Способы борьбы с обледенением контактных сетей. Борьба с обледенением проводов лэп, пак фа и другие лучшие письма месяца. Гололёд - бедствие для линий электропередач

Доктор технических наук В. КАГАНОВ, профессор МИРЭА.

За последние пятнадцать лет гололёд на высоковольтных линиях стал возникать всё чаще. При небольшом морозе, в условиях мягкой зимы, на проводах оседают капельки тумана или дождя, покрывая их плотной ледяной «шубой» весом несколько тонн на длине километр. В результате провода рвутся, а опоры линий электропередач ломаются. Участившиеся аварии на ЛЭП связаны, по-видимому, с общим потеплением климата и потребуют немало сил и средств на их предотвращение. Готовиться к ним нужно заранее, но традиционный способ плавления гололёда на проводах малоэффективен, неудобен, дорог и опасен. Поэтому в Московском институте радиоэлектроники и автоматики (МИРЭА) разработана новая технология не просто уничтожения уже намёрзшего льда, но позволяющая загодя предотвращать его образование.

Наука и жизнь // Иллюстрации

уски льда на проводах, изоляторах и несущих конструкциях порой достигают значительных размеров и массы.

Многотонные слои льда на проводах ломают даже стальные и железобетонные опоры.

Экспериментальный генератор на 100 МГц мощностью 30 Вт, собранный в МИРЭА.

Гололёд - бедствие для линий электропередач

Согласно словарю Даля, гололёд имеет и другое название - ожеледь или ожеледица. Гололёд, то есть плотная ледяная корка, образуется при намерзании переохлаждённых капель дождя, мороси или тумана при температуре от 0 до –5°С на поверхности земли и различных предметов, в том числе проводах высоковольтных линий электропередач. Толщина гололёда на них может достигать 60-70 мм, существенно утяжеляя провода. Простые расчеты показывают, что, например, провод марки АС-185/43 диаметром 19,6 мм километровой длины имеет массу 846 кг; при толщине гололёда 20 мм она увеличивается в 3,7 раза, при толщине 40 мм - в 9 раз, при толщине 60 мм - в 17 раз. При этом общая масса линии электропередачи из восьми проводов километровой длины возрастает соответственно до 25, 60 и 115 тонн, что приводит к обрыву проводов и поломке металлических опор.

Подобные аварии приносят значительный экономический ущерб, на их устранение уходит несколько дней и затрачиваются огромные средства. Так, по материалам фирмы «ОГРЭС», крупные аварии по причине гололёда за период с 1971 по 2001 год многократно происходили в 44 энергосистемах России. Только одна авария в сочинских электросетях в декабре 2001 года привела к повреждению 2,5 тыс. км воздушных линий электропередач напряжением до 220 кВ и прекращению электроснабжения огромного района. Много аварий гололёдного происхождения было и минувшей зимой.

Наиболее подвержены гололёду высоковольтные линии электропередач на Кавказе (в том числе и в районе предстоящей в 2014 году зимней сочинской Олимпиады), в Башкирии, на Камчатке, в иных районах России и других стран. Бороться с этим бедствием приходится очень дорогим и крайне неудобным способом.

Плавка электрическим током

Ледяную корку на высоковольтных линиях ликвидируют, нагревая провода постоянным или переменным током частотой 50 Гц до температуры 100-130°С. Сделать это проще всего, замкнув накоротко два провода (при этом от сети приходится отключать всех потребителей). Пусть для эффективного растапливания ледяной корки на проводах требуется ток I пл. Тогда при плавке постоянным током напряжение источника питания

U 0 = I пл R пр,

где R пр - активное сопротивление проводов, а переменным током от сети -

где X пр = 2FL пр - реактивное сопротивление при частоте F = 50 Гц, обусловленное индуктивностью проводов L пр.

В линиях значительной длины и сечения из-за относительно большой их индуктивности напряжение источника переменного тока при частоте F = 50 Гц, а соответственно и его мощность должны быть в 5-10 раз больше по сравнению с источником постоянного тока той же силы. Поэтому экономически выгодно плавить наледь постоянным током, хотя для этого нужны мощные высоковольтные выпрямители. Переменный ток применяют обычно на высоковольтных линиях напряжением 110 кВ и ниже, а постоянный - выше 110 кВ. В качестве примера укажем, что при напряжении 110 кВ сила тока может достигать 1000 А, требуемая мощность - 190 млн В·А, температура провода 130оС.

Таким образом, плавка гололёда током - довольно неудобное, сложное, опасное и дорогостоящее мероприятие. Кроме того, очищенные провода при сохранившихся климатических условиях вновь обрастают льдом, который требуется плавить снова и снова.

Прежде чем изложить сущность предлагаемого нами метода борьбы с гололёдом на проводах высоковольтных линий электропередач, остановимся на двух физических явлениях, первое из которых связано со скин-эффектом, второе - с бегущей электромагнитной волной.

Скин-эффект и бегущие волны

Название эффекта происходит от английского слова «skin» - кожа. Скин-эффект состоит в том, что токи высокой частоты, в отличие от постоянного тока, не распределяются равномерно по сечению проводника, а концентрируются в очень тонком слое его поверхности, толщина которого при частоте f > 10 кГц составляет уже доли миллиметра, а сопротивление проводов возрастает в сотни раз.

Электромагнитные колебания высокой частоты могут распространяться в свободном пространстве (при излучении антенной) и в волноводах, например, в так называемых длинных линиях, по которым электромагнитная волна скользит, словно по рельсам. Такой длинной линией может служить пара проводов линии электропередачи. Чем больше сопротивление проводов линии, тем большая часть энергии электромагнитного поля бегущей вдоль линии волны преобразуется в тепло. Именно этот эффект и положен в основу нового способа предотвращения гололёда на линиях электропередач.

В случае ограниченных размеров линии или какого-либо высокочастотного препятствия, например ёмкости, в линии помимо падающей будет распространяться и отражённая волна, энергия которой также будет преобразовываться в тепло по мере её распространения от препятствия к генератору.

Расчёты показывают, что для защиты от гололёда ЛЭП длиной порядка 10 км нужен высокочастотный генератор мощностью 20 кВт, то есть отдающий 2 Вт мощности на метр провода. Стационарный режим разогрева проводов при этом наступает через 20 минут. А при том же типе провода применение постоянного тока требуется мощность 100 Вт на метр с выходом на режим за 40 минут.

Токи высокой частоты генерируют мощные радиопередатчики УКВ ЧМ-вещания, работающие в диапазоне 87,5-108 МГц. Их можно подключать к проводам ЛЭП через устройство согласования с нагрузкой - линией электропередачи.

Для проверки эффективности предложенного метода в МИРЭА был проведён лабораторный эксперимент. Генератор мощностью 30 Вт, частотой 100 МГц подключили к двухпроводной линии длиной 50 м, разомкнутой на конце, с проводами диаметром 0,4 мм и расстоянием между ними 5 мм.

Под действием бегущей электромагнитной волны температура нагрева двухпроводной линии составила 50-60°С при температуре воздуха 20°С. Результаты эксперимента с удовлетворительной точностью совпали с результатами расчётов.

Выводы

Предлагаемый способ требует, конечно, тщательной проверки в реальных условиях действующей электросети с проведением полномасштабных экспериментов, ибо лабораторный эксперимент позволяет только дать первую, предварительную оценку новому способу борьбы с гололёдом. Но некоторые выводы из всего сказанного всё-таки можно сделать:

1. Разогрев линий электропередач токами высокой частоты позволит предотвращать образование гололёда на проводах, поскольку можно нагреть их до 10-20°С, не дожидаясь образования плотного льда. Отключать от электрической сети потребителей не придётся - высокочастотный сигнал к ним не проникнет.

Подчеркнём: способ позволяет не допускать появления гололёда на проводах, а не начинать с ним бороться после того, как ледяная «шуба» их окутает.

2. Поскольку провода можно нагревать всего на 10-20°С, то по сравнению с плавкой, требующей нагрева проводов до 100-130°С, значительно уменьшается расход электроэнергии.

3. Так как сопротивление проводов токам высокой частоты по сравнению с промышленной (50 Гц) резко возрастает, коэффициент преобразования электрической энергии в тепловую оказывается велик. Это в свою очередь приводит к снижению требуемой мощности. На первых порах, по всей видимости, можно ограничиться частотой около 100 МГц генератора мощностью 20-30 кВт, воспользовавшись существующими вещательными радиопередатчиками.

Литература

Дьяков А. Ф., Засыпкин А. С., Левченко И. И. Предотвращение и ликвидация гололедных аварий в электрических сетях. - Пятигорск: Изд-во РП «Южэнерготехнадзор», 2000.

Каганов В. И. Колебания и волны в природе и технике. Компьютеризированный курс. - М.: Горячая линия - Телеком, 2008.

Левченко И. И., Засыпкин А. С., Аллилуев А. А., Сацук Е. И. Диагностика, реконструкция и эксплуатация воздушных линий электропередачи в гололедных районах. - М.: Издательский дом МЭИ, 2007.

Рудакова Р. М., Вавилова И. В., Голубков И. Е. Борьба с гололёдом в электросетевых предприятиях. - Уфа: Уфимск. гос. авиац. техн. ун-т, 1995.

Яворский Б. М., Детлаф А. А. Справочник по физике. - М.: Наука, 1974.

Обледенение - опасное явление, ухудшающее характеристики и качества конструкций, их прочность и, в конечном счете, долговечность и безопасность. Обледенение значительно увеличивает лобовое сопротивление ветру, что может привести к разрушению конструкций и механизмов.

Обледенение вызывает аварии линий электропередач, что дает лишний повод задуматься о средствах их защиты и проведении мероприятий. Основные средства защиты против обледенения - подогрев или специальные антиобледенительные составы.

В мировой практике для создания антиобледенительных покрытий наиболее широко используют органосиликатные композиции. Они используются для борьбы с обледенением различных приборов и устройств, используемых в производственно – хозяйственном комплексе, например, линий электропередач.

В отдельных районах севера гололед и различные виды обледенения проводов ЛЭП нарушают нормальную их эксплуатацию. Провода ЛЭП часто подвергаются обледенению, в связи с чем нарушается целостность единой системы, приводящей к авариям и даже катастрофам.

Традиционными основными мероприятиями борьбы с наледью на ЛЭП являются: удаление наледи с проводов и тросов электрическим током или механическим способом, а также профилактический прогрев проводов.

Механический способ требует очень много времени и значительных трудозатрат, в большинстве случаев не признается целесообразным. Плавка наледи электрическим током, в большинстве случаев, является опасной для целостности проводов и конструкций опор. Энергоемкость таких схем очень велика.

Предлагаемый метод борьбы с наледью на проводе линии индукционным током этой же линии, посредством перемещения«индукционной торпеды» от одной точки крепления провода до другой, в пределах одного пролета, является новым направлением в борьбе с обледенением высоковольтных линий.

Преимущества этого метода:

Полная автономия передвижения «торпеды» в пределах одного пролета;

Возможность выбора в установке «торпед» в наиболее уязвимых для обледенения участках высоковольтных линий;

Несоизмеримо меньшие энергозатраты в сравнении с существующими способами;

Возможность дистанционного пуска и остановки «торпеды» по команде диспетчера посредством кодированного сигнала по ВЧ связи. Между этими сигналами – полное самоуправление посредством системы контактов конечных выключателей;

Снижение вероятности обрыва проводов высоковольтных линий и разрушения несущих элементов опор, исключение «пляски проводов»;

Надежность в эксплуатации и долговечность, простота конструкции и дешевизна в изготовлении;

Отсутствие необходимости в обслуживании «торпеды» в течение всего времени ее использования.


Провода линий не выдерживают тяжести снега и льда, что приводит к их повреждению и даже к разрыву. Результатом чего, будет необходимо проведение электромонтажных работ по восстановлению линий электропередач. Эффективно используется управляемое устройство плавки гололеда, в котором используется тиристорный управляемый выпрямитель. Оно специально предназначено для борьбы с гололедообразованием на высоковольтных линиях электропередач. Необходимо отметить, что раньше для плавки льда на станции использовали нерегулируемый выпрямитель. Особенностью современного устройства является то, что он мгновенно реагирует на ток плавки гололеда, тем самым не допуская перегрева проводов и грозотросов, так как волоконно-оптические линии связи, встроенные в грозозащитные тросы линий электропередач не приемлют такого воздействия. К тому же управление данным устройством существенно проще, чем его предшественником. Он на порядок ускоряет процесс плавки, при этом, не требуя повышения мощности установленного трансформаторного оборудования. Контроль над работой установок можно производить из Центра управления сетями в режиме реального времени.


3.3 Эксплуатация кабельных линий до 35 кв
Надзор за трассами кабельных линий производится в целях проверки их состояния периодическим обходом и осмотром специально выделенными для этого монтерами в сроки, предусмотренные ПТЭ, и инженерно-техническим персоналом в сроки, предусмотренные местными инструкциями.

1.Внеочередные обходы и осмотры производятся в период паводков и после ливней, а также при отключении линий релейной защитой.

2.При обходах и осмотрах трасс кабельных линий, проложенных на открытых территориях, необходимо:

· проверить, чтобы на трассе не производились несогласованные с эксплуатирующей организацией работы (строительство сооружений, раскопка земли, посадка растений, устройство складов, забивка свай, столбов и т.п.), а также, чтобы не было завалов трасс снегом, мусором, шлаком, отбросами, не было провалов и оползней грунта;

· осматривать места пересечения кабельных трасс с железными дорогами, обращая внимание на наличие предупредительных плакатов;

· осматривать места пересечения кабельных трасс шоссейными дорогами, канавами, кюветами;

· осматривать состояние устройств и кабелей, проложенных по мостам, дамбам, эстакадам и другим подобным сооружениям;

· проверять в местах выхода кабелей на стены зданий или опоры воздушных линий электропередачи наличие и состояние защиты кабелей от механических повреждений, исправность концевых муфт;

3. При обходах и осмотрах трасс кабельных линий, проложенных на закрытых территориях, кроме выполнения требований п.2 необходимо:

· привлекать к участию в осмотре трассы представителя организации, ответственного за охрану кабелей и других, относящихся к ним сооружений;

· при выявлении дефектов на трассах линий вручать предписания об их устранении;

· в случае выявления не устраненных в установленный при предыдущем осмотре срок недостатков, составлять протокол о нарушении.

Методы борьбы с обледенением ЛЭП

Научный руководитель – д. т.н., профессор

1. Введение

Несмотря на многолетние усилия энергетиков и ученых, гололедные аварии в электрических сетях многих энергосистем по-прежнему вызывают наиболее тяжелые последствия и периодически дезорганизуют электроснабжение регионов страны.

Борьба с обледенением проводов ЛЭП осуществляется 3 методами:

1 –механический; 2 – физико-химический; 3 – электромеханический.

1) Механический способ

Механический способ заключается в применении специальных приспособлений, которыми производится сбивание льда с проводов. Самый простой способ механического удаления гололеда – сбивание при помощи длинных шестов. Обивка осуществляется боковыми ударами, вызывающие волнообразное колебание провода. Но этот способ требует доступа к ЛЭП, что нарушает нормальную работу участка. К тому же механическое воздействие не препятствует обледенению, а устраняет его.

https://pandia.ru/text/80/410/images/image006_24.jpg" align="left" width="292" height="271 src=">

Удаление гололеда с проводов шестами практически неосуществимо без большого количества рабочих. Этот метод требует много времени и применяется только на коротких участках линий, из-за чего в большинстве случаев признается нецелесообразным. Поэтому в настоящее время наиболее распространенным способом борьбы с гололедом на проводах ЛЭП является плавка гололеда переменным или постоянным током большой величины в течение продолжительного периода времени (около100 минут и более). При этом расходуется значительное количество энергии и требуется отключение линии от потребителей на длительный срок.

2) Электротермический способ

Электротермический способы удаления льда заключаются в нагреве проводов электрическим током, обеспечивающим предотвращение образования льда – профилактический подогрев или его плавку.

Профилактический подогрев проводов заключается в искусственном повышении тока в сети ЛЭП до такой величины, при которой провода нагреваются до температуры выше 0°С. При такой температуре гололед на проводах не откладывается. Профилактический подогрев необходимо начинать до образования гололеда. При профилактическом подогреве следует применять такие схемы питания, которые не требуют отключения потребителей.

Плавка гололеда на проводах осуществляется при уже образовавшемся гололеде путем искусственного повышения тока сети ЛЭП. Провода нагревают постоянным или переменным током частотой 50 Гц до температуры 100-130°С. Сделать это проще, замкнув накоротко два провода, при этом от сети приходится отключать всех потребителей.

Плавка гололеда переменным током применяется только на линиях с напряжением ниже 220 кВ с проводами сечением меньше, чем 240 мм2. Для ВЛ напряжением 220 кВ и выше с проводами сечений 240 мм2 и более плавка гололеда переменным током требует значительно больших мощностей источника питания.

Преимущество этого метода, это то что он снижает энергозатраты. Однако к недостаткам такого метода можно отнести следующее: необходимость постоянного подогрева проводов для предотвращения гололедообразования, высокая стоимость источников высокочастотного тока необходимой мощности.

3) Физико-химический метод

Физико-химический способ в отличие от других предотвращает появления обледенения проводов. Полученные результаты позволяют говорить о новом физико-химическом методе в борьбе с обледенением проводов ЛЭП, эффективность которого существенно превышает возможности традиционных методов. Также этот метод не требует каких либо больших экономических затрат. Поэтому он является более перспективным. Единственным недостатком физико-химического метода является то, что срок действия таких жидкостей недолог, а регулярно наносить их на сотни и тысячи километров проводов нереально.

4) Замена проводов.

Метод заключается в том, чтобы не изобретать никаких второстепенных приборов для очистки проводов ото льда, а создать новые высокотехнологичные провода. Эти провода должны выполнять следующие требования:

Увеличить пропускную способность существующих линии;

Снизить механические нагрузки, прикладываемые к опорам ЛЭП, из-за пляски проводов;

Повышение коррозионной стойкости проводов и тросов;

Снижение риска обрыва провода при частичном повреждении нескольких внешних проволок из-за внешних воздействий, в том числе в результате удара молнии;

Улучшение механических свойств проводов при налипании снега или образовании льда

Для этого, внешние слои провода нужно выполнять из таких проводников которые будут плотно прилегать друг к другу.

Таким образом, за счет более плотной скрутки проводников и более гладкой внешней поверхности возможно использование более тонких и более легких проводов. Это, в свою очередь приводит к снижению электрических потерь в проводах на 10 – 15 %, в том числе потери на корону, и повышению механической прочности конструкции. Также, благодаря плотной скрутке практически исключается проникновение во внутренние слои воды и загрязнений, следовательно снижается коррозия внутренних слоев провода.

3. Заключение

Из-за неэффективности механического и физико-химического метода на больших расстояниях, то об экономической стороне, говорить не будем.

В данный момент, образовавшийся гололёд на проводах очищают подогревом. Это не является самым дешевым способом, так как этот способ требует мощных и дорогих источников питания. Таким образом, плавка гололёда током - довольно неудобное, сложное, опасное и дорогостоящее мероприятие. Кроме того, очищенные провода при сохранившихся климатических условиях вновь обрастают льдом, который требуется плавить снова и снова.

Следует отметить, что плавка гололеда должна проводиться в районах интенсивного гололедообразования с частой пляской проводов. В других случаях применение плавки гололеда должно обосновываться технико-экономическими расчетами.

Срок эксплуатации проводов составляет 45 лет. Нужно переходить на новые высокотехнологичные провода. Зарубежные провода стоят очень дорого, стоимость в 10 раз превышает стоимость проводов АС. Предлагается разработать отечественные высокотехнологичные провода и начать заменять старые на новые.

Список используемой литературы

1. Способ удаления обледенения с проводов линий электропередач / , : пат. 2442256 C1 Росс. Федерация, МПК H 02 G 7/16.; № 000/07 ; заявл. 29.10.2010 ; опубл. 10.02.2012, Бюл. № 4. 4с.: ил.

2. , Емельянов борьбы с обледенением ЛЭП: перспективы и преимущества новых супергидрофобных покрытий. //Журнал ЭЛЕКТРО № 6/2011. http://www. ess. ru/.

3. Дьяков и ликвидация гололедных аварий в электрических сетях. Пятигорск: Изд-во РП «Южэнерготехнадзор», 2000. 284 с.

4. Абжанов P. C. Исследование осаждения аэрозолей применительно к процессу гололедообразования на проводам ЛЭП / Дис. канд. техн. наук Алма - Ата,1973.

5. , К вопросу о борьбе с гололедным образованием на проводах линий электропередач // Научн. Тр. ЧИМЗСХ – Челябинск, 1973, вып.83, с.34-36.

6. , АВТОМАТИЧЕСКАЯ СИСТЕМА УДАЛЕНИЯ ЛЬДА С ПРОВОДОВ ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ

В статье «Высокая энергия» («ПМ» № 9"2015) упоминается борьба с обледенением проводов ЛЭП. Чтобы нагреть провода с помощью переменного тока, требуются большие энергозатраты, экономически это невыгодно. Поэтому в этих целях применяется постоянный электрический ток. Однако для ЛЭП с низким значением напряжения (менее 220 кВ), с учетом системы энергоснабжения и технических характеристик, вполне возможно использование и переменного тока. Предупредительные меры заключаются в профилактическом подогреве проводов для предотвращения их обледенения. С помощью специальных трансформаторов в кольцевой системе создаются дополнительные контурные токи, что позволяет нагревать провода и предотвратить образование льда. Замечательно то, что здесь не требуется отключения энергии, как в случае с использованием постоянного тока, и таким образом обеспечивается бесперебойная работа сети. Алексей Грунёв

Разговор сквозь землю

В статье «На пути к миелофону» («ПМ» № 8"2015) в качестве примера применения ферримагнетика приводится его использование для обмена данными с электроникой буровых «снарядов». Стоит уточнить, что речь идет о так называемых телеметрических системах, предназначенных для сбора данных с глубины при бурении и передачи информации на поверхность, например для управления головкой бура, а также для оперативного принятия решения об изменении режима бурения. Ферримагнетики действительно могут найти применение, но если удастся выделить полезный сигнал на фоне очень высокого уровня шума. Но в современных телесистемах скорость передачи данных по гидравлическому каналу связи на основе гармонической волны может доходить до 10 бит/с, хотя чаще всего она ограничена 4 бит/с для экономии энергии батарей. Наряду с беспроводными каналами связи, такими как гидравлический, применяют и проводной, и электромагнитный, и акустический, хотя они имеют ряд ограничений. Кирилл Труханов

Царь — не настоящий!

На обложке «ПМ» № 9"2015 изображен авианосец и самолет Т-50, но в самой статье «Атомный царь-корабль» на фото, подписанном ПАК ФА, F-22 Raptor. Самолеты эти действительно похожи в ракурсе с носовой части, однако есть одна существенная деталь, которая позволяет легко и быстро различить эти два летательных аппарата. Двигатели F-22 расположены параллельно друг другу и на небольшом расстоянии, тогда как двигатели Т-50 — под существенным углом друг относительно друга, а между ними помещается хвостовая оконечность — «бобровый хвост», где размещен тормозной парашют. Евгений Кунашов

ПМ: Просим прощения у всех наших читателей за техническую ошибку, которая привела к размещению неправильной иллюстрации.

Родственные связи

В статье «Куда спешить джентльмену» («ПМ» № 8"2015) сказано, что технологии достались носителю английских традиций от «нынешнего немецкого родителя BMW». BMW действительно с недавнего времени стал материнской компанией Rolls-Royce, но назвать его родителем не совсем корректно. Геннадий Дрейгер

ПМ: До 1998 года компания Rolls-Royce Motors принадлежала концерну Vickers. В 1998-м концерн продал компании VW всё, кроме права на использование марки Rolls-Royce. Марка же была передана BMW, где и разработали новые машины и построили новый завод. Так что BMW — именно родитель, от которого Rolls-Royce достались двигатель, электроника и детали подвески от седьмой серии.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то