Составной транзистор npn. Составной транзистор (схема Дарлингтона). Пара Шиклаи и каскодная схема

Если соединить транзисторы, как показано на рис. 2.60, то полученная схема будет работать как один транзистор, причем его коэффициент (3 будет равен произведению коэффициентов составляющих транзисторов. Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс.

Рис. 2.60. Составной транзистор Дарлингтона.

Рис. 2.61. Повышение скорости выключения в составном транзисторе Дарлингтона.

В транзисторе Дарлингтона падение напряжения между базой и эмиттером в два раза больше обычного, а напряжение насыщения равно по крайней мере падению напряжения на диоде (так как потенциал эмиттера транзистора должен превышать потенциал эмиттера транзистора на величину падения напряжения на диоде). Кроме того, соединенные таким образом транзисторы ведут себя как один транзистор с достаточно малым быстродействием, так как транзистор не может быстро выключить транзистор . С учетом этого свойства обычно между базой и эмиттером транзистора включают резистор (рис. 2.61). Резистор R предотвращает смещение транзистора в область проводимости за счет токов утечки транзисторов и . Сопротивление резистора выбирают так, чтобы токи утечки (измеряемые в наноамперах для малосигнальных транзисторов и в сотнях микроампер для мощных транзисторов) создавали на нем падение напряжения, не превышающее падения напряжения на диоде, и вместе с тем чтобы через него протекал ток, малый по сравнению с базовым током транзистора . Обычно сопротивление R составляет несколько сотен ом в мощном транзисторе Дарлингтона и несколько тысяч ом в малосигнальном транзисторе Дарлингтона.

Промышленность выпускает транзисторы Дарлингтона в виде законченных модулей, включающих, как правило, и эмиттерный резистор. Примером такой стандартной схемы служит мощный п-р-п-транзистор Дарлингтона типа , его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.

Рис. 2.62. Соединение транзисторов по схеме Шиклаи («дополняющий транзистор Дарлингтона»).

Соединение транзисторов по схеме Шиклаи (Sziklai).

Соединение транзисторов по схеме Шиклаи представляет собой схему, подобную той, которую мы только что рассмотрели. Она также обеспечивает увеличение коэффициента . Иногда такое соединение называют комплементарным транзистором Дарлингтона (рис. 2.62). Схема ведет себя как транзистор п-р-п-типа, обладающий большим коэффициентом . В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения, как и в предыдущей схеме, равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора рекомендуется включать резистор с небольшим сопротивлением. Разработчики применяют эту схему в мощных двухтактных выходных каскадах, когда хотят использовать выходные транзисторы только одной полярности. Пример такой схемы показан на рис. 2.63. Как и прежде, резистор представляет собой коллекторный резистор транзистора Транзистор Дарлингтона, образованный транзисторами , ведет себя как один транзистор п-р-п-типа с большим коэффициентом усиления по току. Транзисторы , соединенные по схеме Шиклаи, ведут себя как мощный транзистор р-п-р-тииа с большим коэффициентом усиления.

Рис. 2.63. Мощный двухтактный каскад, в котором использованы выходные транзисторы только .

Как и прежде, резисторы и имеют небольшое сопротивление. Эту схему иногда называют двухтактным повторителем с квазидополнительной симметрией. В настоящем каскаде с дополнительной симметрией (комплементарном) транзисторы были бы соединены по схеме Дарлингтона.

Транзистор со сверхбольшим значением коэффициента усиления по току.

Составные транзисторы - транзистор Дарлингтона и ему подобные не следует путать с транзисторами со сверхбольшим значением коэффициента усиления по току, в которых очень большое значение коэффициента получают в ходе технологического процесса изготовления элемента. Примером такого элемента служит транзистор типа , для которого гарантируется минимальный коэффициент усиления по току, равный 450, при изменении коллекторного тока в диапазоне от до этот транзистор принадлежит к серии элементов , которая характеризуется диапазоном максимальных напряжений от 30 до 60 В (если коллекторное напряжение должно быть больше, то следует пойти на уменьшение значения ). Промышленность выпускает согласованные пары транзисторов со сверхбольшим значением коэффициента . Их используют в усилителях с низким уровнем сигнала, для которых транзисторы должны иметь согласованные характеристики; этому вопросу посвящен разд. 2.18. Примерами подобных стандартных схем служат схемы типа они представляют собой транзисторные пары с большим коэффициентом усиления, в которых напряжение согласовано до долей милливольта (в самых хороших схемах обеспечивается согласование до , а коэффициент Схема типа представляет собой согласованную пару .

Транзисторы со сверхбольшим значением коэффициента можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь (примерами таких схем служат операционные усилители типа .

Если открыть любую книгу по электронной технике, сразу видно как много элементов названы по именам их создателей: диод Шоттки , диод Зенера (он же стабилитрон), диод Ганна, транзистор Дарлингтона.

Инженер-электрик Сидни Дарлингтон (Sidney Darlington) экспериментировал с коллекторными двигателями постоянного тока и схемами управления для них. В схемах использовались усилители тока.

Инженер Дарлингтон изобрёл и запатентовал транзистор, состоящий из двух биполярных и выполненный на одном кристалле кремния с диффундированными n (негатив) и p (позитив) переходами. Новый полупроводниковый прибор был назван его именем.

В отечественной технической литературе транзистор Дарлингтона называют составным. Итак, давайте познакомимся с ним поближе!

Устройство составного транзистора.

Как уже говорилось, это два или более транзисторов, изготовленных на одном полупроводниковом кристалле и запакованные в один общий корпус. Там же находится нагрузочный резистор в цепи эмиттера первого транзистора.

У транзистора Дарлингтона те же выводы, что и у всем знакомого биполярного: база (Base), эмиттер (Emitter) и коллектор (Collector).


Схема Дарлингтона

Как видим, такой транзистор представляет собой комбинацию нескольких. В зависимости от мощности в его составе может быть и более двух биполярных транзисторов. Стоит отметить, что в высоковольтной электронике также применяется транзистор, состоящий из биполярного и полевого. Это IGBT транзистор . Его также можно причислить к составным, гибридным полупроводниковым приборам.

Основные особенности транзистора Дарлингтона.

Основное достоинство составного транзистора это большой коэффициент усиления по току.

Следует вспомнить один из основных параметров биполярного транзистора. Это коэффициент усиления (h 21 ). Он ещё обозначается буквой β («бета») греческого алфавита. Он всегда больше или равен 1. Если коэффициент усиления первого транзистора равен 120, а второго 60 то коэффициент усиления составного уже равен произведению этих величин, то есть 7200, а это очень даже неплохо. В результате достаточно очень небольшого тока базы, чтобы транзистор открылся.

Инженер Шиклаи (Sziklai) несколько видоизменил соединение Дарлингтона и получил транзистор, который назвали комплементарный транзистор Дарлингтона. Вспомним, что комплементарной парой называют два элемента с абсолютно одинаковыми электрическими параметрами, но разной проводимости. Такой парой в своё время были КТ315 и КТ361. В отличие от транзистора Дарлингтона, составной транзистор по схеме Шиклаи собран из биполярных разной проводимости: p-n-p и n-p-n . Вот пример составного транзистора по схеме Шиклаи, который работает как транзистор с n-p-n проводимостью, хотя и состоит из двух различной структуры.


схема Шиклаи

К недостаткам составных транзисторов следует отнести невысокое быстродействие , поэтому они нашли широкое применение только в низкочастотных схемах. Такие транзисторы прекрасно зарекомендовали себя в выходных каскадах мощных усилителей низкой частоты, в схемах управления электродвигателями, в коммутаторах электронных схем зажигания автомобилей.

Основные электрические параметры:

    Напряжение коллектор – эмиттер 500 V;

    Напряжение эмиттер – база 5 V;

    Ток коллектора – 15 А;

    Ток коллектора максимальный – 30 А;

    Мощность рассеивания при 25 0 С – 135 W;

    Температура кристалла (перехода) – 175 0 С.

На принципиальных схемах нет какого-либо специального значка-символа для обозначения составных транзисторов. В подавляющем большинстве случаев он обозначается на схеме как обычный транзистор. Хотя бывают и исключения. Вот одно из его возможных обозначений на принципиальной схеме.

Напомню, что сборка Дарлингтона может иметь как p-n-p структуру, так n-p-n. В связи с этим, производители электронных компонентов выпускают комплементарные пары. К таким можно отнести серии TIP120-127 и MJ11028-33. Так, например, транзисторы TIP120, TIP121, TIP122 имеют структуру n-p-n , а TIP125, TIP126, TIP127 - p-n-p .

Также на принципиальных схемах можно встретить и вот такое обозначение.

Примеры применения составного транзистора.

Рассмотрим схему управления коллекторным двигателем с помощью транзистора Дарлингтона.

При подаче на базу первого транзистора тока порядка 1мА через его коллектор потечёт ток уже в 1000 раз больше, то есть 1000мА. Получается, что несложная схема обладает приличным коэффициентом усиления. Вместо двигателя можно подключить электрическую лампочку или реле, с помощью которого можно коммутировать мощные нагрузки.

Если вместо сборки Дарлингтона использовать сборку Шиклаи то нагрузка подключается в цепь эмиттера второго транзистора и соединяется не с плюсом, а с минусом питания.

Если совместить транзистор Дарлингтона и сборку Шиклаи, то получится двухтактный усилитель тока. Двухтактным он называется потому, что в конкретный момент времени открытым может быть только один из двух транзисторов, верхний или нижний. Данная схема инвертирует входной сигнал, то есть выходное напряжение будет обратно входному.

Это не всегда удобно и поэтому на входе двухтактного усилителя тока добавляют ещё один инвертор. В этом случае выходной сигнал в точности повторяет сигнал на входе.

Применение сборки Дарлингтона в микросхемах.

Широко используются интегральные микросхемы, содержащие несколько составных транзисторов. Одной из самых распространённых является интегральная сборка L293D. Её частенько применяют в своих самоделках любители робототехники. Микросхема L293D - это четыре усилителя тока в общем корпусе. Поскольку в рассмотренном выше двухтактном усилителе всегда открыт только один транзистор, то выход усилителя поочерёдно подключается или к плюсу или к минусу источника питания. Это зависит от величины входного напряжения. По сути дела мы имеем электронный ключ. То есть микросхему L293 можно определить как четыре электронных ключа.

Вот «кусочек» схемы выходного каскада микросхемы L293D, взятого из её даташита (справочного листа).

Как видим, выходной каскад состоит из комбинации схем Дарлингтона и Шиклаи. Верхняя часть схемы - это составной транзистор по схеме Шиклаи, а нижняя часть выполнена по схеме Дарлингтона.

Многие помнят те времена, когда вместо DVD-плееров были видеомагнитофоны. И с помощью микросхемы L293 осуществлялось управление двумя электродвигателями видеомагнитофона, причём в полнофункциональном режиме. У каждого двигателя можно было управлять не только направлением вращения, но подавая сигналы с ШИМ-контроллера можно было в больших пределах управлять скоростью вращения.

Весьма обширное применение получили и специализированные микросхемы на основе схемы Дарлингтона. Примером может служить микросхема ULN2003A (аналог К1109КТ22). Эта интегральная схема является матрицей из семи транзисторов Дарлингтона. Такие универсальные сборки можно легко применять в радиолюбительских схемах, например, радиоуправляемом реле. Об этом я .

Если соединить транзисторы, как показано на рис. 2.60, то полученная схема будет работать как один транзистор, причем его коэффициент β будет равен произведению коэффициентов β составляющих транзисторов. Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс.


Рис. 2.60. Составной транзистор Дарлингтона.


В транзисторе Дарлингтона падение напряжения между базой и эмиттером в два раза больше обычного, а напряжение насыщения равно по крайней мере падению напряжения на диоде (так как потенциал эмиттера транзистора Т 1 должен превышать потенциал эмиттера транзистора Т 2 , на величину падения напряжения на диоде). Кроме того, соединенные таким образом транзисторы ведут себя как один транзистор с достаточно малым быстродействием, так как транзистор T 1 не может быстро выключить транзистор Т 2 . С учетом этого свойства обычно между базой и эмиттером транзистора Т 2 включают резистор (рис. 2.61). Резистор R предотвращает смешение транзистора Т 2 в область проводимости за счет токов утечки транзисторов Т 1 и Т 2 . Сопротивление резистора выбирают так, чтобы токи утечки (измеряемые в наноамперах для малосигнальных транзисторов и в сотнях микроампер для мощных транзисторов) создавали на нем падение напряжения, не превышающее падения напряжения на диоде, и вместе с тем чтобы через него протекал ток. малый по сравнению с базовым током транзистора Т 2 . Обычно сопротивление R составляет несколько сотен ом в мощном транзисторе Дарлингтона и несколько тысяч ом в малосигнальном транзисторе Дарлингтона.


Рис. 2.61. Повышение скорости выключения в составном транзисторе Дарлингтона.


Промышленность выпускает транзисторы Дарлингтона в виде законченных модулей, включающих, как правило, и эмиттерный резистор. Примером такой стандартной схемы служит мощный n-p-n - транзистор Дарлингтона типа 2N6282, его коэффициент усиления по току равен 4000 (типичное значение) для коллекторного тока, равного 10 А.


Соединение транзисторов по схеме Шиклаи (Sziklai). Соединение транзисторов по схеме Шиклаи представляет собой схему, подобную той. которую мы только что рассмотрели. Она также обеспечивает увеличение коэффициента β. Иногда такое соединение называют комплементарным транзистором Дарлингтона (рис. 2.62). Схема ведет себя как транзистор n-p-n - типа, обладающий большим коэффициентом β. В схеме действует одно напряжение между базой и эмиттером, а напряжение насыщения, как и в предыдущей схеме, равно по крайней мере падению напряжения на диоде. Между базой и эмиттером транзистора Т 2 рекомендуется включать резистор с небольшим сопротивлением. Разработчики применяют эту схему в мощных двухтактных выходных каскадах, когда хотят использовать выходные транзисторы только одной полярности. Пример такой схемы показан на рис. 2.63. Как и прежде, резистор представляет собой коллекторный резистор транзистора T 1 Транзистор Дарлингтона, образованный транзисторами Т 2 и Т 3 . ведет себя как один транзистор n-p-n - типа. с большим коэффициентом усиления по току. Транзисторы Т 4 и Т 5 , соединенные по схеме Шиклаи, ведут себя как мощный транзистор p-n-p - типа. с большим коэффициентом усиления. Как и прежде, резисторы R 3 и R 4 имеют небольшое сопротивление. Эту схему иногда называют двухтактным повторителем с квазидополнительной симметрией. В настоящем каскаде с дополнительной симметрией (комплементарном) транзисторы Т 4 и Т 5 , были бы соединены по схеме Дарлингтона.


Рис. 2.62. Соединение транзисторов по схеме Шиклаи («дополняющий транзистор Дарлингтона»).


Рис. 2.63. Мощный двухтактный каскад, в котором использованы выходные транзисторы только n-p-n - типа.


Транзистор со сверхбольшим значением коэффициента усиления по току. Составные транзисторы - транзистор Дарлингтона и ему подобные - не следует путать с транзисторами со сверхбольшим значением коэффициента усиления по току, в которых очень большое значение коэффициента h 21э получают в ходе технологического процесса изготовления элемента. Примером такого элемента служит транзистор типа 2N5962. для которого гарантируется минимальный коэффициент усиления по току, равный 450, при изменении коллекторного тока в диапазоне от 10 мкА до 10 мА; этот транзистор принадлежит к серии элементов 2N5961-2N5963, которая характеризуется диапазоном максимальных напряжений U кэ от 30 до 60 В (если коллекторное напряжение должно быть больше, то следует пойти на уменьшение значения C). Промышленность выпускает согласованные пары транзисторов со сверхбольшим значением коэффициента β. Их используют в усилителях с низким уровнем сигнала, для которых транзисторы должны иметь согласованные характеристики; этому вопросу посвящен разд. 2.18 . Примерами подобных стандартных схем служат схемы типа LM394 и МАТ-01; они представляют собой транзисторные пары с большим коэффициентом усиления, в которых напряжение U бэ согласовано до долей милливольта (в самых хороших схемах обеспечивается согласование до 50 мкВ), а коэффициент h 21э - до 1%. Схема типа МАТ-03 представляет собой согласованную пару p-n-p - транзисторов.


Транзисторы со сверхбольшим значением коэффициента β можно объединять по схеме Дарлингтона. При этом базовый ток смещения можно сделать равным всего лишь 50 пкА (примерами таких схем служат операционные усилители типа LM111 и LM316.



При проектировании схем радиоэлектронных устройств часто желательно иметь транзисторы с параметрами лучше тех моделей, которые предлагают фирмы производители радиоэлектронных компонентов (или лучше чем позволяет реализовать доступная технология изготовления транзисторов). Эта ситуация чаще всего встречается при проектировании интегральных микросхем. Нам обычно требуются больший коэффициент усиления по току h 21 , большее значение входного сопротивления h 11 или меньшее значение выходной проводимости h 22 .

Улучшить параметры транзисторов позволяют различные схемы составных транзисторов. Существует много возможностей реализовать составной транзистор из полевых или биполярных транзисторов различной проводимости, улучшая при этом его параметры. Наибольшее распространение получила схема Дарлингтона. В простейшем случае это соединение двух транзисторов одинаковой полярности. Пример схемы Дарлингтона на npn транзисторах приведен на рисунке 1.


Рисунок 1 Схема Дарлингтона на npn транзисторах

Приведенная схема эквивалентна одиночному npn транзистору. В данной схеме ток эмиттера транзистора VT1 является током базы транзистора VT2. Ток коллектора составного транзистора определяется в основном током транзистора VT2. Основным преимуществом схемы Дарлингтона является высокое значение коэффициента усиления по току h 21 , которое можно приблизительно определить как произведение h 21 входящих в схему транзисторов:

(1)

Однако следует иметь ввиду, что коэффициент h 21 достаточно сильно зависит от тока коллектора. Поэтому при малых значениях тока коллектора транзистора VT1 его значение может значительно уменьшиться. Пример зависимости h 21 от тока коллектора для разных транзисторов приведен на рисунке 2


Рисунок 2 Зависимость коэффициента усиления транзисторов от тока коллектора

Как видно из этих графиков, коэффициент h 21э практически не изменяется только у двух транзисторов: отечественный КТ361В и иностранный BC846A. У остальных транзисторов коэффициент усиления по току значительно зависит от тока коллектора.

В случае когда базовый ток транзистора VT2 получается достаточно мал, ток коллектора транзистора VT1 может оказаться недостаточным для обеспечения необходимого значения коэффициента усиления по току h 21 . В этом случае увеличения коэффициента h 21 и, соответственно, уменьшения тока базы составного транзистора можно добиться увеличением тока коллектора транзистора VT1. Для этого между базой и эмиттером транзистора VT2 включают дополнительный резистор, как это показано на рисунке 3.


Рисунок 3 Составной транзистор Дарлингтона с дополнительным резистором в цепи эмиттера первого транзистора

Например, определим элементы для схемы Дарлингтона, собранной на транзисторах BC846A Пусть ток транзистора VT2 будет равен 1 мА. Тогда его ток базы будет равен:

(2)

При таком токе коэффициент усиления по току h 21 резко падает и общий коэффициент усиления по току может оказаться значительно меньше расчетного. Увеличив ток коллектора транзистора VT1 при помощи резистора можно значительно выиграть в значении общего коэффициента усиления h 21 . Так как напряжение на базе транзистора является константой (для кремниевого транзистора u бэ = 0,7 В), то рассчитаем по закону Ома:

(3)

В этом случае мы вправе ожидать коэффициент усиления по току до 40000. Именно таким образом выполнены многие отечественные и иностранные супербетта транзисторы, такие как КТ972, КТ973 или КТ825, TIP41C, TIP42C. Схема Дарлингтона широко используется в выходных каскадах усилителей низкой частоты (), операционных усилителей и даже цифровых , например, .

Следует отметить, что схема Дарлингтона обладает таким недостатком, как повышенное напряжение U кэ. Если в обычных транзисторах U кэ составляет 0,2 В, то в составном транзисторе это напряжение возрастает до 0,9 В. Это связано с необходимостью открывать транзистор VT1, а для этого на его базу следует подать напряжение 0,7 В (если мы рассматриваем кремниевые транзисторы).

Для того, чтобы устранить указанный недостаток была разработана схема составного транзистора на комплементарных транзисторах. В российском Интернете она получила название схемы Шиклаи. Это название пришло из книги Титце и Шенка, хотя эта схема ранее имела другое название. Например, в советской литературе она называлась парадоксной парой. В книге В.Е.Хелейн и В.Х.Холмс составной транзистор на комплементарных транзисторах называется схемой Уайта, поэтому будем ее называть просто составным транзистором. Схема составного pnp транзистора на комплементарных транзисторах приведена на рисунке 4.


Рисунок 4 Составной pnp транзистор на комплементарных транзисторах

Точно таким же образом образуется npn транзистор. Схема составного npn транзистора на комплементарных транзисторах приведена на рисунке 5.


Рисунок 5 Составной npn транзистор на комплементарных транзисторах

В списке литературы на первом месте приведена книга 1974 года издания, но существуют КНИГИ и остальные издания. Есть основы, которые не устаревают длительное время и огромное количество авторов, которые просто повторяют эти основы. Рассказать понятно надо уметь! За все время профессиональной деятельности я встретил менее десяти КНИГ. Я всегда рекомендую изучать аналоговую схемотехнику с этой книги.

Дата последнего обновления файла 18.06.2018

Литература:

Вместе со статьей "Составной транзистор (схема Дарлингтона)" читают:


http://сайт/Sxemoteh/ShVklTrz/kaskod/


http://сайт/Sxemoteh/ShVklTrz/OE/


При проектировании радиоэлектронных схем часто бывают ситуации, когда желательно иметь транзисторы с параметрами лучше тех, которые предлагают производители радиоэлементов. В некоторых случаях нам может потребоваться больший коэффициент усиления по току h 21 , в других большее значение входного сопротивления h 11 , а в третьих более низкое значение выходной проводимости h 22 . Для решения перечисленных проблем отлично подходит вариант использования электронного компонента о котором мы поговорим ниже.

Устройство составного транзистора и обозначение на схемах

Приведенная чуть ниже схема эквивалентна одиночному n-p-n полупроводнику. В данной схеме ток эмиттера VT1 является током базы VT2. Коллекторный ток составного транзистора определяется в основном током VT2.

Это два отдельных биполярных транзистора на выполненные на одном кристалле и в одном корпусе. Там же и размещается нагрузочный резистор в цепи эмиттера первого биполярного транзистора. У транзистора Дарлингтона те же выводы, что и у стандартного биполярного транзистора – база, коллектор и эмиттер.

Как видим из рисунка выше, стандартный составной транзистор это комбинация из нескольких транзисторов. В зависимости от уровня сложности и рассеиваемой мощности в составе транзистора Дарлингтона может быть и более двух.

Основное плюсом составного транзистора является значительно больший коэффициент усиления по току h 21 , который можно приблизительно вычислить по формуле как произведение параметров h 21 входящих в схему транзисторов.

h 21 =h 21vt1 × h21vt2 (1)

Так если коэффициент усиления первого равен 120, а второго 60 то общий коэффициент усиления схемы Дарлингтона равен произведению этих величин - 7200.

Но учитывайте, что параметр h21 достаточно сильно зависит от коллекторного тока. В случае когда базовый ток транзистора VT2 достаточно низок, коллекторного VT1 может не хватить для обеспечения нужного значения коэффициента усиления по току h 21 . Тогда увеличением h21 и, соответственно, снижением тока базы составного транзистора можно добиться роста тока коллектора VT1. Для этого между эмиттером и базой VT2 включают дополнительное сопротивление, как показано на схеме ниже.

Вычислим элементы для схемы Дарлингтона, собранной, например на биполярных транзисторах BC846A, ток VT2 равен 1 мА. Тогда его ток базы определим из выражения:

i kvt1 =i бvt2 =i kvt2 / h 21vt2 = 1×10 -3 A / 200 =5×10 -6 A

При таком малом токе в 5 мкА коэффициент h 21 резко снижается и общий коэффициент может оказаться на порядок меньше расчетного. Увеличив ток коллектора первого транзистора при помощи добавочного резистора можно значительно выиграть в значении общего параметра h 21 . Так как напряжение на базе является константой (для типового кремниевого трех выводного полупроводника u бэ = 0,7 В), то сопротивление можно рассчитать по :

R = u бэvt2 / i эvt1 - i бvt2 = 0.7 Вольта / 0.1 mA - 0.005mA = 7кОм

При этом мы можем рассчитывать на коэффициент усиления по току до 40000. Именно по такой схеме построены многие супербетта транзисторы.

Добавив дегтя упомяну, что данная схема Дарлингтона обладает таким существенным недочетом, как повышенное напряжение U кэ. Если в обычных транзисторах напряжение составляет 0,2 В, то в составном транзисторе оно возрастает до уровня 0,9 В. Это связано с необходимостью открывать VT1, а для этого на его базу необходимо подать напряжение уровнем до 0,7 В (если при изготовлении полупроводника использовался кремний).

В результате чтоб исключить упомянутый недостаток, в классическую схему внесли незначительные изменения и получили комплементарный транзистор Дарлингтона. Такой составной транзистор составлен из биполярных приборов, но уже разной проводимости: p-n-p и n-p-n.

Российские, да и многие зарубежные радиолюбители такое соединение называют схемой Шиклаи, хотя эта схема называлась парадоксной парой.

Типичными минусом составных транзисторов, ограничивающими их применение является невысокое быстродействие, поэтому они нашли широкое использование только в низкочастотных схемах. Они прекрасно работают в выходных каскадах мощных УНЧ, в схемах управления двигателями и устройствами автоматики, в схемах зажигания автомобилей.

На принципиальных схемах составной транзистор обозначается как обычный биполярный. Хотя, редко, но используется такое условно графическое изображение составного транзистора на схеме.

Одной из самых распространенных считается интегральная сборка L293D - это четыре токовых усилителя в одном корпусе. Кроме того микросборку L293 можно определить как четыре транзисторных электронных ключа.

Выходной каскад микросхемы состоит из комбинации схем Дарлингтона и Шиклаи.

Кроме того уважение у радиолюбителей получили и специализированные микросборки на основе схемы Дарлингтона. Например . Эта интегральная схема по своей сути является матрицей из семи транзисторов Дарлингтона. Такие универсальные сборки отлично украшают радиолюбительские схемы и делают их более функциональными.

Микросхема является семи канальным коммутатор мощных нагрузок на базе составных транзисторов Дарлингтона с открытым коллектором. Коммутаторы содержат защитные диоды, что позволяет коммутировать индуктивные нагрузки, например обмотку реле. Коммутатор ULN2004 необходим при сопряжения мощных нагрузок с микросхемами КМОП-логики.

Зарядный ток через батарею в зависимости от напряжения на ней (прикладываемого к Б-Э переходу VT1), регулируется транзистором VT1, коллекторным напряжением которого управляется индикатор заряда на светодиоде (по мере зарядки ток заряда уменьшается и светодиод постепенно гаснет) и мощный составной транзистор, содержащий VT2, VT3, VT4.


Сигнал требующий усиления через предварительный УНЧ подается на предварительный дифферециальный усилительный каскад построенный на составных VT1 и VT2. Использование дифференциальной схемы в усилительном каскаде, снижает шумовые эффекты и обеспечивает работу отрицательной обратной связи. Напряжение ОС поступает на базу транзистора VT2 с выхода усилителя мощности. ОС по постоянному току реализуется через резистор R6.

В момент включения генератора конденсатор С1 начинает заряжаться, затем открывается стабилитрон и сработает реле К1. Конденсатор начинает разряжаться через резистор и составной транзистор. Через небольшой промежуток времени реле выключается и начинается новый цикл работы генератора.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то