высокой частоты. Даже поддиапазоны очень обширны, поэтому они, в свою очередь, поделены на промежутки, в которые входят определенные диапазоны телевизионные и радиовещательные, для морской и космической связи, наземной и авиационной, для радиолокации и радионавигации, для передачи данных медицины и так далее. Несмотря на то что весь диапазон радиоволн разбит на области, обозначенные границы между ними являются условными. Участки следуют друг за другом непрерывно, переходя один в другой, а иногда и перекрываются.

Особенности распространения радиоволны

Распространение радиоволн - это передача энергии переменным электромагнитным полем из одного участка пространства в другой. В вакууме радиоволна распространяются со При воздействии окружающей среды на радиоволны распространение радиоволн может быть затруднено. Это проявляется в искажении сигналов, изменении направления распространения, замедлении фазовой и групповой скоростях.

Каждая из разновидностей волн применяется по-разному. Длинные лучше могут обходить преграды. Это означает, что диапазон радиоволн может распространяться по плоскости земли и воды. Применение длинных волн широко распространено в подводных и морских суднах, что позволяет быть на связи в любой точке местонахождения в море. На в шестьсот метров с частотой пятьсот килогерц настроены приемники всех маяков и спасательные станций.

Распространение радиоволн в различных диапазонах зависит от их частоты. Чем меньше длина и выше частота, тем прямее будет путь волны. Соответственно, чем меньше ее частота и больше длина, тем она более способна огибать преграды. Каждый диапазон длин радиоволн обладает своими особенностями распространения, однако на границе соседних диапазонов резкого изменения отличительных признаков не наблюдается.

Характеристика распространения

Сверхдлинные и длинные волны огибают поверхность планеты, распространяясь поверхностными лучами на тысячи километров.

Средние волны подвержены более сильному поглощению, поэтому способны преодолевать расстояние лишь 500-1500 километров. При уплотнении ионосферы в данном диапазоне возможна передача сигнала пространственным лучом, который обеспечивает связь на несколько тысяч километров.

Короткие волны распространяются лишь на близкие расстояния вследствие поглощения их энергии поверхностью планеты. Пространственные же способны многократно отражаться от земной поверхности и ионосферы, преодолевать большие расстояния, осуществляя передачу информации.

Сверхкороткие способны передавать большой объем информации. Радиоволны этого диапазона проникают сквозь ионосферу в космос, поэтому для целей наземной связи практически непригодны. Поверхностные волны этих диапазонов излучаются прямолинейно, не огибая поверхность планеты.

В оптических диапазонах возможна передача гигантских объемов информации. Чаще всего для связи используется третий диапазон оптических волн. В атмосфере Земли они подвержены затуханию, поэтому в реальности передают сигнал на расстояние до 5 км. Зато использование подобных систем связи избавляет от необходимости получать разрешения от инспекций по электросвязи.

Принцип модуляции

Для того чтобы передать информацию, радиоволну нужно модулировать сигналом. Передатчик испускает модулированные радиоволны, то есть измененные. Короткие, средние и длинные волны имеют амплитудную модуляцию, поэтому они обозначаются как АМ. Перед модуляцией несущая волна движется с постоянной амплитудой. Амплитудная модуляция для передачи изменяет ее по амплитуде, соответственно напряжения сигнала. Амплитуда радиоволны изменяется прямо пропорционально напряжению сигнала. Ультракороткие волны имеют частотную модуляцию, поэтому они обозначаются как ЧМ. накладывает дополнительную частоту, которая несет информацию. Для передачи сигнала на расстояние его нужно промодулировать более высокочастотным сигналом. Для принятия сигнала нужно отделить его от поднесущей волны. При частотной модуляции помех создается меньше, однако радиостанция вынуждена вещать на УКВ.

Факторы, влияющие на качество и эффективность радиоволн

На качество и эффективность приема радиоволн влияет метод направленного излучения. Примером может послужить спутниковая антенна, которая направляет излучение в точку нахождения установленного приемного датчика. Этот метод позволил существенно продвинуться в области радиоастрономии и сделать множество открытий в науке. Он открыл возможности создания спутникового вещания, беспроводным методом и многое другое. Выяснилось, что радиоволны способны излучать Солнце, многие планеты, находящиеся вне нашей Солнечной системы, а также космические туманности и некоторые звезды. Предполагается, что за пределами нашей галактики существуют объекты, обладающие мощными радиоизлучениями.

На дальность радиоволны, распространение радиоволн оказывают влияние не только солнечное излучение, но и метеоусловия. Так, метровые волны, по сути, не зависят от метеоусловий. А дальность распространения сантиметровых сильно зависит от метеоусловий. Происходит из-за того, что водной среде во время дождя или при повышенном уровне влажности в воздухе короткие волны рассеиваются или поглощаются.

Также на их качество влияют и препятствия, оказывающиеся на пути. В такие моменты происходит замирание сигнала, при этом значительно ухудшается слышимость или вообще пропадает на несколько мгновений и более. Примером может послужить реакция телевизора на пролетающий самолет, когда мигает изображение и появляются белые полосы. Это происходит за счет того, что волна отражается от самолета и проходит мимо антенны телевизора. Такие явления с телевизорами и радиопередатчиками чаще происходят в городах, поскольку диапазон радиоволн отражается на зданиях, высотных башнях, увеличивая путь волны.

В фильтре на рис. 6.18, в две перекрещивающиеся полосковые линии при отсутствии гиромагнитного резонанса практически развязаны между собой, поскольку связи через магнитное поле нет, а электрическое поле в месте пересечения линий минимально, так как точка пересечения рас-

положена на расстоянии λ в /4 от разомкнутых концов полосковой линии. В точке пересечения между проводниками полосковых линий помещена ферритовая сфера, намагничиваемая управляющим полем, перпендикулярным плоскости основания полосковой платы. При гиромагнитном резонансе появляется составляющая поля магнитной индукции, продольная по отношению к возбуждающей линии передачи, и это приводит к возникновению сильной связи между полосковыми линиями.

Характеристики передачи рассмотренных фильтров носят ярко выраженный резонансный характер, причем резонансные частоты могут быть значительно изменены при регулировании поля подмагничивания. Для улучшения формы частотной характеристики в фильтрах используется несколько связанных между собой ферритовых резонаторов.

7. ОСНОВЫ ТЕОРИИ ИЗЛУЧЕНИЯ И ПРИЕМА РАДИОВОЛН

Антенна – непременная составная часть любой радиотехнической системы. Передающая антенна преобразует направляемые электромагнитные волны, движущиеся от генератора по фидерной линии к входу антенны, в расходящиеся электромагнитные волны свободного пространства. Приемная антенна, напротив, преобразует падающие на нее свободные волны в направляемые волны фидера, подводящие принятую мощность к входу приемника. Из назначения передающих и приемных антенн следует, что они относятся к классу взаимно обратимых преобразователей энергии. Важное значение имеет принцип обратимости антенн, согласно которому в большинстве практических случаев передающая антенна может использоваться для приема электромагнитных волн и наоборот.

Для эффективного функционирования радиосистемы входящие в нее антенны должны удовлетворять определенным требованиям и, в первую очередь, следующим двум:

антенна должна распределять электромагнитную мощность в пространстве или реагировать на приходящее электромагнитное поле по определенному закону, т.е. иметь заданную характеристику направленности;

процесс излучения или приема электромагнитных волн не должен сопровождаться бесполезным расходом высокочастотной энергии на омические потери, т. е. нагрев, внутри антенны. Другими словами, антенна должна иметь как можно более высокий коэффициент полезного действия.

Область применения антенн в современной радиотехнике чрезвычайно широка. Предельные возможности современных радиотехнических устройств по дальности, точности пеленгации и угловому разрешению целей и многие другие определяются технически достижимыми параметрами антенных устройств и, в первую очередь, шириной формируемого луча, т. е. направленностью действия.

7.1. Электродинамические основы

7.1.1. Постановка задачи

Во многих практических задачах из области излучающих антенн требуется непосредственно связать величину сторонних электрических токов – источников электромагнитного поля – с векто-

рами E иH этого поля в любых точках пространства. Эти задачи получили название внешних задач антенной теории и базируются на основных уравнениях электродинамики– уравнениях Максвелла. Их решение сводится к решению неоднородной системы уравнений Максвелла, которая для гармонических во времени электромагнитных процессов может быть записана следующим образом:

Здесь для простоты предполагается, что плотность объемного заряда ρ=0. Плотность стороннего электрического тока в правой части первого уравнения системы (7.1) – известная векторная функция пространственных координат для конкретной антенны.

7.1.2. Векторный и скалярный потенциалы электромагнитного поля

Непосредственное решение системы (7.1), как правило, весьма сложно, поскольку здесь необходимо определить шесть неизвестных составляющих векторов Е иН . Поэтому целесообразно ввести некоторые вспомогательные функции, упрощающие решение и позволяющие одновременно найти векторы напряженности электрического и магнитного полей. Подобные вспомогательные функции в электродинамике носят название потенциалов электромагнитного поля. Отметим, что третьему уравнению системы (7.1) удовлетворяет векторное полеВ , определяемое по формуле

Соотношения (7.2) и (7.3) весьма неопределенны, поскольку единственное условие, налагаемое на

A э – это дифференцируемость, обеспечивающая существование ротора данного векторного поля. Попытаемся при помощи электрического векторного потенциала определить вектор напряжен-

ности электрического поля. Для этого подставим (7.3) во второе уравнение системы (7.1): rot E +i ω rotA э = 0, т. е.

Здесь ϕ э – некоторая скалярная функция, или скалярный электрический потенциал. Выбор знака в правой части (7.5) обусловлен тем, что в соответствии с известным соотношением электроста-

тики для полей, не зависящих от времени, справедливо равенство E = –gradϕ э . При этом сохраняется традиционное направление стрелок на силовых линиях электрического поля от положительных к отрицательным электрическим зарядам.

Итак, найден способ выражения векторов электромагнитного поля через векторный и скалярный электрические потенциалы: формула (7.3) и

E =− grad φ

− iω A

7.1.3. Калибровка потенциалов. Неоднородное уравнение Гельмгольца

Подставим соотношения (7.6) в первое уравнение системы (7.1):

rot rot A

I ωεa gradϕ

Iωε a iω A

J ст.

e − i γ R

Раскрывая операцию rot rot, получаем

)−

−γ

grad (div A

I ωεa μa φ

= μа J ст ,

где 2 – оператор Лапласа.

До сих пор не накладывалось никаких ограничений на функции A э иϕ э . Потребуем теперь, чтобы оба потенциала удовлетворяли следующему соотношению:

I ωεa μa φ

div A

Формула (7.8) носит название соотношения калибровки потенциалов. Из-за произвольного вы-

бора функций A э иϕ э (7.8) может быть удовлетворено в любом случае. Заметим, что наложение условий (7.8) значительно упрощает уравнение (7.7), которое принимает вид

=−μ а J ст .

В результате получили неоднородное уравнение Гельмгольца относительно векторного электрического потенциала; в его правой части стоит известная функция распределения плотности стороннего электрического тока. Кроме того, операция калибровки потенциалов (7.8) позволяет выразить оба вектора электромагнитного поля через единственную функцию – электрический векторный потенциал:

i ωεa μa

(grad div A

+ γ

rot A

7.1.4. Решение неоднородного уравнения Гельмгольца

Решим неоднородное уравнение Гельмгольца на основе простых физических допущений. Предположим, что сторонние электрические токи локализованы в некотором объеме V (рис.7.1); интенсивность возбуждаемого поля должна быть определена в точкеР , не принадлежащейV .

Рассмотрим элементарный объем ∆ V , окружающий точкуQ , лежащую внутриV . Очевидно, что интенсивность поля в точке наблюденияР , возникающего под действием токов, протекающих

внутри ∆ V , пропорциональна произведениюJ ст (Q )∆ V . ЗдесьJ ст (Q ) – некоторое среднее значе-

ние плотности стороннего тока, которое можно считать постоянным внутри ∆ V из-за малости последнего. Дальнейший путь решения уравнения (7.9) заключается в следующем. Ввиду линейности уравнений Максвелла рассматриваемая система удовлетворяет принципу суперпозиции. В

P соответствии с этим принципом полное решение неоднородного уравнения Гельмгольца может быть получено как сумма всех воздействий, вы-

J ст

зываемых в точке Р отдельными элементарными объемами. С физической

точки зрения ясно, что по своей природе данные воздействия представля-

ют собой сферические волны, распространяющиеся из отдельных точек

объема V и уносящие электромагнитную энергию в бесконечность. Из-

вестно, что комплексная амплитуда сферической волны пропорциональна

/ R . Здесь в соответствии с обозначениями, принятыми на рис. 7.1,R – текущее значение модуля радиуса-вектора, соединяющего точкиР и

Q ,γ – постоянная распространения.

Таким образом, с точностью до множителя пропорциональности величина элементарного воздействия, вызываемого в точке Р объема∆ V , рав-

торного потенциала в точке наблюдения может быть найдена суммированием элементарных воздействий:

А э (Р ) ~∑ J ст (Q i )e − l γ R

∆ V i.

Многие люди, не обладая элементарными понятиями о видах энергии, их свойствах, часто рассуждают о способах беспроводной передачи энергии на расстояния. Другие, не зная, как распространяются радиоволны, изготавливают антенны к своим радиопередатчикам и радиоприемникам, пытаясь добиться максимальных характеристик передачи и приема, но у них ничего не получается. Одни читают умные книги, а другие основываются на опыте, или совете малограмотного товарища. Для того, чтобы развеять хотя бы часть заблуждений и дать представление об электромагнитных волнах и как их виде – радиоволнах посвящена эта статья.

Как обычно, я не буду расписывать формул Максвелла, Фарадея и других известных деятелей науки. Их в огромном количестве имеется в учебниках физики, читая которые, даже я – имеющий образование и опыт работы в радиоэлектронике не понимаю, почему в этих учебниках приводятся заумные формулы, а простейшая, имеющая полезное практическое значение информация отсутствует? Ведь на следующий день, или неделю после окончания школы, ученик эти формулы не вспомнит, а простых понятий, как не знал, так и знать не будет.

Начнём с того, что великий изобретатель-практик электрических машин Никола Тесла активно использовал в своих экспериментах электромагнитные колебания, про которые раньше никто не знал, и как мы знаем теперь из учебников физики средней школы — порождают вид электромагнитных волн — радиоволны. Но повторюсь, во времена Теслы о существовании электромагнитных волн никто не знал. Интуитивно, путём наблюдений, Тесла понимал, что в результате его экспериментов в окружающем пространстве появляется какой-то вид энергии. Но в те времена не существовало такой науки и оборудования позволяющего раскрыть понятие электромагнитных волн. Поэтому, это явление рассматривалось как философская категория, которую Тесла называл — эфиром .

Нынче рассуждают, что «эфир» и электромагнитные волны это разные понятия. Они совершенно не правы лишь потому, что абсолютно все изобретения Теслы основаны на использовании обыкновенного переменного электрического тока и электромагнитных полей, которые в свою очередь и порождают не «эфир», а самые обыкновенные электромагнитные волны в радиочастотном диапазоне. Именно то, что в настоящее время называется электромагнитными волнами, в те времена Никола Тесла называл эфиром. Других вариантов объяснений быть не может. Можно долго рассуждать о том, что это разные понятия. Например, кто то с пеной у рта пытается доказать что скорость распространения эфира больше скорости света, а доказательная база отсутствует. С помощью какого эксперимента Никола Тесла мог измерить скорость эфира? Нигде такой информации нет. Вывод один, он её не измерял, а лишь предполагал. Вы скажете, что эфир несёт в себе энергию? Отвечу, любая электромагнитная волна несёт в себе энергию! Мне попадались практические схемы радиоприёмников без батареек, предназначенные не для работы на наушники или динамическую головку, а для получения постоянного электрического тока «из воздуха» теми жителями мегаполисов, которые живут рядом с мощными телерадиоцентрами.

– синусоидальное электромагнитное колебание в пространстве. Общепринятое сокращение – ЭМВ . Электромагнитная волна – это свет, тепловые лучи невидимого инфракрасного диапазона, рентгеновские лучи и радиоволны. Разница лишь в мощности колебаний и длине волны. В частности Тесла имел дело с радиоволнами. Фактически он и является изобретателем радио, а не Маркони с Поповым. Последние смогли описать радиоволны, поэтому их и считают изобретателями радио. Тесла был первооткрывателем, но у него в те времена не было научных объяснений, которые намного позже появились у Попова и Маркони. Кроме того, они использовали радиоволны в практических полезных целях. Тесла, в своё время писал о переносе информационного сигнала с помощью передатчика и приемника, но увлёкшись молниями, дойти до изобретения их практических устройств просто не успел. Резонный вопрос, а что же колеблется в электромагнитных волнах? Отвечу, далеко не углубляясь в ядерную физику, это фотоны – сгустки энергии, обладающие электромагнитным полем, но не обладающие массой. Именно эти свойства позволяют фотонам быть переносчиками энергии. Учёные-ядерщики и дальше «раскладывают» фотоны на составляющие элементы. Мы не будем продолжать этот ход мыслей, пожелаем им успехов, потому что это не по теме статьи. Если Вы противник считать что «эфир», это – электромагнитные волны, тогда попытайтесь принять, что «эфир» это – фотоны, а электромагнитные волны, это по своей сути — направленный поток фотонов.

Источником радиоволны может быть любой электрический проводник, в котором движется переменный электрический ток. На практике, источником радиоволны является высокочастотный генератор, колебательная энергия которого, распространяется в пространство через радиоантенну. Первым действующим источником радиоколебаний, изобретённым человеком и используемым с очевидным и рациональным успехом, был радиопередатчик-радиоприёмник Маркони (или Попова), использующий в качестве высокочастотного генератора – высоковольтный накопитель с искровым разрядником, подключенным на антенну — обыкновенный вибратор Герца.


схема передатчика и приемника Попова — Маркони

Свойства распространения электромагнитных волн

Дальность распространения электромагнитной волны зависит от частоты колебания переменного электрического тока (электромагнитного колебания). На частотах от единиц до тысяч Герц, соответствующих звуковому диапазону волн, электромагнитная волна, созданная в пространстве с помощью индуктивности, распространяется на расстояние, не превышающее одного-двух десятков метров, поэтому полезного практического применения не имеет. На частотах от сотен килогерц и выше, что соответствует диапазонам радиоволн, электромагнитная волна способна распространяться более чем на тысячи километров.

Дальность распространения электромагнитной волны так же зависит от мощности протекающего по проводнику тока. Как было указано ранее, низкочастотная электромагнитная волна полезного практического применения не имеет, но зато имеет вредное влияние. В качестве примера вредного влияния можно привести влияние высоковольтной линии электропередач (ЛЭП) с напряжением в несколько десятков тысяч вольт на радиоприёмник проезжающего мимо автомобиля. Вокруг высоковольтных проводов формируется мощное электромагнитное поле, которое значительно превосходит по амплитуде электромагнитные колебания удалённых радиостанций и в приемнике вместо радиостанции слышен низкочастотный гул сетевого напряжения. Другой случай, когда происходит «глушение» радиоприёмника вблизи силовых линий электропередач при сетевом напряжении всего в 380 вольт, но токе свыше 100 ампер. В первом случае у нас большое напряжение, а во втором — большой ток. Из учебника физики средней школы известно, что мощность электрического тока в проводнике связана с напряжением и током через выражение Р=U*I . А чем больше мощность, тем дальше распространение электромагнитного поля и как следствие – электромагнитной волны, образуемой электромагнитным полем. Этим и объясняется влияние мощности на дальность распространения.

Почему волна, про которую здесь пишется, называется электромагнитной? Потому, что она состоит из электрического и магнитного синусоидального колебания. Эти два вида колебаний ориентированы в пространстве друг относительно друга перпендикулярно – ровно на 90 градусов.
Когда электрическая волна «горизонтальна» — сориентирована параллельно линии горизонта, а магнитная волна соответственно «вертикальна» — сориентирована перпендикулярно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную горизонтальную поляризацию .

Когда электрическая волна «вертикальна» — сориентирована перпендикулярно линии горизонта, а магнитная волна соответственно «горизонтальна» — сориентирована параллельно линии горизонта, тогда говорят, что электромагнитная волна имеет линейную вертикальную поляризацию .

Если электрическая волна (соответственно и магнитная волна) имеет наклон относительно линии горизонта – угол не равный нулю или 90 градусов, тогда говорят, что электромагнитная волна имеет линейную наклонную поляризацию .

Существует так же другой вид поляризации, используемый для повышения дальности передачи (приема) и лучшей помехозащищённости радиоприёмной аппаратуры – круговая поляризация – вид поляризации электромагнитной волны, при котором за один период электромагнитного колебания радиоволна делает полный оборот на 360 градусов. Один из видов круговой поляризации – эллиптическая поляризация — «приплюснутая» в одной из плоскостей круговая поляризация.

Все указанные виды поляризации определяются устройством и ориентированием радиоантенны.

Практическая важность поляризации заключается в том, что если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой, или её вообще не будет.

Примером использования поляризации света – как вида электромагнитных колебаний является 3D-кинотеатр. Принцип действия систем 3D-видеоизображения основан на следующем: Фильм снимается на кинокамеры (видеокамеры) разнесённые в пространстве, как два глаза человека. При его показе в кинотеатре, два независимых проектора закрываются поляризационными светофильтрами, точно такие же светофильтры в виде плёнок стоят в очках кинозрителей. Правый проектор и правый глаз зрителя прикрыты светофильтром с вертикальной поляризацией, а левый проектор и глаз – фильтром с горизонтальной поляризацией. Таким образом, правый глаз видит картинку от правого проектора, а левый глаз от левого. В качестве фильтров могут использоваться и другие варианты разделения световых волн, но статья не об этом, поляризация света – один из способов селекции электромагнитных волн.

Электромагнитные волны (радиоволны) распространяются в разных средах с разной скоростью. Скорость распространения радиоволн в вакууме приблизительно равна скорости света 300 000 км/сек . В воздухе радиоволны распространяются с чуть меньшей скоростью, но не на много, поэтому принимается та же цифра – 300 000 км/сек. Поскольку обыкновенная вода обладает электропроводностью, то её поверхность для радиоволн является отражателем, а часть энергии радиоволн тратится на нагрев поверхностных слоев воды. Типичным примером этому является микроволновая печь, разогревающая молекулы воды, содержащиеся в подогреваемой пище. Металлы не пропускают радиоволны, отражая всю энергию электромагнитных колебаний.

Немаловажным, являются свойства радиоволн распространяться в зависимости от их длины волны. Напомню, длина электромагнитной волны связана с частотой колебаний через скорость её распространения в вакууме (скорость света):

где: f – частота, λ – длина волны, с – скорость света, равная 300 000 км/сек.

Радиоволны подразделяются на несколько диапазонов:

Сверхдлинные «СДВ» – частотой 3 – 30 кГц, с длиной волны 100 — 10 км;

Длинные «ДВ» – частотой 30 – 300 кГц, с длиной волны 10 — 1 км;

Средние «СВ» – частотой 300 – 3000 кГц, с длиной волны 1000 — 100 метров;

Короткие «КВ» – частотой 3 – 30 МГц, с длиной волны 100 — 10 метров;

Ультракороткие «УКВ» , включающие:

— метровые «МВ» – частотой 30 – 300 МГц, с длиной волны 10 — 1 метра;

— дециметровые «ДМВ» – частотой 300 – 3000 МГц, с длиной волны 10 — 1 дм;

— сантиметровые «СМВ» – частотой 3 – 30 ГГц, с длиной волны 10 — 1 см;

— миллиметровые «ММВ» – частотой 30 – 300 ГГц, с длиной волны 10 — 1 мм;

— субмиллиметровые «СММВ» – частотой 300 – 6000 ГГц, с длиной волны 1 – 0,05 мм;

Диапазоны от дециметровых, до миллиметровых волн, из-за их очень высокой частоты называют сверхвысокими частотами «СВЧ» .

Естественно все перечисленные диапазоны радиоволн, как отечественные, так и буржуйские могут подразделяться на поддиапазоны.

Для передачи информации радиоволну необходимо модулировать сигналом содержащим информацию. Длинные, средние и короткие волны обычно имеют амплитудную модуляцию, что на английском звучит — amplitude modulation «АМ» . Ультракороткие волны обычно имеют частотную модуляцию, что на английском звучит — frequency modulation , и у буржуев обозначаются как — «FМ» (по нашему «ЧМ» ).

Кроме деления радиоволн на диапазоны необходимо добавить, что в зависимости от направления и путей распространения радиоволн, они бывают поверхностные (земные) (1) – распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы и пространственные (2) – распространяющиеся через верхние слои атмосферы и с отражением от ионосферы (3).

Существует понятие, чем выше длина волны (меньше частота), тем она больше способна огибать препятствия. И наоборот, чем короче длина волны (выше частота), тем прямолинейнее(лучше по прямой) радиоволна распространяется.

Длинные волны способны распространяться вдоль поверхности земли и воды, но едва достигают ионосферы. Это свойство используется для организации связи с морскими судами – связь имеется практически в любой точке моря.

Средние волны распространяются вдоль поверхности земли и воды, а также отражаются ионосферой.

Короткие волны распространяются «скачками», периодически отражаясь от ионосферы и земной поверхности.

Ультракороткие волны и более высокие частоты распространяются прямолинейно, как свет от любого источника света, они не способны изгибаться вдоль земного шара, а ионосфера для них прозрачна.

Простым примером использования длинноволнового диапазона является радиосвязь с подводными лодками. Для того, чтобы не быть замеченной противником выходя на связь с командованием флота, лодка всплывает на очень короткое время. Но если бы волны, используемые для связи с подводной лодкой распространялись бы «скачками», то не в любой точке земного шара была бы связь. А на практике, в каком бы месте земного шара лодка бы не всплыла, связь появляется сразу. Конечно в последнее время с развитием техники, подводные лодки используют различные диапазоны, в том числе космическую связь (через спутники связи) на СВЧ-диапазоне.

Примером использования радиоволн диапазонов УКВ, ДМВ и СМВ является импульсная радиолокация, где свойство прямолинейного распространения радиоволн этих диапазонов используется для точного определения пространственных координат самолётов, стай птиц и других воздушных объектов. Даже проводится разведка погоды – уровня и интенсивности облачности на больших расстояниях.

От одного и того же радиопередающего устройства радиоволны отраженные от земной поверхности могут встретиться с неотражёнными волнами, или волнами, отражёнными от другого участка земной поверхности, или верхних слоёв атмосферы. В этом случае, происходит синфазное сложение радиоволн , или противофазное вычитание . В результате, в вертикальной плоскости пространства образуется изрезанная косекансная диаграмма направленности антенны. При синфазном переотражении радиоволн от земной поверхности на этих участках образуются зоны максимального переотражения – зоны Френеля . Если радиопередатчик имеет всенаправленную антенну (например штыревую), то зоны Френеля будут представлять из себя много колец на поверхности земли различного диаметра, в центре которых находится антенна. Диаметр колец может быть от десятков метров, до нескольких километров.

Для Вашей эрудиции: До военной агрессии в Югославии, американцы придавали большое значение противорадиолокационным ракетам, как средству уничтожения радаров противника. Противорадиолокационная ракета имеет самонаводящуюся радиоголовку, которая наводит ракету на сигнал радара. Но после этой своей миротворческой операции по превращению Югославии в марионеточное государство, они стали перевооружаться на ракеты с тепловыми головками самонаведения. Оказалось, что головки самонаведения противорадиолокационных ракет наводились на зоны Френеля, которые у вращающегося радара всё время меняются, в результате чего вычислитель ракеты не правильно определял координаты радара, и в лучшем случае ракета падала в одну из зон Френеля. Так, купленный у Советского Союза ещё в 80-х годах радар метрового диапазона волн, более 50 суток войны надежно обеспечивал Югославские ПВО информацией о полётах американцев. С его помощью был сбит не один чудо-самолёт-невидимка звёздно-полосатых. А по телевизору как обычно – врали, что американцы потерь не несут.

Сильное влияние на распространение радиоволн оказывают препятствия. Как правило, препятствия обладают отражающим свойством. В качестве препятствий могут выступать различные предметы как природного, так и искусственного происхождения. Как было написано ранее, радиоволны отражаются от земной поверхности. Стоит отметить, что если грунт сильно сухой (например в пустыне), то отражение радиоволн намного хуже, чем когда земля сырая от дождя. Так, расстояние связи у одной и той же аппаратуры связи на море на 50 – 70 процентов больше, чем на суше. Отражают радиоволны деревья и облака. Перечисленные естественные препятствия являются хорошими отражателями, потому, что в их состав входит вода. К искусственным препятствиям, отражающим радиоволны относятся различные металлические конструкции, в том числе арматура зданий и сооружений.

Влияние типа используемой антенны на качество и направленность приема (излучения) радиоволн

Куда и как будет распространяться радиоволна, определяется размерами и формой антенны-излучателя радиоволн. Самой простой радиоантенной является Вибратор Герца . Это элементарный «кубик», который является основой для построения всех типов антенн.

Вибратор Герца – это два проводника, расходящиеся в противоположные стороны от «точки подключения энергии». По своей сути это «развернутый» колебательный контур. Для лучшего излучения радиосигнала, расстояние от конца одного проводника до конца другого должно быть равно половине длины волны излучаемого (или принимаемого) электромагнитного колебания. Это необходимо для того, чтобы на концах вибратора была максимальная разность потенциалов напряжения сигнала, а в центре вибратора – максимальная амплитуда тока. Правда необходимо использовать коэффициент укорочения, который учитывает скорость распространения электрического сигнала по поверхности проводников, которая намного меньше чем в вакууме. В зависимости от частоты сигнала и металла, из которого изготовлен вибратор коэффициент укорочения может быть в пределах от 0,65 до 0,85. То есть вибратор должен быть равен половине длины волны, помноженной на коэффициент укорочения.

Для уменьшения габаритов антенны иногда используется вибратор, по длине равный одной четвёртой длины волны. Могут использоваться и другие соотношения, но при этом, качество приёма (передачи) и направленные свойства антенны изменяются.

Диаграмма направленности полуволнового вибратора имеет форму тороида вращения – форму «бублика». Если вибратор расположить горизонтально относительно земли, то зоны максимального приема (передачи) будут на линии перпендикулярной вибратору, а зоны минимального приема по торцовым сторонам вибратора. Но учтите, это без учёта влияния переотражения от земли. Если учитывать влияние переотражения от земной поверхности, проекция диаграммы направленности антенны (ДНА) вибратора окажется слегка вытянутой в направлениях максимумов.
На рисунке изображены тороид вращения и проекция диаграммы направленности антенны на горизонтальную поверхность с учётом влияния земли.

– это видоизменённый вибратор Герца, у которого в качестве одного проводника используется сам штырь, а в качестве другого противовес – кусок свисающего вниз провода, человек, у которого в руках мобильная рация, или поверхность земли. Диаграмма направленности штыревой антенны, это тот же торроид, находящийся в горизонтальной площади, только за счёт отражения от земли торроид приплюснут снизу. Зона максимального приёма будет во все стороны, а минимального – над штыревым вибратором. Зону минимального приема, находящуюся над антенной называют – мёртвая зона , или мёртвая воронка .

В зависимости от соотношения длины штыревой антенны к длине волны, диаграмма направленности антенны в вертикальной плоскости так же изменяется. На рисунке схематично изображено, влияние отношения длины штыря к длине волны на формирование диаграммы направленности антенны в вертикальной плоскости.

Вспомните практическую важность поляризации ЭМВ — если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой. К этому стоит добавить диаграмму направленности штыревой антенны, и тогда на примере двух радиотелефонов — переносных радиостанций (1 и 2) изображённых на рисунке ниже, можно сделать логическое заключение:

Если антенны радиопередатчика и радиоприемника ориентированы в пространстве относительно горизонта одинаково и диаграммы направленности антенн максимумами направлены друг на друга, то связь будет наилучшей. Если не выполняется одно из указанных условий, то связи либо не будет, либо она будет плохой.

На дальность радиосвязи также влияет ещё один параметр – толщина элементов вибратора, чем она больше, тем антенна широкополоснее – диапазон хорошо принимаемых частот шире, но уровень сигнала практически на всех частотах уменьшается. Это связано с тем, что дипольная антенна – это тот же колебательный контур, а при расширении полосы частот АЧХ резонанса, амплитуда резонанса уменьшается. Поэтому не удивляйтесь, что телевизионная антенна, сделанная из пивных алюминиевых банок в городе, где уровень сигнала телевизионной вышки большой, принимает телевизионный сигнал разных каналов не хуже, а зачастую лучше сложной профессиональной антенны.

Хорошие профессиональные радиоантенны обладают показателем – коэффициентом усиления антенны . Ведь обычный полуволновой вибратор не усиливает сигнал, его действие избирательно – на определённой частоте, в определённых направлениях и определённой поляризации. Чтобы в приемнике было меньше помех, увеличить дальность приема-передачи, одновременно при этом сузить диаграмму направленности антенны (общепринятое название — ДНА), простой полуволновой вибратор не годится. Антенну усложняют.

Ранее, я писал о влиянии различных препятствий — их отражательном свойстве. Если препятствие по своим размерам не соизмеримо (на порядок меньше) с длиной радиоволны, тогда это не является для радиосигнала препятствием, оно никак на него не влияет. Если препятствие находится в плоскости параллельной электрической волне и больше длины волны, тогда это препятствие отражает радиоволну. Если препятствие по протяженности кратно (равно четверти, половине или целой) длине волны, сориентировано параллельно электрической волне и перпендикулярно направлению распространения волны, тогда это препятствие действует как резонансный колебательный контур на целой длине волны или её гармониках, и имеет наибольшие отражательные свойства.

Именно эти описанные выше свойства и используются в сложных антеннах. Так, один из вариантов улучшения приемных свойств антенны является установка дополнительного рефлектора (отражателя), принцип действия которого основывается на отражении радиоволны и синфазного сложения двух сигналов – от телецентра (ТЦ) и от рефлектора. Диаграмма направленности при этом сужается и вытягивается. На рисунке изображена антенна, состоящая из петлевого полуволнового вибратора(1) и рефлектора(2). Длина вибратора (А) этой телевизионной антенны выбирается равной половине длины волны среднего телевизионного канала, помноженную на коэффициент укорочения. Длина рефлектора (Б) выбирается равной половине длины волны минимального телевизионного канала (с максимальной длиной волны). Расстояние между вибратором и рефлектором (С) выбирается таким, чтобы происходило синфазное сложение прямого и отражённого сигнала – половине длины волны.

Следующий способ дальнейшего усиления приемного сигнала путём сужения и вытягивания ДНА – добавление пассивного вибратора – директора . Принцип действия всё на том же синфазном сложении. Диаграмма направленности при этом ещё сильнее сужается и вытягивается. На рисунке изображена антенна «волновой канал» , состоящая из рефлектора (1), петлевого полуволнового вибратора (2) и одного директора (3). Дальнейшее добавление директоров ещё сильнее сужает и вытягивает диаграмму направленности. Длина директоров (В) выбирается чуть меньше длины активного вибратора. Для увеличения коэффициента усиления антенны и её широкополосности, перед активным вибратором добавляются директоры с постепенным уменьшением их длины. Обратите внимание, что длина активного вибратора равна половине средней длине волны принимаемого сигнала, длина рефлектора – больше половины длины волны, а длина директора – меньше половины длины волны. Расстояния между элементами выбирается также около половины длины волны.

В профессиональной технике часто применяется способ сужения ДНА и повышения усилительных свойств антенны – фазированная антенная решётка , в которой параллельно подключается несколько антенн (например простых диполей, или антенн типа «волновой канал»). В результате происходит сложение токов соседних каналов, и как результат – повышение мощности сигнала.

На сверхвысоких частотах в качестве вибратора антенны применяют волновод, а в качестве рефлектора применяют сплошное полотно, все точки которого равноудалены от плоскости вибратора (на одинаковом расстоянии) – параболоид вращения , или в простонародье – «тарелка». Такая антенна обладает очень узкой диаграммой направленности и высоким коэффициентом усиления антенны.

Выводы на основе распространения и сложности формирования радиоволн

Как и куда распространяются радиоволны можно рассчитать с помощью умных формул и преобразований только для идеальных условий – при отсутствии естественных препятствий. Для этого, элементы антенн, различные поверхности должны быть идеально ровные. На практике, из-за влияния многих факторов преломления и отражения, ещё ни один «учёный мозг» не смог с высокой достоверностью рассчитать распространение радиоволн в естественных природных условиях. Существуют области пространства уверенного приема и зоны радиотени – там, где прием вовсе отсутствует. Только в кино альпинисты не отвечают на вызов по радиосвязи потому, что у них заняты руки, или они сами заняты «спасением мира», на самом деле радиосвязь – дело не устойчивое и чаще альпинисты не отвечают потому, что связи просто нет – отсутствует прохождение радиоволн. Именно зависимость радиосвязи от природных явлений (дождь, низкая облачность, разряженность атмосферы и т.д.) привела к возникновению понятия «радиолюбитель» . Это сейчас понятие «радиолюбитель» – человек, который любит паять радиосхемы. Лет двадцать назад это был «связист-коротковолновик», который на изготовленном своими руками маломощном трансивере связывался с другим радиолюбителем (или по другому — радиокорреспондентом), находящимся на другой стороне Земли, за что получал «бонусы». Раньше даже проводились соревнования по радиосвязи. Нынче тоже проводятся, но с развитием техники это стало не так актуально. Среди этих радиолюбителей-связистов есть много недовольных тем, что обыкновенные «паялы», не сидящие в наушниках в поисках радиокорреспондентов для организации радиообмена, называют себя радиолюбителями.

Н. - А как принимают радиоволны?

Л. - С помощью приемной антенны, представляющей собой проводник, находящийся на пути распространения волн, проходя по которому, электромагнитные волны наводят в нем токи высокой частоты. Эти волны без какого бы то ни было ослабления проходят через диэлектрики. Однако, наводя токи в проводниках, они теряют часть своей энергии.

Н. - Ты меня пугаешь, Любознайкин. Человеческое тело - проводник электричества. Следовательно, волны всех радио- и телевизионных передатчиков наводят в моем теле токи?

Л. - Несомненно, но успокойся: эти токи чрезвычайно малы и никоим образом не могут причинить тебе вреда.

Н. - Тем лучше. А как они ведут себя в радио- или телевизионных приемниках?

Л. - Здесь наводимые ими токи тоже очень малы. Антенна непосредственно или индуктивно соединена с входным колебательным контуром приемника. Если контур настроен на частоту принимаемых волн, то благодаря явлению резонанса в контуре возникает относительно большой ток.

Антенна через катушку должна быть заземлена. Если колебательный контур включен непосредственно между антенной и заземлением (рис. 44) и если он точно настроен на частоту принимаемых волн, его сопротивление большое, поэтому падение напряжения, создаваемое токами антенны на выводах контура, относительно высокое.

Настройка и избирательность

Н. - А что произойдет, если контур окажется не в резонансе с принимаемыми волнами?

Л. - В этом случае его полное сопротивление станет меньше, что приведет к снижению напряжения на выводах контура.

Рис. 44. В приемнике контур настройки может включаться непосредственно между антенной и заземлением (а) или же индуктивно связываться с катушкой, по которой протекают токи, наводимые принимаемыми сигналами (б).

Рис. 45. Кривые, показывающие, как изменяется напряжение U на колебательном контуре в зависимости от частоты сигнала . Кривые представлены для контура с низкой (а) и высокой (б) избирательностью.

Рис. 46. Переключение с одного диапазона воли на другой осуществляется переключением катушек (а) или части витков одной катушки (б).

Это то самое явление, которое лежит в основе избирательности контура, его способности наилучшим образом принимать частоты, на которые он настроен.

Измеряя напряжение на выводах контура для различных частот, можно вычертить кривую избирательности, показывающую, как изменяется напряжение в зависимости от частоты (рис. 45).

Н. - А что определяет форму этой кривой? Я имею а виду прежде всего ее большую или меньшую ширину, так как чем уже эта кривая, тем выше, на мой взгляд, избирательность контура.

Л. - И ты не ошибаешься. Избирательность определяется коэффициентом затухания контура. Этот коэффициент в основном зависит от активного сопротивления катушки, вносящего в контур потери.

Н. - А каким образом удается установить колебательный контур в резонанс с частотой передачи, которую желают принять?

Л. - Для этого настраивают контур на требуемую частоту соответствующим изменением индуктивности катушки или емкости конденсатора. Если использовать конденсатор переменной емкости, настройку можно осуществить плавно. Что же касается индуктивности, то ее обычно меняют скачками для переключения диапазонов, например чтобы перейти с длинных волн на короткие. Для этой цели служит переключатель, позволяющий заменить одну катушку другой или использовать часть витков одной катушки, имеющей специальные отводы (рис. 46). Раньше использовали также катушки с плавным изменением индуктивности. Примером такого устройства может служить вариометр, состоящий из двух последовательно соединенных катушек, одну из которых можно было вращать внутри другой и, таким образом, изменять их взаимную индукцию.

Н. - Хорошо. Я понял, как излучают волны и как их принимают. Но каким образом заставляют волны передавать звук или изображение? И как при приеме удается их воспроизводить?

Л. - Все это потребует немало объяснений. Мой дядюшка и я сам сможем теперь приступить к этим вопросам, так как ты постиг основы общей электротехники.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то