Солнечные батареи: как это работает. Принцип работы солнечной батареи и ее устройство

Достаточно часто тем, кто проживает в своем собственном доме, приходится сталкиваться с тем, что отключают электроэнергию по техническим причинам или из-за чрезвычайной ситуации. Такие проблемы доставляют не только дискомфорт, но и множество проблем, например, портятся продукты, невозможно заниматься работой, если для этого требуется использование электроприборов. Что делать в такой ситуации? Стоит установить солнечные батареи, которые позволяют решить данную задачу максимально быстро и смогут доставить только пользу и ничего более.

Солнечная батарея (или панель) – это элемент питания (называется фотопластина), меняющий свою проводимость и выделяющий энергию при воздействии солнечных лучей. Именно такое преобразование позволят обогащать жилую конструкцию необходимым электричеством. Как правило, солнечные панели имеют различные виды.

В продажу поступают такие конструкции, как:

  • Монокристаллическая;
  • Поликристаллическая;
  • Аморфная.

У каждой конструкции есть определенная производительность, от чего напрямую зависит принцип работы и цена. Пластиной с минимальной мощностью считается батарея, сделанная на основе монокристаллов, а также у них самая низкая цена. В основном, их стараются использовать в тех условиях, где постоянная подача электричества не является слишком важной.

Владелец частного дома и непосредственно таких батарей должен тщательно следить за тем, чтобы фотоэлектрическая панель была чистой, так как если на ее покрытие будет попадать большое количество таких загрязнений, как снег, помет птиц и даже сухая листва, то это снизит эффективность работы и снизит уровень подаваемого напряжения. Солнечная батарейка для дома работает по особому принципу.

А именно:

  1. Происходит улавливание энергии солнца пластиной, сделанной на основе кремния.
  2. При нагревании происходит высвобождение энергии.
  3. Далее активизируются электроны, это способствует их передвижению по проводнику.
  4. Проводниками ток направляется в полость аккумулятора, это формирует своеобразную подзарядку.
  5. Посредством проводного подключения, ток поступает к бытовым приборам.

Принцип действия установки вполне понятен, но стоит ознакомиться с особенностями проведения обслуживания батарей и требуется ли оно вовсе. Первоначально нужно отметить тот факт, что в солнечной батареи полностью отсутствует движущая часть, так как это стационарные конструкции.

Как проводится обслуживание, чтобы работала солнечная батарея

Как правило, очищение покрытия стоит проводить раз в 7 дней. Специалисты считают, что этого вполне достаточно для поддержания оптимального состояния пластин в чистом виде. Также требуется осуществлять еще ряд процедур, это позволит эксплуатировать панели без проблем, а также исключить образование дефектов и неисправностей.

Обязательно проведение:

  1. Внешнего осмотра на предмет выявления расшатывания креплений и образования трещин в каркасе.
  2. Чистки панели.
  3. Проверки силового кабеля на отсутствие оголенных проводов, что может стать причиной возгорания.
  4. Контролирования и фиксирования состояния автоматики и показателей КИПа.
  5. Отслеживание уровня заряда аккумулятора.
  6. Контроля за состоянием конструктивными узлами блока на предмет выявления коррозийных образований.
  7. Осмотра прочности кожуха панели.

Также необходимы корректировки положения конструкции, это зависит от времени года и подтягивание каждого резьбового соединения. Помимо этого, можно проводить полив панелей из шланга самой обычной проточной водой, для чего достаточно 4 процедур в год.

Безопасный и эффективный ветрогенератор можно собрать своими руками. Все этапы работы описаны на следующей странице:

КПД солнечных батарей и другие параметры

Делают солнечные панели из такого материала, как кремний, и при покупке стоит обращать внимание на такие особенности, как наличие показателя КПД, который должен превышать 20%, высокого уровня сопротивления.

Наличие закаленного стекла, устойчивости к самым суровым погодным условиям, поликристаллического покрытия, если изделие устанавливается в регионе с жаркой температурой, необходимо.

Важно монокристаллическое покрытие для областей с неблагоприятными климатическими условиями. Современные кремниевые солнечные плиты обладают рядом преимуществ. Те, кто уже пользуются подобными установками, отзываются исключительно положительно.

Признают такие изделия:

  • Автономными;
  • Максимально экономичными по средствам, так как не требуется оплата электроэнергии;
  • Очень удобными в эксплуатации, так как не нужна регулировка;
  • Выгодными, так как ресурс пополняется автоматически;
  • Экологическими;
  • Безопасными;
  • Практичными, так как они могут быть, как резерв или основной ;
  • Очень долговечными.

Есть и некоторые недостатки, но на фоне множества положительных качеств их можно назвать не существенными. К ним относят высокую стоимость, низкую устойчивость к погодным катаклизмам, надобность в подготовке места для расположения конструкции, в обслуживании, снижение производительности в зимний период времени, необходимость в модернизации, при необходимости увеличить мощность и, соответственно, производительность.

Виды солнечных батарей

Наиболее доступными по цене изделиями для улавливания солнечной энергии признаны монокристаллические, так как они сделаны по простейшей технологии и по мощности могут существенно уступить другим видам пластин. Каждый вид имеет свои особенности, за счет которых и происходит их выбор.

Солнечные плиты бывают трех видов:

  • Монокристаллические;
  • Поликристаллические;
  • Аморфные.

Панели, сделанные на основе поликристаллического кремния – это самые дорогие изделия, так как они могут накапливать солнечную энергию даже в условиях повышенной облачности и пасмурную погоду. Особенность их состоит в высокой производительности, а также медленном остывании кремниевого расплава. После того как полотно полностью остынет, оно подвергается повторной термообработке.

Такие пластины выпускаются темно-синего цвета.

Если для изготовления плиты используется аморфный кремний, то это изделия, не выпускаемые большими партиями. Данные конструкции находятся на стадии совершенствования, модернизации, так как в продажу поступили некоторые тестовые модели.

Из чего в основном делают солнечные батареи

Многие владельцы думают, что если самостоятельно создал такое оборудование, то для этого нужно просто соблюдать технологию сбора системы, но следует и соответствовать поставленным высоким требованиям.

Состав элементов для улавливания солнечной энергии очень прост, так как все конструкции состоят из:

  • Солнечного модуля;
  • Контролера;
  • Аккумулятора;
  • Инвертора;
  • Первичного преобразователя;
  • Комплекта проводов;
  • Приборов способных отслеживать заряд аккумулятора;
  • Устройства забора мощности у батареи.

Помимо этого, на пластинах могут присутствовать полимерные пленочные рулонные покрытия, которые нужны для защиты от воздействия внешних факторов. Солнечная батарея предназначена для улавливания лучей солнца и преобразования их в электроэнергию.

Устройство солнечной батареи и нюансы проектирования

Как только приобретены все необходимые приспособления, а также материалы и инвентарь можно начинать непосредственное строительство. Тот, кто сам придумал и изобрел самостоятельно солнечную батарею, обязательно начинал с проектирования, в котором были учтены важные моменты.

А именно:

  1. Место расположения конструкции.
  2. Угол наклона изделия.
  3. Просчет несущей способности кровли, если монтаж будет проводиться на саму крышу, а не стены или фундамент дома.

Для каркаса используется алюминиевый уголок, толщина которого должна быть не меньше 35 мм. Объем ячеек должен полностью сходиться с количеством фотоэлементов. Например, 835х690 мм. В раме проделываются отверстия под метизы. На внутреннюю часть уголка наносится герметик в 2 слоя. Рама заполняется полотном оргстекла, поликарбоната, плексигласа или же любого другого материала.

Для того чтобы уплотнить швы между рамой и полотном материала, потребуется провести тщательное прижатие листа по всему периметру.

Изделие оставляется на открытом воздухе до полного высыхания. Стекло фиксируется в 10 точках, в заранее подготовленные отверстия, которые должны быть расположены в угловой части рамки и с каждой стороны. Перед тем как крепить фотоэлементы, нужно провести очищение поверхности от пыли. Далее припаивается провод к плитке, для чего предварительно протираются контакты спиртовым раствором, и укладываются под флюс. При работе с кристаллом, следует быть максимально осторожными, так как он обладает слишком хрупкой структурой.

Укладывается шина по всей длине контакта и медленно прогревается при помощи паяльника. Далее пластины нужно перевернуть, и осуществить те же самые действия. Затем происходит выкладывание фотоэлементов на поверхность оргстекла в рамку, а фиксируются они на монтажную ленту. В качестве фиксатора может быть применен обычный силиконовый клей, который наносится точечным способом. Вполне достаточно одной маленькой капли, так как он очень прочный.

Расположение кристаллов должно быть с зазорами между ними в 3-5 мм, чтобы при нагревании под воздействием лучей ультрафиолета не было деформирования поверхности. Обязательно нужно соединить проводник по краям фотоэлементов с полостью общих шин. Посредством специального устройства тестируется качество пайки. Для герметизации панели, наносится герметик между полотнами плит. Нужно сделать осторожное придавливание полотен, чтобы обеспечить максимальное приклеивание к стеклу. Края рамки также промазываются герметиком.

Боковая сторона каркаса снабжается соединительным разъемом, для подключения диодов Шоттки. Рама закрывается стеклом для защиты и также герметизируются стыки, чтобы избежать проникновение влаги внутрь конструкции. С лицевой стороны нужно обработать панель лаком. Панель устанавливается на крышу, стены или любое другое предназначенное для нее заранее место.

Эффективность панели солнечной батареи

Как уже было отмечено, существуют разные типы солнечных батарей и у каждых из них своя характеристика. Стоит заметить, что есть и гибридные конструкции для улавливания солнечной энергии, однако стоимость их гораздо выше, и в основном они применяются для промышленных зданий.

Естественно, качество и производительность любой солнечной батареи напрямую зависит от эффективности ее фотоэлементов, на что может повлиять такой фактор как:

  • Климатические условия;
  • Погода;
  • Длительность дня и ночи;
  • Равномерность освещения панели;
  • Перепады температуры воздуха;
  • Наличие грязи на пластике;
  • Необратимые потери.

В основном, эффективность или, другими словами, производительность солнечных батарей напрямую зависит от равномерности освещения конструкции. К примеру, если один из фотоэлементов сооружения имеет малую интенсивность освещения в отличие от остальных, то это станет причиной неравномерного распределения лучей солнца при попадании на панель, а значит, будет происходить перегрузка и снижение общей энергоотдачи.

Для уменьшения влияния такого фактора в некоторых случаях попросту отключают тот фотоэлемент, который выходит из строя.

Чтобы обеспечить солнечной батареи максимальную производительность, следует направлять ее точно на солнце в зависимости от времени года. Некоторые владельцы таких конструкций предпочитают устанавливать специальные установки, посредством которых возможно дистанционно управлять или, другими словами, поворачивать сооружение в нужную сторону. Существуют системы с автоматическим поворотом в зависимости от расположения солнца, которые двигаются в течение дня самостоятельно без посторонней помощи по заданной программе.

Помимо этого, на эффективность изделия может повлиять наличие пыли и грязи на пластине, так как происходит затемнение некоторых фотоэлементов и таким образом начинается неравномерное распределение забора энергии солнца, что описано ранее. В продаже есть специальный состав, которым можно покрыть поверхность солнечной батареи и тем самым исключить скапливание на ней загрязнителей различного характера.

Как работает солнечная батарея (видео)

Солнечная батарея – дорогостоящее оборудование, независимо от того, будет оно собрано самостоятельно или же куплено в готовом виде, а надобность в постоянном обслуживании может доставить дискомфорт, но однажды вложившись в это изделие, можно на протяжении длительного времени довольствоваться постоянному присутствию электричества и отсутствию платы за него.

Ежесекундно огромное количество солнечной энергии поступает на поверхность нашей планеты, давая жизнь всему живому. Достойной задачей для пытливых умов является решение, которое заставило бы ее служить нуждам людей. И это уже пытаются воплотить в жизнь те, кто изобрел конструкцию солнечной батареи, способной преобразовывать солнечный свет в электрическую энергию.

Понять, как работает солнечная батарея, легче на примере конструкции, в основе которой лежит монокристаллический кремний.

Два слоя кремния с разными физическими свойствами образуют тонкую пластину. Внутренний слой – монокристаллический чистый кремний с р-типом проводимости, который покрыт снаружи слоем кремния «загрязненного». Это может быть, к примеру, примесь фосфора. Он обладает проводимостью n-типа. Тыльная сторона пластины покрыта сплошным металлическим слоем.

В каркасе фотоэлементы закреплены таким образом, чтобы можно было заменить, вышедший из строя. Вся конструкция покрыта закаленным стеклом или пластиком, которые ее защищают от негативного воздействия внешних факторов.

Принцип работы солнечной батареи

В результате перетечки зарядов на границе p- и n- слоев, в n-слое образуется зона нескомпенсированного положительного заряда, а в p-слое – отрицательного заряда, т.е. известный всем из школьного курса физики p-n-переход. Разность потенциалов, возникающая на переходе контактная разность потенциалов (потенциальный барьер) препятствует прохождению электронов с p-слоя, но беспрепятственно пропускает неосновные носители в направлении противоположном, что позволяет получить фото-ЭДС при попадании на ФЭП солнечного света.

При облучении солнечным светом, поглощенные фотоны начинают генерировать неравновесные электронно-дырочные пары. Генерируемые же вблизи перехода электроны, из p-слоя переходят в n-область.

Аналогичным образом попадают в p-слой избыточные дырки и слоя n (рисунок а). Получается, что в p-слое накапливается положительный заряд, а в n- слое – отрицательный, вызывая напряжение во внешней цепи (рисунок б). У источника тока есть два полюса: положительный — p-слой и отрицательный — n-слой.

Это основной принцип работы солнечный элементов. Электроны, таким образом, будто бегают по кругу, т.е. выходят из p-слоя и возвращаются в n-слой, проходя нагрузку (аккумулятор).

Фотоэлектрический отток в однопереходном элементе обеспечивают лишь те электроны, которые обладают энергией выше, чем ширина некой запрещенной зоны. Те же, которые обладают меньшей энергией, в этом процессе не участвуют. Это ограничение снять позволяют структуры многослойные, состоящие из более чем один СЭ, у которых ширина запрещенной зоны различная. Их называют каскадными, многопереходными или тандемными. Фотоэлектрическое преобразование у них выше за счет того, что работают такие СЭ с более широким солнечным спектром. В них фотоэлементы располагаются по мере уменьшения ширины запрещенной зоны. Солнечные лучи вначале попадают на фотоэлемент с самой широкой зоной, при этом происходит поглощение фотонов с наибольшей энергией.

Затем, фотоны, пропущенные верхним слоем, попадают на следующий элемент и т.д. В области каскадных элементов основным направлением исследования является использование в качестве одного компонента или нескольких арсенида галлия. У таких элементов эффективность преобразования составляет 35%. Элементы соединяют в батарею, поскольку изготовить отдельный элемент большого размера (следовательно, и мощности) не позволяют технические возможности.

Солнечные элементы способны работать длительное время. Они себя зарекомендовали как стабильный и надежный источник энергии, пройдя испытания в космосе, где главной опасностью для них является метеорная пыль и радиация, которые приводят к эрозии кремниевых элементов. Но, поскольку, на Земле эти факторы не оказывают на них столь негативного действия, можно предположить, что срок службы элементов будет еще более продолжительным.

Солнечные батареи уже находятся на службе человека, являясь источником питания для различных устройств, начиная от мобильных телефонов и заканчивая электромобилями.

И это уже вторая попытка человека обуздать безграничную солнечную энергию, заставив работать ее себе во благо. Первой попыткой было создание солнечных коллекторов, электричество в которых вырабатывалось за счет нагрева сконцентрированными лучами солнца воды до температуры кипения.

Преимущество солнечных батарей в том, что они непосредственно производят электричество, теряя энергии намного меньше, чем солнечные многоступенчатые коллекторы, в которых процесс ее получения связан с концентраций лучей Солнца, нагревом воды, выделением пара, вращающего паровую турбину и только после этого выработке генератором электричества. Основные параметры солнечных батарей – в первую очередь, мощность. Затем важно, каким запасом энергии они обладают.

Зависит этот параметр от емкости аккумуляторов и их числа. Третьим параметром является пиковая мощность потребления, означающая количество одновременно возможных подключений приборов. Еще одним важным параметров является номинальное напряжение, от которого зависит выбор дополнительного оборудования: инвертора, солнечной панели, контроллера, аккумулятора.

Виды солнечных батарей

Все солнечные панели кажутся на первый взгляд одинаковыми – покрытые стеклом темные элементы с металлическими полосками, проводящими ток, помещенными в алюминиевую раму.

Но, солнечные батареи классифицируют по мощности вырабатываемого ею электричества, зависит которая от конструкции и площади панели (они могут быть миниатюрными пластинками с мощностью до десяти ватт и широкими «листами» на двести и более ватт).

Кроме этого, различаются они по типу образующих их фотоэлементов: фотохимические, аморфные, органические, а также созданные на основе кремниевых полупроводников, у которых коэффициент фотоэлектрического преобразования в несколько раз больший. Следовательно, больше и мощность (особенно во время солнечной погоды). Конкурентом последних может быть солнечная батарея на основе арсенида галлия. То есть, на рынке сегодня встретить можно пять типов солнечных батарей.

Они отличаются материалами, используемыми для их изготовления:

1. Панели из поликристаллических фотоэлектрических элементов, с характерным синим цветом солнечной панели, кристаллической структурой и КПД, равным 12-14%.

Поликристаллическая панель

2. Панели из монокристаллических элементов – более дорогие, но и более эффективные (КПД – до 16%).

3. Панели солнечные из аморфного кремния, у которых КПД самый низкий – 6-8%, но вырабатывают они наиболее дешевую энергию.

4. Панели из теллурида кадмия, создаваемые по пленочным технологиям (КПД – 11%).

Панель, в основе которой лежит теллурид кадмия

5. Наконец, солнечные панели на основе полупроводника CIGS, состоящего из селена, индия, меди, галлия. Технологии их получения тоже пленочные, но КПД доходит до пятнадцати процентов.

Кроме этого, панели солнечные могут быть гибкими и портативными.

Очень удобными являются гибкие панели, которые легко сворачиваются в рулон, словно обычная бумага. Хотя стоимость их выше, чем твердотельных аналогов, они на рынке заняли свою нишу. В основном они пользуются спросом у туристов и путешественников, которым в условиях отсутствия электрификации необходимо заряжать мобильные гаджеты. Главным производителем гибких батарей, работающих от солнечной энергии, является компания Sun Charger, которая, к слову, недавно обновила свой модельный ряд моделями 34 Вт и 9Вт.

Первая модель подходит для питания планшетов, сотовых телефонов, видеокамер, цифровых фотоаппаратов, GPS, гелевых аккумуляторов 6 и 12 вольт, т.е. она может в условиях похода обеспечить потребности нескольких человек.

SunCharger SC-9/14 — батарея в сложенном виде

Она же — в раскрытом виде

Особенности батареи: компактная складывающая конструкция, работающая в диапазоне температур от -50 до +70 градусов, вес которой всего 420 граммов, снабжена антибликовым покрытием, встроенным светодиодом, люверсами для крепления. Выходной разъем круглый (5.5 мм / 2.1 мм.).

Характеристики электрические: рабочее выходное напряжение 13,5 В (стандартное 12В), без нагрузки – 19В; рабочий выходной ток – 0,65 А; габариты в сложенном и развернутом виде — 20.5х15х3 см и 50х41.5х0.4 см; мощность выходная – 8,6 Вт.

Вторая модель SunCharger SC-34/18 на сегодняшний день является в линейке гибких солнечных батарей самой мощной. Разработана она специально для универсальных накопителей (ноутбуков), имеющих на входе зарядки, как правило, 17-19 вольт. Максимальная мощность – 18В. К накопителям она подключается напрямую, что обеспечивает идеальное согласование. Понятно, что для менее «прожорливых» накопителей она также подходит, в том числе для двенадцати вольтовых свинцовых аккумуляторов, используемых в автомобилях.

Солнечная батарея выдает 18 В в точке своей максимальной мощности и напрямую подключается к этим накопителям. Таким образом, она «идеально» с ними согласована.

Естественно, эта батарея подходит и для зарядки менее прожорливых потребителей. Как известно, мощности мало не бывает. А также спокойно заряжает 12 В свинцовые аккумуляторы, в том числе, и автомобильные (через несколько часов зарядки уже можно завести машину). Толщина ее 4 см (т.е. стала чуть больше), но получилась батарея даже немного компактнее, чем обычные батареи на 12 В.

Достигнуто это за счет более тонкой ткани, используемой в ее производстве и ламинированных фотоэлементов большей площади.

Эта же батарея в раскрытом виде

Помимо особенностей, характерных для предыдущей модели, здесь имеются на выходе помимо круглого разъема, еще «мама» и «папа».

Электрические характеристики: мощность выходная, как понятно из маркировки, 34 Вт; рабочий выходной ток – 1.9 А; габариты 40х18х4 см (в сложенном виде) и 40х18х4 см (в раскрытом). Напряжение на выходе – 18 В и 26 В (без нагрузки). Вес, конечно, намного больше – 1,7 кг.

Портативная солнечная батарея – специально для туристов

У каждого в наше время есть электронные гаджеты. Не суть, что у кого-то их меньше, а кого-то больше. Все их необходимо заряжать, а для этого нужны зарядные устройства. Но, особенно остро этот вопрос касается тех, кто попадает в места, где отсутствует электропитание. Единственным выходов являются солнечные батареи. Но, цены на них остаются высокими, а выбор — небольшим. Оптимальным вариантом, как принято считать, является продукция компании Goal Zero (хотя есть и российская продукция, и китайская – как всегда вызывающая сомнении).

Но, оказалось, что не все то плохо, что сделано в Китае или Корее. Особенно порадовала солнечная батарея компания YOLK из Чикаго, которая начала производство компактной солнечной батареи Solar Paper – самой тонкой и легкой. Ее вес всего 120 граммов. Но есть и другие преимущества – модульная конструкция, позволяющая наращивать мощность. Солнечная батарея похожа на пластиковую коробку, по размерам напоминающую Ipad, только тоньше в два раза. На ее лицевой стороне размещена солнечная панель. Есть на корпусе выход для ноутбука и порты USB и для подключения других солнечных панелей, а также фонарик. Внутри этой чудо коробки – аккумуляторы и плата управления. Зарядить девайс можно от розетки, причем, одновременно это могут быть телефон и два ноутбука. Конечно, заряжается устройство и от солнца. Как только на него попадает свет, загорается индикатор. В походных условиях солнечная панель просто незаменима: с успехом заряжает все нужные устройства – телефоны быстрее, ноутбуки.

Портативные солнечные батареи отличаются компактными размерами: они выпускаются даже в виде брелков, прикрепить которые можно к чему угодно. Разрабатывались они для того, чтобы можно было их взять на рыбалку, в поход и пр. Обязательно у них имеется фонарик, чтобы ночью можно было осветить дорогу, палатку и т.д., крепления, позволяющие легко их разместить на рюкзаках, байдарках, палатках. Очень важно, чтобы в таком устройстве был встроенный аккумулятор, позволяющий заряжать девайсы и в ночное время.

Ученые работают над тем, чтобы увеличить коэффициент полезного действия, но пока лидируют по этому показателю солнечные панели из монокристаллических элементов. Состоящие из нескольких слоев — монокристаллические панели, устроены так, что один из слоев поглощает энергию зеленого цвета, другой – красного, третий – синего. Но, стоимость таких панелей очень высокая.

Солнечная батарея состоит, как известно, из нескольких обязательных частей. Основой основ у нее, подобно двигателю у машины или сердцу у человека, является солнечная панель – прозрачный прямоугольный короб с темными квадратиками тонко нарезанного кремния внутри. Кремний, используемый в производстве, а точнее его оксид (соединение с кислородом) – основной элемент производства солнечных батарей.

Технологии, лежащие в основе производства солнечных батарей, все время совершенствуются и состоят из нескольких этапов.

  • На первом этапе подготавливают сырье: очищают кварцевый песок, прокаливая его с коксом. В результате он освобождается от кислорода, превращаясь в куски чистого кремния, напоминающие чем-то уголь. Затем, из него выращивают кристаллы – основу солнечных панелей, упорядочив структуру кремния. Для этого чистый кремний опускают в тигель, нагревают до высокой температуры, добавляя в расплавленную лаву затравку. Можно сравнить ее с образцом будущего кристалла, вокруг которого, слой за слоем нарастает кремний упорядоченной структуры. После нескольких часов роста получается кристалл монокремния (или поликристаллический кремний, процесс получения которого более затратный, что сказывается на цене солнечных батарей из него), напоминающий большую сосульку. Затем заготовку цилиндрическую превращают в параллелепипед. После этого заготовку режут на пластины толщиной 100-200 микрон (толщина трех человеческих волос), тестируют их, сортируют и направляют на следующую стадию обработки.
  • На втором этапе пластина паяют в секции, их которых на стекле формируют блоки, чтобы исключить возможность механического воздействия на готовые солнечные элементы. Секции обычно состоят из 9-10 солнечных элементов, блоки – из 4-6 секций.
  • Третий этап з аключается в ламинировании спаянных в блоки пластин этиленвинилацетатной пленкой, а затем защитным покрытием, который осуществляется с помощью компьютера, который следит за давлением, вакуумом и температурой.
  • Четвертый этап заключительный . Во время него монтируется соединительная коробка и алюминиевая рама. Вновь проводят тестирование, во время которого измеряют показатели напряжение холостого хода, ток короткого замыкания, напряжение и ток точки максимальной емкости.

Лидерами среди предприятий, производящих солнечные батареи, являются страны: Китай (компании Trina Solar, Yingli, Suntech), Япония (Sharp Solar) и США (First Solar), которая не только их производит, но также участвует в проектировании солнечных станций и их строительстве. Мощнейшая в мире СЭС Агуа-Калиенте в Аризоне – дело рук этой компании. Строительством крупнейшей СЭС «Перово» в Украине занималась компания Австрии (Activ Solar).

Сколько стоит солнечная батарея

Продажа солнечных батарей – дело выгодное и перспективное. Объем продаж увеличивается ежегодно. На первом месте по продажам – китайские производители, продукция которым отличается низкой стоимостью. Такая ситуация привела к банкротству крупных немецких брендов, стоят которые вдвое дороже китайских солнечных батарей.

Стоимость солнечных батарей зависит от производителя и мощности, и имеет огромный разброс – от 1800 грн. до 9000 грн. (для Украины), от 5 тыс. рублей до 30 тысяч (для России). Стоимость этих батарей SunCharger SC- 9/14 и SunCharger SC-34/18 тоже высокая (надо же платить за отличные характеристики). Она составляет соответственно 6100 и 20700 рублей . Но, в сравнении с гибкой батареей фирмы AcmePower 32 Вт, цена за которую равна 27 тысяч рублей , эта батарея гораздо дешевле.


Кто желает сэкономить, могут приобрести солнечные кристаллические складные батареи по цене в 2,5 раза меньшей.

Выводы

Фантастические идеи постепенно становятся реальностью. Вспомним хотя бы микрокалькулятор на фотоэлементах, казавшийся когда-то диковинкой, позволявшей годами не менять батарейку. Изобретение последних лет – мобильник со встроенной солнечной панелью, автомобили и самолеты, передвигающиеся благодаря, все той же, энергии Солнца. Солнечные батареи в будущем, непременно станут основным источником энергии, «вылечив», наконец, все гаджеты от «розеткозависимости» и подарив человечеству дешевую энергию.

Когда-то, с помощью зеркал, нагревали воду, а сейчас создают целые электростанции на солнечных батареях. Разберем принцип работы солнечной батареи, и почему они так эффективны для получения энергии.

Фотоэлектрические преобразователи солнечной энергии (ФЭП)– это полное название солнечных батарей. Принципы их работы известны более 30 лет, но активно внедряться в быту они начали всего несколько лет назад. Для того чтобы правильно подобрать панели для системы альтернативного обеспечения энергией, необходимо понять принцип их работы.

Принцип работы солнечной батареи

Панель преобразователя состоит из двух тонких пластин из чистого кремния, сложенных вместе. На одну пластину наносят бор, а на вторую фосфор. В слоях, покрытых фосфором, возникают свободные электроны, а в покрытых бором – отсутствующие электроны. Под влиянием солнечного света электроны начинают движение частиц, и между ними возникает электрический ток. Чтобы снять ток с пластин их пропаивают тонкими полосками специально обработанной меди. Одной кремниевой пластины хватит для зарядки маленького фонарика. Соответственно, чем больше площадь панели, тем больше энергии она вырабатывает.

Спаянные между собой пластины,пропускающие УФ лучи, ламинируют пленкой и крепят на стекло. Скрепленные слои заключают в алюминиевую раму.

КПД солнечных батарей

Коэффициент полезного действия панелей преобразователя зависит от нескольких факторов и для традиционных солнечных батарей не превышает 25%, хотя сейчас, используя следящую систему, можно достигнуть показателя и в 40-50 %. Эта система устроена так, чтобы батарея поворачивалась в сторону солнца. Площадь батареи напрямую влияет на ее мощность – первые солнечные батареи, с которыми мы познакомились, были в калькуляторах. Для обеспечения нагрева воды потребуется минимум шесть панелей установленных на крыше.

Также КПД зависит от материала модулей. Пластины изготавливают из монокристаллического, поликристаллического и аморфного кремния и пленок. Самые распространенные и популярные на сегодня (благодаря доступной стоимости) тонкопленочные панели. Они сделаны из тех же материалов, но немного легче, правда, проигрывают по производительности. Максимальный КПД равен 25 %.

Фотоэлектрические системы

Для обеспечения жилья энергией солнца одних панелей не достаточно, для этого понадобится фотоэлектрическая система (ФЭС). Такие системы бывают трех типов:

  • автономные ФЭС – для отдельно стоящих частных домов, в нежилой местности
  • ФЭС соединенные с электросетью – часть приборов запитана от ФЭС, а часть – от централизованной электросети
  • резервные ФЭС – используется только в случае отключения централизованного энергоснабжения.

ФЭС любого типа обязательно состоит из кабелей, контроллера, инвертора и аккумулятора.

Будущее солнечных батарей

По данным исследований экологов и геологов, запасов нефти и газа осталось еще лет на 100. Источники природной энергии (воды, ветра и солнца) неисчерпаемы.

В передовых европейских странах обеспечение новостроек альтернативной энергией – прямая обязанность застройщиков уже с 2007 года. В нашей стране эти проекты продвигаются благодаря энтузиастам от экологии, собирающим вручную ФЭС из подручных материалов. Но таких единицы, веди самому сделать их довольно сложно.

Ряд украинских производителей («Аванте», «Атмосфера», «Ітнелкон України», «СІНТЕК», «Техно-АС») уже выпускают такие панели и обустраивают ФЭС по всей стране. Стоимость продукции, к сожалению, в том же диапазоне, что и зарубежные бренды (Buderus, Wolf, Rehau, Vaillant, Viessmann, Chromagen, Ferroli, Rucelf, Solver).

Вы наверняка обращали внимание, что обычный калькулятор работает при минимальной освещённости любой лампой. Сравнивая размер солнечного элемента калькулятора и стандартного солнечного модуля, мощность излучения, можно представить производительность.

И это не учитывая, спектр солнечного света, который значительно шире видимого излучения лампы. Здесь и инфракрасный и ультрафиолетовый. Этот пример наглядно показывает как солнечная батарея, от рассвета до заката, молча делает своё дело. Хотя КПД, в пасмурную погоду, естественно ниже, чем в солнечную.

Еще, чем ниже температура окружающей среды, тем выше КПД солнечной батареи.

Работа солнечной батареи

В наше время солнечные батареи все больше используются не в космической промышленности, а в повседневной жизни для питания и зарядки портативных электронных устройств. А в некоторых странах энергия Солнца уже активно используется не только в больших промышленных солнечных электростанциях. но и в домашних мини электроустановках. Рассмотрим принцип работы солнечной батареи. Каким образом световая энергия Солнца преобразуется в электрическую? Многим может показаться, что принцип преобразования световой энергии в электрическую в солнечной батарее очень сложен для понимания человеку, не имеющему высшего образования в этой области. Однако это не так. Рассмотрим детально этот процесс на примере работы фотоэлектрического преобразователя, которые используются в солнечных батареях прямого преобразования.

Первые фотоэлектрические преобразователи были созданы инженерами компании Bell Labs в 1950 году специально для использования в космосе. Их основу составляют полупроводниковые элементы. Во время попадания на них солнечного света происходит процесс, основанный на фольтовольтаическом эффекте в неоднородных полупроводниках. преобразования энергии света в электричество. Это прямое преобразование одной энергии в другую, поскольку сам процесс одноступенчатый - не имеет промежуточных преобразований. Эффективность такого преобразования напрямую зависит от электрических и физических свойств полупроводников, а также их фотопроводимости - изменения электропроводимости вещества при его освещении.

Рассмотрим подробнее процессы, происходящие в p-n-переходе полупроводника при воздействии на него солнечного света. Напомню, что p-n-переход - это область полупроводника, где изменяется его тип проводимости с электроннойв дырочную. При попадании на переход солнечного света в n-области в результате перетекания зарядов образуется объемный положительный заряд, а в p-области - объемный отрицательный заряд. Таким образом, в области p-n-перехода возникает разность потенциалов. При объединении в определенном порядке нескольких фотоэлектрических преобразователей в модуль, а модулей в батарею, получаем солнечную батарею, способную генерировать электроэнергию.

Как работает солнечная батарея

Все живое на земле возникло, благодаря энергии солнца. Ежесекундно на поверхность планеты поступает огромное количество энергии в виде солнечного излучения. В то время, как мы сжигаем тысячи тонн угля и нефтепродуктов для обогрева жилища, страны, расположеные ближе к экватору изнывают от жары. Пустить энергию солнца на нужды человека - вот достойная для пытливых умов задача. В этой статье мы рассмотрим конструкцию прямого преобразователя солнечного света в электрическую энергию - солнечного элемента.

Тонкая пластина состоит из двух слоев кремния с различными физическими свойствами. Внутренний слой представляет собой чистый монокристаллический кремний, обладающий дырочной проводимостью. Снаружи он покрыт очень тонким слоем «загрязненного» кремния, например с примесью фосфора. На тыльную сторону пластины нанесен сплошной металлический контакт. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход.

Возникший на переходе потенциальный барьер препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Когда СЭ освещается, поглощенные фотоны генерируют неравновесные электронно-дырочные пары. Электроны, генерируемые в p-слое вблизи p-n-перехода, подходят к p-n-переходу и существующим в нем электрическим полем выносятся в n-область.

Аналогично и избыточные дырки, созданные в n-слое, частично переносятся в p-слой. В результате n-слой приобретает дополнительный отрицательный заряд, а p-слой - положительный. Снижается первоначальная контактная разность потенциалов между p- и n-слоями полупроводника, и во внешней цепи появляется напряжение. Отрицательному полюсу источника тока соответствует n-слой, а p-слой - положительному.

Большинство современных солнечных элементов обладают одним p-n-переходом. В таком элементе свободные носители заряда создаются только теми фотонами, энергия которых больше или равна ширине запрещенной зоны. Другими словами, фотоэлектрический отклик однопереходного элемента ограничен частью солнечного спектра, энергия которого выше ширины запрещенной зоны, а фотоны меньшей энергии не используются. Преодолеть это ограничение позвляют многослойные структуры из двух и более СЭ с различной шириной запрещенной зоны. Такие элементы называются многопереходными, каскадными или тандемными. Поскольку они работают со значительно большей частью солнечного спектра, эффективность фотоэлектрического преобразования у них выше. В типичном многопереходном солнечном элементе одиночные фотоэлементы расположены друг за другом таким образом, что солнечный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наибольшей энергией.

Батареи работают не от солнечных лучей, а от солнечного света в принципе. Электромагнитное излучение достигает земли в любое время года. Просто в пасмурную погоду энергии вырабатывается меньше. Например, мы устанавливали автономные фонари на солнечных батареях. Конечно, бывают небольшие промежутки, когда батареи не успевают полностью заряжаться. Но в целом за зиму это не так уж и часто происходит.

Интересно, что даже если на солнечную панель попадает снег, она все равно продолжает преобразовывать солнечную энергию. А за счет того, что фотоэлементы нагреваются, снег сам оттаивает. Принцип такой же, как подогрев стекла у машины.

Идеальная зимняя погода для солнечной батареи морозный безоблачный день. Иногда в такие дни даже рекорды по генерации можно устраивать.

Зимой эффективность солнечной батареи падает. В Москве и Подмосковье в среднем в месяц она вырабатывает в 8 раз меньше электроэнергии. Скажем, если летом для работы холодильника, компьютера и верхнего освещения дома нужен 1 кВт энергии, то зимой для надежности лучше запастись 2 кВт.

При этом на Дальнем Востоке продолжительность солнечного сияния больше, эффективность снижается всего в полтора-два раза. Ну и, конечно, чем южнее, тем меньше разница между зимним и летним периодом.

Так же важен угол наклона модулей. Можно выставить универсальный угол, на целый год. А можно каждый раз менять, в зависимости от сезона. Делают это не владельцы дома, а специалисты, которые выезжают на место.

Принцип работы солнечной батареи и их виды

Энергия Солнца используется в промышленности и в повседневной жизни во многих уголках мира. Принцип работы солнечной батареи несложен, и это является одним из качеств данной технологии, которая привлекает большое количество людей. Кремниевый фотогальванический элемент помогает преобразовывать солнечный свет в электричество. Свободные электроны становятся источником электрического тока.

Разобравшись, как работает солнечная батарея, ее легко можно сконструировать самостоятельно и использовать для личных нужд. Такие батареи надежны, легки в использовании и долговечны. Преимуществом такого устройства является то, что оно может быть разного размера в зависимости от необходимого количества энергии.

Стоит выделить отдельные виды солнечных батарей . тонкопленочные, монокристаллические и поликристаллические панели. Самым популярным видом батарей являются монокристаллические. Благодаря фотоэлектрическому эффекту в силиконовых ячейках солнечная энергия преобразуется в электроэнергию. Такие батареи обычно достаточно компактны, поскольку оптимальным количеством ячеек в них считается тридцать шесть. Такие батареи идеально подойдут для установки на неровной поверхности.

Принцип работы солнечной батареи для дома типа не сильно отличается. Благодаря прочному стеклопластиковому корпусу такие батареи могут быть использованы для получения энергии на кораблях. С их помощью можно обеспечить работу оборудования и подзаряжать аккумулятор. Такая установка не будет эффективно работать в облачную погоду. Также существуют определенные ограничения температур, при которых можно получать наибольшее количество энергии.

Большим спросом пользуются тонкопленочные батареи . Принцип работы солнечной батареи этого типа позволяет устанавливать ее в любом месте. Для таких батарей не нужны прямые солнечные лучи. Также эти батареи будут работать при большом количестве пыли. Недостатком таких солнечных батарей являются крупные габариты, из-за чего возникает необходимость в выделении большой площади под такие установки.

Источники: super-alternatiwa.narod.ru, scsiexplorer.com.ua, howitworks.iknowit.ru, recyclemag.ru, energorus.com

Линии Наска

Нераскрытые Тайны

Тайроны

Исаакиевский собор – история сбывшихся пророчеств

Булаван – остров-убийца

Материалы будущего

Впервые графен получили русские ученые Андрей Гейм и Константин Новоселов в 2004г. в Манчестерском университете в Англии. В 2010 ...

Декор собственными силами

Мы все мастера-дизайнеры понемногу, по чуть-чуть, в меру своей фантазии и различных прикладных умений. Кто-то предпочитает обои бумажные с рисунком, ...

Тайны Древнего Египта: электричество

Каким образом освещались коридоры и склепы в пирамидах, где стены исписаны письменами? Это вопрос, как и многие другие, - ...

Как выбрать кухонный комбайн

Кухонный комбайн спасение для современных хозяек от многочасового простаивания на кухне, с ножом в руках и нарезанием салатов к праздничному...

Автомобиль на сжатом воздухе MiniC.A.T

Разработка автомобиля, который смог бы стать реальной альтернативой современному автомобилю, ведется уже давно. Однако до настоящего времени кардинального изменения на...

Пизанская башня

Пизанская Башня является одним из самых узнаваемых символов Италии. По своей узнаваемости это строение может поспорить с Римским Колизеем или...

Бельгийская провинция Антверпен

Город Лир в Бельгии был основан св. Гуммаром в VIII в. на месте слияния двух рек - Большой Нете и...

В первую очередь, жемчуг является невероятно красивым камнем, который был...

Хвост у людей

Забавно, но хвост у человека есть. До определенного периода. Известно, ...

Толщина льда в Антарктиде

Несмотря на сокращение площади материкового льда Антарктиды, его толщина увеличивается.Последняя...


В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называются фотоэлектрическими панелями).

Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи - это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.

В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.


Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей), которые непосредственно преобразуют солнечную энергию в электрическую.

Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.

Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые - 15%.

Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность. Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.


Электродвижущая сила отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.

Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.

Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.

Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном - выходной ток.

Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.


Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов. Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а электродвижущая сила - последовательно включенных солнечных элементов. Так, комбинируя типы соединения, собирают батарею с требуемыми параметрами.

Солнечные элементы батареи шунтируются диодами. Обычно их 4 - по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает.

Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.

При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов они шунтируются и ток через них не идет.


Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. Аккумуляторы - химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.

Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.

Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.


При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.

Это процесс контролируется специальным контроллером. При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.


При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.

Наиболее эффективно использование специальных аккумуляторов - гелевых (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей - 10 - 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!

Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.


Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства - инверторы.

Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.

Автор текста: Андрей Повный. Текст впервые опубликован на сайте Electrik.info. Перепечатано с согласия редакции.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то