Усилительный каскад с общим эмиттером. Схемы включения биполярных транзисторов

Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.

Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂

Виды транзисторов

Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.

Биполярный транзистор

Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.

Триоды за редким исключением применяют в аппаратуре для меломанов.

Биполярные транзисторы выглядеть могут так.

Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.

Это изображение транзисторов еще называют УГО (Условное графическое обозначение).

Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.

Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки»). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.

У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.

Обычно где какой вывод определяют по справочнику, но можно просто . Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).

Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.

Принцип работы биполярного транзистора

А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.

Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h21Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.

Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги ).

  1. Коллектор имеет более положительный потенциал, чем эмиттер
  2. Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
  3. Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
  4. В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.

Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.

Коэффициент усиления по току.

Его также обозначают как

Исходы из выше сказанного транзистор может работать в четырех режимах:

  1. Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
  2. Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
  3. Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
  4. Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.

Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.

Транзистор в ключевом режиме

Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.

Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.

На рисунке изображена схема работы транзистора в ключевом режиме.

Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.

В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.

Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).

На сколько мы знаем, что значение тока это характеристика нагрузки.

Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.

Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.

Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.

В результате мы вполне можем найти сопротивление резистора

Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.

Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.

Все дело в том, что здесь есть небольшой нюанс.

Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂

Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).

Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.

В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.

Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.

Эмиттерный повторитель

Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.

Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.

Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.

Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.

«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока ! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.

Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.

Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.

Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!

Где транзисторы купить?

Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине . Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.

Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, и так сказать вдохнуть в старый радиокомпонет новую жизнь.

Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.

Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.

Желаю вам удачи, успехов и солнечного настроения!

С н/п Владимир Васильев

P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!

Схема с общим эмиттером

Схема с общим эмиттером (ОЭ) представлена на рис. 1.11. Транзистор п-р-п в этой схеме работает так же, как и в схеме с ОБ. Заметим лишь, что общепринятое направление токов (от К источника напряжения), обозначенное на рис. 1.11, а, противоположно направлению движения электронов. Характерным признаком схемы с ОЭ является то, что нагрузка располагается в коллекторной цепи (рис. 1.11,6).

Рис. 1.11. Схема включения транзистора с общим эмиттером (а); типовое изображение в схемах (б)

Так же как и для схемы с ОБ, входным сигналом в этой схеме является напряжение между базой и эмиттером, а выходными величинами – коллекторный ток I к и напряжение на нагрузке U вых = I к R н Транзистор в схеме с ОЭ характеризуется коэффициентом передачи тока

имеющим значения β = 10... 100, который связан с коэффициентом α для схемы с ОБ соотношением:

Оценим значения коэффициентов усиления схемы с ОЭ (их обозначают индексом "Э").

Выходным током, как и в схеме с ОБ, является ток I к, протекающий но нагрузке, а входным током (в отличие от схемы с ОБ) – ток базы I Б; коэффициент усиления по току схемы с ОЭ равен

При α = 0,98 КIЭ = 0,98/(1 – 0,98) ≈ 50, т.е. нескольким десяткам, что многократно превосходит аналогичный коэффициент у схемы с ОБ.

Входное сопротивление в схеме с ОЭ также значительно выше, чем в схеме с ОБ, так как в схеме с ОЭ входным током является ток базы, а в схеме с ОБ – во много раз больший ток эмиттера (а именно в 1/(1 – α) ≈ β раз):

Величина входного сопротивления в схеме с ОЭ больше, чем в схеме с ОБ в ≈ β раз и составляет сотни ом.

Коэффициент усиления по напряжению в схеме с ОЭ соизмерим с таким же коэффициентом у схемы с ОБ:

По коэффициенту усиления по мощности схема с ОЭ за счет значительно большего коэффициента усиления по току также многократно превосходит схему с ОБ:

и зависит от коэффициента передачи тока β и отношения сопротивления нагрузки к входному сопротивлению.

Благодаря отмеченным свойствам, схема с ОЭ нашла очень широкое применение.

Входные и выходные характеристики схемы с общим эмиттером

Работу схемы обычно описывают с помощью входных и выходных характеристик транзистора в той или иной схеме включения. Для схемы с ОЭ входная характеристика – это зависимость входного тока от напряжения на входе схемы, т.е. I Б = f (UБЭ) при фиксированных значениях напряжения коллектор – эмиттер (U кэ = const).

Выходные характеристики – это зависимости выходного тока, т.е. тока коллектора, от падения напряжения между коллектором и эмиттером транзистора I к = f (и БЭ) при токе базы I Б = const.

Входная характеристика по существу повторяет вид характеристики диода при подаче прямого напряжения (рис. 1.12, б). С ростом напряжения U KЭ входная характеристика будет незначительно смещаться вправо.

Рис. 1.12. Выходные (а) и входная (б ) характеристики транзистора в схеме с общим эмиттером

Вид выходных характеристик (рис. 1.12, а) резко различен в области малых (участок ОA) и относительно больших значений U кэ. Напомним, что для нормальной работы транзистора необходимо, чтобы на переход база–эмиттер подавалось прямое напряжение, а на переход база–коллектор – обратное. Поэтому, пока |1/кэ|< 1/БЭ, напряжение на коллекторном переходе оказывается прямым, что резко уменьшает ток I к. При |UКЭ| > U БЭ напряжение на коллекторном переходе UБK = UКЭ – U БЭ становится обратным и, следовательно, мало влияет на величину коллекторного тока, который определяется в основном током эмиттера. При таком напряжении все носители, инжектированные эмиттером в базу и прошедшие через область базы, устремляются к внешнему источнику. При напряжении UБЭ < 0 эмиттер носителей не инжектирует и ток базы I Б = 0, однако в коллекторной цепи протекает ток I К0 (самая нижняя выходная характеристика). Этот ток соответствует обратному току I 0 обычного р-n-перехода.

При работе транзистора изменяется его режим. Действительно, чем больше ток, протекающий через транзистор, тем больше падение напряжения на нагрузке, а следовательно, тем меньшее напряжение будет падать на самом транзисторе. Характеристики, представленные на рис. 1.12, а, б, описывают лишь статический режим работы схемы. Для оценки динамики и влияния нагрузки на работу схемы используют графоаналитический метод расчета на основе входных и выходных характеристик. Рассмотрим этот метод на примере входных и выходных характеристик схемы с ОЭ.

Проведем прямую через точку Eк, отложенную на оси абсцисс, и точку Е к /R н отложенную на оси ординат выходных характеристик транзистора. Полученная прямая называется нагрузочной. Точка Е к /R н этой прямой соответствует такому току, который мог бы течь через нагрузку, если транзистор замкнуть накоротко. Точка Е к соответствует другому крайнему случаю – цепь разомкнута, ток через нагрузку равен нулю, а напряжение Uкэ равно Е к. Точка р пересечения нагрузочной прямой со статической выходной характеристикой, соответствующей входному току I Б, определит рабочий режим схемы, т.е. ток в нагрузке I к, падение напряжения на ней U н = I к R н и падение напряжения (/кэ на самом транзисторе. На рис. 1.12, а точка р соответствует подаче в транзистор тока базы I Б = 1 мА. Нетрудно видеть, что подача тока базы I Б = 2 мА приводит к смещению рабочей точки в точку А и перераспределению напряжений между нагрузкой и транзистором.

Пример 1.1. Рассчитайте схему с ОЭ и R н =110 Ом при входном напряжении UБЭ = +0,1 В, напряжении питания Е к = +25 В, используя характеристики транзистора.

Решение. Найдем отношение E K/R н = 25/110 = 228 мА и, отложив найденную точку на оси I к и значение Е к = +25 В на оси Uкэ, проведем нагрузочную прямую.

По входной характеристике для напряжения 1/БЭ = 0,1 В определим входной ток I Б = 1 мЛ.

Точка пересечения р прямой с характеристикой, соответствующей I Б = 1 мА, определит ток I к = 150 мА.

Напряжение на нагрузке равно

Напряжение между коллектором и эмиттером транзистора

В заключение отметим, что режим, соответствующий точке А, называют режимом насыщения (при заданных значениях R н и Е к ток I к в точке А достигает наибольшего возможного значения). Режим, соответствующий точке В (входной сигнал равен нулю), а также точке С (входной сигнал отрицателен и запирает транзистор), называют режимом отсечки. Все промежуточные состояния транзистора с нагрузкой между точками А и В относятся к активному режиму его работы.

Транзистор, в схему включают так, что один из его выводов является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК. Для транзистора n-р-n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора, полярность включения источников питания должна быть выбрана такой, чтоб эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

Характеристики транзистора, включенного по схеме об

IЭ = f(UЭБ) при UКБ = const (а).

IК = f(UКБ) при IЭ = const (б).

Статические характеристики биполярного транзистора, включенного по схеме ОБ. Выходные ВАХ имеют три характерные области: 1 – сильная зависимость Iк от UКБ; 2 – слабая зависимость Iк от UКБ; 3 – пробой коллекторного перехода. Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения UКБ.

Характеристики транзистора, включённого по схеме оэ:

Входной характеристикой является зависимость:

IБ = f(UБЭ) при UКЭ = const (б).

Выходной характеристикой является зависимость:

IК = f(UКЭ) при IБ = const (а).

Режим работы биполярного транзистора

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р-n- перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р-n- перехода открыты), то транзистор работает в режиме насыщения. В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы - усиление, генерация.

Усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером. Основными элементами схемы являются источник питания Ек, управляемый элемент – транзистор VT и резистор Rк. Эти элементы образуют выходную цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы. Другие элементы схемы выполняют вспомогательную роль. Конденсатор Ср является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Ек.

Резистор RБ, включенный в цепь базы, обеспечивает работу транзистора при отсутствии входного сигнала. Режим покоя обеспечивается током базы покоя IБ = Ек/RБ. С помощью резистора Rк создается выходное напряжение. Rк выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Ек = Uкэ + IкRк,

сумма падения напряжения на резисторе Rк и напряжения коллектор-эмиттер Uкэ транзистора всегда равна постоянной величине – ЭДС источника питания Ек.

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Ек в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

5)Что такое полевой транзистор? Какие виды бывают?

Полевой транзистор (ПТ) – полупроводниковый прибор, в котором ре-

гулирование тока осуществляется изменением проводимости проводящего

канала с помощью поперечного электрического поля. В отличие от биполяр-

ного ток полевого транзистора обусловлен потоком основных носителей.

Электроды полевого транзистора называют истоком (И), стоком (С) и

затвором (З). Управляющее напряжение прикладывается между затвором и ис-

током. От напряжения между затвором и истоком зависит проводимость кана-

ла, следовательно, и величина тока. Таким образом, полевой транзистор можно

рассматривать как источник тока, управляемый напряжением затвор-исток. Ес-

ли амплитуда изменения управляющего сигнала достаточно велика, сопротив-

ление канала может изменяться в очень больших пределах. В этом случае поле-

вой транзистор можно использовать в качестве электронного ключа.

По конструкции полевые транзисторы можно разбить на две группы:

С управляющим p–n-переходом;

С металлическим затвором, изолированным от канала диэлектриком.

Транзисторы второго вида называют МДП-транзисторами (металл –

диэлектрик – полупроводник). В большинстве случаев диэлектриком является

двуокись кремния SiO2, поэтому обычно используется название МОП-

транзисторы (металл – окисел – полупроводник). В современных МОП-

транзисторах для изготовления затвора часто используется поликристаллический

кремний. Однако название МОП-транзистор используют и для таких приборов.

Проводимость канала полевого транзистора может быть электронной

или дырочной. Если канал имеет электронную проводимость, то транзистор

называют n-канальным. Транзисторы с каналами, имеющими дырочную про-

водимость, называют p-канальными. В МОП- транзисторах канал может быть

обеднён носителями или обогащён ими. Таким образом, понятие «полевой

транзистор» объединяет шесть различных видов полупроводниковых прибо-

МОП-транзисторы находят широкое применение в современной электро-

нике. В ряде областей, в том числе в цифровой электронике, они почти полно-

стью вытеснили биполярные транзисторы. Это объясняется следующими при-229

чинами. Во-первых, полевые транзисторы имеют высокое входное сопротивле-

ние и обеспечивают малое потребление энергии. Во-вторых, МОП-транзисторы

занимают на кристалле интегральной схемы значительно меньшую площадь,

чем биполярные. Поэтому плотность компоновки элементов в МОП-

интегральных схемах значительно выше. В-третьих, технологии производства

интегральных схем на МОП-транзисторах требуют меньшего числа операций,

чем технологии изготовления ИС на биполярных транзисторах.

6)Что такое стабилитрон? Объясните принцип его работы. Нарисуйте его вольт-амперные характеристики.

Стабилитронами называют полупроводниковые диоды, использующие особенность обратной ветви вольтамперной характеристики на участке пробоя изменяться в широком диапазоне изменения токов при сравнительно небольшом отклонении напряжения. Это свойство широко используется при создании специальных устройств – стабилизаторов напряжения.

Напряжение пробоя стабилитрона зависит от ширины р-n -перехода, которая определяется удельным сопротивлением материала полупроводника. Поэтому существует определенная зависимость пробивного напряжения (т. е. напряжения стабилизации) от концентрации примесей.

Низковольтные стабилитроны выполняют на основе сильно легированного кремния. Ширина р-n -перехода в этом случае получается очень маленькой, а напряженность электрического поля потенциального барьера – очень большой, что создает условия для возникновения туннельного пробоя. При большой ширине р-n -перехода пробой носит лавинный характер.

Вольт-амперная характеристика стабилитрона представлена на рис. 6.1 Рабочий ток стабилитрона (его обратный ток) не должен превышать максимально допустимого значения во избежание перегрева полупроводниковой структуры и выхода его из строя.

Рис. 6.1. Конструкция корпуса (а), вольт-амперная характеристика и условное графическое обозначение стабилитрона

Существенной особенностью стабилитрона является зависимость его напряжения стабилизации от температуры. В сильно легированных полупроводниках вероятность туннельного пробоя с увеличением температуры возрастает. Поэтому напряжение стабилизации у таких стабилитронов при нагревании уменьшается, т. е. они имеют отрицательный температурный коэффициент напряжения стабилизации (ТКН)

.

В слабо легированных полупроводниках при увеличении температуры уменьшается длина свободного пробега носителей, что приводит к увеличению порогового значения напряжения, при котором начинается лавинный пробой. Такие стабилитроны имеют положительный ТКН. (рис. 6.2).

Рис. 6.2. Температурная зависимость вольт-амперной характеристика стабилитрона

Для устранения этого недостатка и создания термокомпенсированных стабилитронов последовательно в цепь стабилитрона включают обычные диоды в прямом направлении. Как известно, у обычных диодов в прямом направлении падение напряжения на р-n -переходе при нагревании уменьшается. И если последовательно со стабилитроном (рис. 6.3) включить диодов в прямом направлении, где , (– изменение прямого падения напряжения на диоде при нагревании отдо), то можно почти полностью компенсировать температурную погрешность стабилитрона.

Рис. 6.3. Термокомпенсация стабилитрона

Основные параметры стабилитронов:

Предельные параметры стабилитронов:

Транзистором называется полупроводниковый прибор, который может усиливать, преобразовывать и генерировать электрические сигналы. Первый работоспособный биполярный транзистор был изобретен в 1947 году. Материалом для его изготовления служил германий. А уже в 1956 году на свет появился кремниевый транзистор.

В биполярном транзисторе используются два типа носителей заряда - электроны и дырки, отчего такие транзисторы и называются биполярными. Кроме биполярных существуют униполярные (полевые) транзисторы, у которых используется лишь один тип носителей - электроны или дырки. В этой статье будут рассмотрены .

Большинство кремниевых транзисторов имеют структуру n-p-n, что также объясняется технологией производства, хотя существуют и кремниевые транзисторы типа p-n-p, но их несколько меньше, нежели структуры n-p-n. Такие транзисторы используются в составе комплементарных пар (транзисторы разной проводимости с одинаковыми электрическими параметрами). Например, КТ315 и КТ361, КТ815 и КТ814, а в выходных каскадах транзисторных УМЗЧ КТ819 и КТ818. В импортных усилителях очень часто применяется мощная комплементарная пара 2SA1943 и 2SC5200.

Часто транзисторы структуры p-n-p называют транзисторами прямой проводимости, а структуры n-p-n обратной. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь. На рисунке 1 показано схематичное устройство транзисторов и их условные графические обозначения.

Рисунок 1.

Кроме различия по типу проводимости и материалу, биполярные транзисторы классифицируются по мощности и рабочей частоте. Если мощность рассеивания на транзисторе не превышает 0,3 Вт, такой транзистор считается маломощным. При мощности 0,3…3 Вт транзистор называют транзистором средней мощности, а при мощности свыше 3 Вт мощность считается большой. Современные транзисторы в состоянии рассеивать мощность в несколько десятков и даже сотен ватт.

Транзисторы усиливают электрические сигналы не одинаково хорошо: с увеличением частоты усиление транзисторного каскада падает, и на определенной частоте прекращается вовсе. Поэтому для работы в широком диапазоне частот транзисторы выпускаются с разными частотными свойствами.

По рабочей частоте транзисторы делятся на низкочастотные, - рабочая частота не свыше 3 МГц, среднечастотные - 3…30 МГц, высокочастотные - свыше 30 МГц. Если же рабочая частота превышает 300 МГц, то это уже сверхвысокочастотные транзисторы.

Вообще, в серьезных толстых справочниках приводится свыше 100 различных параметров транзисторов, что также говорит об огромном числе моделей. А количество современных транзисторов таково, что в полном объеме их уже невозможно поместить ни в один справочник. И модельный ряд постоянно увеличивается, позволяя решать практически все задачи, поставленные разработчиками.

Существует множество транзисторных схем (достаточно вспомнить количество хотя бы бытовой аппаратуры) для усиления и преобразования электрических сигналов, но, при всем разнообразии, схемы эти состоят из отдельных каскадов, основой которых служат транзисторы. Для достижения необходимого усиления сигнала, приходится использовать несколько каскадов усиления, включенных последовательно. Чтобы понять, как работают усилительные каскады, надо более подробно познакомиться со схемами включения транзисторов.

Сам по себе транзистор усилить ничего не сможет. Его усилительные свойства заключаются в том, что малые изменения входного сигнала (тока или напряжения) приводят к значительным изменениям напряжения или тока на выходе каскада за счет расходования энергии от внешнего источника. Именно это свойство широко используется в аналоговых схемах, - усилители, телевидение, радио, связь и т.д.

Для упрощения изложения здесь будут рассматриваться схемы на транзисторах структуры n-p-n. Все что будет сказано об этих транзисторах, в равной степени относится и к транзисторам p-n-p. Достаточно только поменять полярность источников питания, и , если таковые имеются, чтобы получить работающую схему.

Всего таких схем применяется три: схема с общим эмиттером (ОЭ), схема с общим коллектором (ОК) и схема с общей базой (ОБ). Все эти схемы показаны на рисунке 2.

Рисунок 2.

Но прежде, чем перейти к рассмотрению этих схем, следует познакомиться с тем, как работает транзистор в ключевом режиме. Это знакомство должно упростить понимание в режиме усиления. В известном смысле ключевую схему можно рассматривать как разновидность схемы с ОЭ.

Работа транзистора в ключевом режиме

Прежде, чем изучать работу транзистора в режиме усиления сигнала, стоит вспомнить, что транзисторы часто используются в ключевом режиме.

Такой режим работы транзистора рассматривался уже давно. В августовском номере журнала «Радио» 1959 года была опубликована статья Г. Лаврова «Полупроводниковый триод в режиме ключа». Автор статьи предлагал изменением длительности импульсов в обмотке управления (ОУ). Теперь подобный способ регулирования называется ШИМ и применяется достаточно часто. Схема из журнала того времени показана на рисунке 3.

Рисунок 3.

Но ключевой режим используется не только в системах ШИМ. Часто транзистор просто что-то включает и выключает.

В этом случае в качестве нагрузки можно использовать реле: подали входной сигнал - реле включилось, нет - сигнала реле выключилось. Вместо реле в ключевом режиме часто используются лампочки. Обычно это делается для индикации: лампочка либо светит, либо погашена. Схема такого ключевого каскада показана на рисунке 4. Ключевые каскады также применяются для работы со светодиодами или с оптронами.

Рисунок 4.

На рисунке каскад управляется обычным контактом, хотя вместо него может быть цифровая микросхема или . Лампочка автомобильная, такая применяется для подсветки приборной доски в «Жигулях». Следует обратить внимание на тот факт, что для управления используется напряжение 5В, а коммутируемое коллекторное напряжение 12В.

Ничего странного в этом нет, поскольку напряжения в данной схеме никакой роли не играют, значение имеют только токи. Поэтому лампочка может быть хоть на 220В, если транзистор предназначен для работы на таких напряжениях. Напряжение коллекторного источника также должно соответствовать рабочему напряжению нагрузки. С помощью подобных каскадов выполняется подключение нагрузки к цифровым микросхемам или микроконтроллерам.

В этой схеме ток базы управляет током коллектора, который, за счет энергии источника питания, больше в несколько десятков, а то и сотен раз (зависит от коллекторной нагрузки), чем ток базы. Нетрудно заметить, что происходит усиление по току. При работе транзистора в ключевом режиме обычно для расчета каскада пользуются величиной, называемой в справочниках «коэффициент усиления по току в режиме большого сигнала», - в справочниках обозначается буквой β. Это есть отношение тока коллектора, определяемого нагрузкой, к минимально возможному току базы. В виде математической формулы это выглядит вот так: β = Iк/Iб.

Для большинства современных транзисторов коэффициент β достаточно велик, как правило, от 50 и выше, поэтому при расчете ключевого каскада его можно принять равным всего 10. Даже, если ток базы и получится больше расчетного, то транзистор от этого сильнее не откроется, на то он и ключевой режим.

Чтобы зажечь лампочку, показанную на рисунке 3, Iб = Iк/β = 100мА/10 = 10мА, это как минимум. При управляющем напряжении 5В на базовом резисторе Rб за вычетом падения напряжения на участке Б-Э останется 5В - 0,6В = 4,4В. Сопротивление базового резистора получится: 4,4В / 10мА = 440 Ом. Из стандартного ряда выбирается резистор с сопротивлением 430 Ом. Напряжение 0,6В это напряжение на переходе Б-Э, и при расчетах о нем не следует забывать!

Для того, чтобы база транзистора при размыкании управляющего контакта не осталась «висеть в воздухе», переход Б-Э обычно шунтируется резистором Rбэ, который надежно закрывает транзистор. Об этом резисторе не следует забывать, хотя в некоторых схемах его почему-то нет, что может привести к ложному срабатыванию каскада от помех. Собственно, все про этот резистор знали, но почему-то забыли, и лишний раз наступили на «грабли».

Номинал этого резистора должен быть таким, чтобы при размыкании контакта напряжение на базе не оказалось бы меньше 0,6В, иначе каскад будет неуправляемым, как будто участок Б-Э просто замкнули накоротко. Практически резистор Rбэ ставят номиналом примерно в десять раз больше, нежели Rб. Но даже если номинал Rб составит 10Ком, схема будет работать достаточно надежно: потенциалы базы и эмиттера будут равны, что приведет к закрыванию транзистора.

Такой ключевой каскад, если он исправен, может включить лампочку в полный накал, или выключить совсем. В этом случае транзистор может быть полностью открыт (состояние насыщения) или полностью закрыт (состояние отсечки). Тут же, сам собой, напрашивается вывод, что между этими «граничными» состояниями существует такое, когда лампочка светит вполнакала. В этом случае транзистор наполовину открыт или наполовину закрыт? Это как в задаче о наполнении стакана: оптимист видит стакан, наполовину налитый, в то время, как пессимист считает его наполовину пустым. Такой режим работы транзистора называется усилительным или линейным.

Работа транзистора в режиме усиления сигнала

Практически вся современная электронная аппаратура состоит из микросхем, в которых «спрятаны» транзисторы. Достаточно просто подобрать режим работы операционного усилителя, чтобы получить требуемый коэффициент усиления или полосу пропускания. Но, несмотря на это, достаточно часто применяются каскады на дискретных («рассыпных») транзисторах, и поэтому понимание работы усилительного каскада просто необходимо.

Самым распространенным включением транзистора по сравнению с ОК и ОБ является схема с общим эмиттером (ОЭ). Причина такой распространенности, прежде всего, высокий коэффициент усиления по напряжению и по току. Наиболее высокий коэффициент усиления каскада ОЭ обеспечивается когда на коллекторной нагрузке падает половина напряжения источника питания Eпит/2. Соответственно, вторая половина падает на участке К-Э транзистора. Это достигается настройкой каскада, о чем будет рассказано чуть ниже. Такой режим усиления называется классом А.

При включении транзистора с ОЭ выходной сигнал на коллекторе находится в противофазе с входным. Как недостатки можно отметить то, что входное сопротивление ОЭ невелико (не более нескольких сотен Ом), а выходное в пределах десятков КОм.

Если в ключевом режиме транзистор характеризуется коэффициентом усиления по току в режиме большого сигнала β , то в режиме усиления используется «коэффициент усиления по току в режиме малого сигнала», обозначаемый, в справочниках h21э. Такое обозначение пришло из представления транзистора в виде четырехполюсника. Буква «э» говорит о том, что измерения производились при включении транзистора с общим эмиттером.

Коэффициент h21э, как правило, несколько больше, чем β, хотя при расчетах в первом приближении можно пользоваться и им. Все равно разброс параметров β и h21э настолько велик даже для одного типа транзистора, что расчеты получаются лишь приблизительными. После таких расчетов, как правило, требуется настройка схемы.

Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя. Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки (читай одной партии). Для маломощных транзисторов этот коэффициент колеблется в пределах 100…1000, а у мощных 5…200. Чем тоньше база, тем выше коэффициент.

Простейшая схема включения транзистора ОЭ показана на рисунке 5. Это просто небольшой кусочек из рисунка 2, показанного во второй части статьи. Такая схема называется схемой с фиксированным током базы.

Рисунок 5.

Схема исключительно проста. Входной сигнал подается в базу транзистора через разделительный конденсатор C1, и, будучи усиленным, снимается с коллектора транзистора через конденсатор C2. Назначение конденсаторов, - защитить входные цепи от постоянной составляющей входного сигнала (достаточно вспомнить угольный или электретный микрофон) и обеспечить необходимую полосу пропускания каскада.

Резистор R2 является коллекторной нагрузкой каскада, а R1 подает постоянное смещение в базу. С помощью этого резистора стараются сделать так, чтобы напряжение на коллекторе было бы Eпит/2. Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален.

Приблизительно сопротивление резистора R1 можно определить по простой формуле R1 ≈ R2 * h21э / 1,5…1,8. Коэффициент 1,5…1,8 подставляется в зависимости от напряжения питания: при низком напряжении (не более 9В) значение коэффициента не более 1,5, а начиная с 50В, приближается к 1,8…2,0. Но, действительно, формула настолько приблизительна, что резистор R1 чаще всего приходится подбирать, иначе требуемая величина Eпит/2 на коллекторе получена не будет.

Коллекторный резистор R2 задается как условие задачи, поскольку от его величины зависит коллекторный ток и усиление каскада в целом: чем больше сопротивление резистора R2, тем выше усиление. Но с этим резистором надо быть осторожным, коллекторный ток должен быть меньше предельно допустимого для данного типа транзистора.

Схема очень проста, но эта простота придает ей и отрицательные свойства, и за эту простоту приходится расплачиваться. Во - первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, - подбирай заново смещение, выводи на рабочую точку.

Во-вторых, от температуры окружающей среды, - с повышением температуры возрастает обратный ток коллектора Iко, что приводит к увеличению тока коллектора. И где же тогда половина напряжения питания на коллекторе Eпит/2, та самая рабочая точка? В результате транзистор греется еще сильнее, после чего выходит из строя. Чтобы избавиться от этой зависимости, или, по крайней мере, свести ее к минимуму, в транзисторный каскад вводят дополнительные элементы отрицательной обратной связи - ООС.

На рисунке 6 показана схема с фиксированным напряжением смещения.

Рисунок 6.

Казалось бы, что делитель напряжения Rб-к, Rб-э обеспечит требуемое начальное смещение каскада, но на самом деле такому каскаду присущи все недостатки схемы с фиксированным током. Таким образом, приведенная схема является всего лишь разновидностью схемы с фиксированным током, показанной на рисунке 5.

Схемы с термостабилизацией

Несколько лучше обстоит дело в случае применения схем, показанных на рисунке 7.

Рисунок 7.

В схеме с коллекторной стабилизацией резистор смещения R1 подключен не к источнику питания, а к коллектору транзистора. В этом случае, если при увеличении температуры происходит увеличение обратного тока, транзистор открывается сильнее, напряжение на коллекторе уменьшается. Это уменьшение приводит к уменьшению напряжения смещения, подаваемого на базу через R1. Транзистор начинает закрываться, коллекторный ток уменьшается до приемлемой величины, положение рабочей точки восстанавливается.

Совершенно очевидно, что такая мера стабилизации приводит к некоторому снижению усиления каскада, но это не беда. Недостающее усиление, как правило, добавляют наращиванием количества усилительных каскадов. Зато подобная ООС позволяет значительно расширить диапазон рабочих температур каскада.

Несколько сложней схемотехника каскада с эмиттерной стабилизацией. Усилительные свойства подобных каскадов остаются неизменными в еще более широком диапазоне температур, чем у схемы с коллекторной стабилизацией. И еще одно неоспоримое преимущество, - при замене транзистора не приходится заново подбирать режимы работы каскада.

Эмиттерный резистор R4, обеспечивая температурную стабилизацию, также снижает усиление каскада. Это для постоянного тока. Для того, чтобы исключить влияние резистора R4 на усиление переменного тока, резистор R4 шунтирован конденсатором Cэ, который для переменного тока представляет незначительное сопротивление. Его величина определяется диапазоном частот усилителя. Если эти частоты лежат в звуковом диапазоне, то емкость конденсатора может быть от единиц до десятков и даже сотен микрофарад. Для радиочастот это уже сотые или тысячные доли, но в некоторых случаях схема прекрасно работает и без этого конденсатора.

Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК.

Схема с общим коллектором (ОК) Показана на рисунке 8. Эта схема является кусочком рисунка 2, из второй части статьи, где показаны все три схемы включения транзисторов.

Рисунок 8.

Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Вот тут можно спросить, почему же эта схема называется ОК? Ведь, если вспомнить схему ОЭ, то там явно видно, что эмиттер соединен с общим проводом схемы, относительно которого подается входной и снимается выходной сигнал.

В схеме же ОК коллектор просто соединен с источником питания, и на первый взгляд кажется, что к входному и выходному сигналу отношения не имеет. Но на самом деле источник ЭДС (батарея питания) имеет очень маленькое внутреннее сопротивление, для сигнала это практически одна точка, один и тот же контакт.

Более подробно работу схемы ОК можно рассмотреть на рисунке 9.

Рисунок 9.

Известно, что для кремниевых транзисторов напряжение перехода б-э находится в пределах 0,5…0,7В, поэтому можно принять его в среднем 0,6В, если не задаваться целью проводить расчеты с точностью до десятых долей процента. Поэтому, как видно на рисунке 9, выходное напряжение всегда будет меньше входного на величину Uб-э, а именно на те самые 0,6В. В отличие от схемы ОЭ эта схема не инвертирует входной сигнал, она просто повторяет его, да еще и снижает на 0,6В. Такую схему еще называют эмиттерным повторителем. Зачем же такая схема нужна, в чем ее польза?

Схема ОК усиливает сигнал по току в h21э раз, что говорит о том, что входное сопротивление схемы в h21э раз больше, чем сопротивление в цепи эмиттера. Другими словами можно не опасаясь спалить транзистор подавать непосредственно на базу (без ограничительного резистора) напряжение. Просто взять вывод базы и соединить его с шиной питания +U.

Высокое входное сопротивление позволяет подключать источник входного сигнала с высоким импедансом (комплексное сопротивление), например, пьезоэлектрический звукосниматель. Если такой звукосниматель подключить к каскаду по схеме ОЭ, то низкое входное сопротивление этого каскада просто «посадит» сигнал звукоснимателя, - «радио играть не будет».

Отличительной особенностью схемы ОК является то, что ее коллекторный ток Iк зависит только от сопротивления нагрузки и напряжения источника входного сигнала. При этом параметры транзистора тут вообще никакой роли не играют. Про такие схемы говорят, что они охвачены стопроцентной обратной связью по напряжению.

Как показано на рисунке 9 ток в эмиттерной нагрузке (он же ток эмиттера) Iн = Iк + Iб. Принимая во внимание, что ток базы Iб ничтожно мал по сравнению с током коллектора Iк, можно полагать, что ток нагрузки равен току коллектора Iн = Iк. Ток в нагрузке будет (Uвх - Uбэ)/Rн. При этом будем считать, что Uбэ известен и всегда равен 0,6В.

Отсюда следует, что ток коллектора Iк = (Uвх - Uбэ)/Rн зависит лишь от входного напряжения и сопротивления нагрузки. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Ведь если вместо Rн поставить гвоздь - сотку, то никакой транзистор не выдержит!

Схема ОК позволяет достаточно легко измерить статический коэффициент передачи тока h21э. Как это сделать, показано на рисунке 10.

Рисунок 10.

Сначала следует измерить ток нагрузки, как показано на рисунке 10а. При этом базу транзистора никуда подключать не надо, как показано на рисунке. После этого измеряется ток базы в соответствии с рисунком 10б. Измерения должны в обоих случаях производиться в одних величинах: либо в амперах, либо в миллиамперах. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях. Чтобы узнать статический коэффициент передачи тока достаточно ток нагрузки разделить на ток базы: h21э ≈ Iн/Iб.

Следует отметить, что при увеличении тока нагрузки h21э несколько уменьшается, а при увеличении напряжения питания увеличивается. Эмиттерные повторители часто строятся по двухтактной схеме с применением комплементарных пар транзисторов, что позволяет увеличить выходную мощность устройства. Такой эмиттерный повторитель показан на рисунке 11.

Рисунок 11.

Рисунок 12.

Включение транзисторов по схеме с общей базой ОБ

Такая схема дает только усиление по напряжению, но обладает лучшими частотными свойствами по сравнению со схемой ОЭ: те же транзисторы могут работать на более высоких частотах. Основное применение схемы ОБ это антенные усилители диапазонов ДМВ. Схема антенного усилителя показана на рисунке 12.

В начале этой главы мы увидели, как транзисторы, работая в режиме либо «насыщения», либо «отсечки», могут использоваться в качестве ключей. В последнем разделе мы увидели, как транзисторы ведут себя в своих «активных» режимах, между экстремальными режимами насыщения и отсечки. Поскольку транзисторы способны управлять током аналоговым (плавно изменяющимся) способом, они находят применение и в качестве усилителей для аналоговых сигналов.

Одна из наиболее простых для изучения схем транзисторного усилителя ранее показала коммутирующие способности транзистора (рисунок ниже).

NPN транзистор как простой ключ (на рисунке показаны направления движения потоков электронов)

Она называется схемой с общим эмиттером, потому что (игнорируя батарею источника питания) и у источника сигнала, и у нагрузки есть общая точка подключения к транзистору - эмиттера (как показано на рисунке ниже). И, как мы увидим в последующих разделах этой главы, это не единственный способ использования транзистора в качестве усилителя.


Каскад усилителя с общим эмиттером: у входного и выходного сигналов при подключении к транзистору есть общая точка - эмиттер

Ранее небольшой ток от солнечного элемента насыщал транзистор, зажигавший лампу. Теперь зная, что транзисторы способны «задавливать» ток коллектора в соответствии с величиной тока базы, подаваемого от источника входного сигнала, мы можем увидеть, что в этой схеме яркость лампы может контролироваться яркостью света, падающего на солнечный элемент. Когда на солнечный элемент попадает мало света, лампа будет светиться тускло. По мере того, как на солнечный элемент попадает больше света, яркость лампы будет возрастать.

Предположим, что нас заинтересовало использование солнечного элемента в качестве измерителя яркости света. Мы хотим измерить яркость падающего света с помощью солнечного элемента, используя его выходной ток для управления стрелкой индикатора. Для этого можно подключить индикатор к солнечному элементу напрямую (рисунок ниже). На самом деле простейшие измерители яркости в фотографии работают подобным же образом.

Хотя этот способ может работать и при измерении умеренной яркости света, при низкой яркости он работать уже не будет. Поскольку солнечный элемент должен обеспечивать потребности в энергии индикатора для движения стрелки, то эта система неизбежно будет ограничена по своей чувствительности. Предполагая, что нам необходимо измерять очень низкие яркости света, нужно найти другое решение.

Возможно, самым прямым решением этой проблемы является использование транзистора (рисунок ниже) для усиления тока солнечного элемента, чтобы можно было получить большее отклонение стрелки индикатора для более тусклого света.


Ток солнечного элемента при низкой яркости света должен быть усилен (на рисунке показаны направления движения потоков электронов)

Ток через индикатор в этой схеме будет в β раз больше тока через солнечный элемент. Для транзистора с β, равным 100, это дает существенное увеличение чувствительности измерений. Разумно отметить, что дополнительная мощность для перемещения стрелки индикатора исходит от батареи в правой части схемы, а не от самого солнечного элемента. Всё, что делает ток солнечного элемента, это управляет током батареи, чтобы обеспечить более высокие показания индикатора, чем мог бы обеспечить солнечный элемент без посторонней помощи.

Поскольку транзистор является устройством, регулирующим ток, и поскольку движение стрелки индикатора определяется током через катушку индикатора, показания измерителя должны зависеть только от тока солнечного элемента, а не от величины напряжения, обеспечиваемого аккумулятором. Это означает, что точность схемы не зависит от состояния аккумулятора, что является важной особенностью! Всё, что требуется от батареи, - это определенные минимальные выходные напряжения и ток, способные отклонить стрелку индикатора на всю шкалу.

Другим способом использования схемы с общим эмиттером является получение определяемого входным сигналом выходного напряжения, а не определенного значения выходного тока. Давайте заменим стрелочный индикатор на простой резистор и измерим напряжение между коллектором и эмиттером (рисунок ниже).


Когда солнечный элемент затемнен (нет тока), транзистор будет находиться в режиме отсечки, и будет вести себя как разомкнутый ключ между коллектором и эмиттером. Это приведет к максимальному падению напряжения между коллектором и эмиттером, что даст максимальное V вых, равное полному напряжению батареи.

При полной мощности (максимальной освещенности) солнечный элемент будет приводить транзистор в режим насыщения, заставляя его вести себя как замкнутый ключ между коллектором и эмиттером. Результатом будет минимальное падение напряжение между коллектором и эмиттером, или почти нулевое выходное напряжение. На самом деле открытый транзистор никогда не сможет достичь нулевого падения напряжения между коллектором и эмиттером из-за двух PN-переходов, через которые должен проходить ток коллектора. Однако это «напряжение насыщения коллектор-эмиттер» будет довольно низким, примерно несколько десятых долей вольта, в зависимости от конкретного используемого транзистора.

При выходных сигналах солнечного элемента для уровней освещенности где-то между нулем и максимумом транзистор будет находиться в активном режиме, а выходное напряжение будет где-то между нулем и полным напряжением батареи. Важно отметить, что в схеме с общим эмиттером выходное напряжение инвертируется относительно входного сигнала. То есть по мере увеличения входного сигнала выходное напряжение уменьшается. По этой причине схема усилителя с общим эмиттером называется инвертирующим усилителем.

Быстрое моделирование схемы в SPICE (рисунок и список соединений ниже) проверит наши выводы об этой усилительной схеме.


Схема усилителя с общим эмиттером с номерами узлов в SPICE (список соединений приведен ниже) *common-emitter amplifier i1 0 1 dc q1 2 1 0 mod1 r 3 2 5000 v1 3 0 dc 15 .model mod1 npn .dc i1 0 50u 2u .plot dc v(2,0) .end

В начале моделирования (на рисунке выше), когда источник ток (солнечного элемента) выдает нулевой ток, транзистор находится в режиме отсечки, и выходное напряжение усилителя (между узлами 2 и 0) равно всем 15 вольтам напряжения батареи. По мере того, как ток солнечного элемента начинает увеличиваться, выходное напряжение пропорционально уменьшается, пока транзистор не достигнет насыщения при токе базы 30 мкА (ток коллектора 3 мА). Обратите внимание, как график выходного напряжения идеально линеен (шаги по 1 вольту от 15 вольт до 1 вольта) до точки насыщения, где он никогда не достигнет нуля. Этот эффект упоминался ранее, полностью открытый транзистор не может достичь точно нулевого падения напряжения между коллектором и эмиттером из-за наличия внутренних переходов. То, что мы видим, это резкое снижение выходного напряжения от 1 вольта до 0.2261 вольта при возрастании входного тока с 28 мкА до 30 мкА, а затем дальнейшее снижение выходного напряжения (хотя и со значительно меньшим шагом). Наименьшее выходное напряжение, полученное при этом моделировании, составляет 0.1299 вольта, почти равно нулю.

До сих пор мы видели, как транзистор, как усилитель сигналов постоянных напряжения и тока. В примере измерения освещенности с помощью солнечного элемента нам было интересно усилить выходной сигнал постоянного тока от солнечного элемента для управления стрелочным индикатором постоянного тока или получить на выходе постоянное напряжение. Однако это не единственный способ использования транзистора в качестве усилителя. Часто бывает, необходим усилитель переменного тока для усиления сигналов переменных тока и напряжения. Один из наиболее распространенных случаев - аудио электроника (радио, телевидение). Ранее мы видели пример аудио сигнала от камертона, активирующего транзисторный ключ (рисунок ниже). Посмотрим, можем ли мы изменить эту схему для передачи мощности не на лампу, а на динамик.


Транзисторный ключ, активируемый звуком (на рисунке показаны направления движения потоков электронов)

В исходной схеме двухполупериодный мостовой выпрямитель использовался для преобразования сигнала переменного напряжения от микрофона в постоянное напряжение для управления входом транзистора. Всё, что нам было нужно, это включить лампу с помощью звукового сигнала от микрофона, для этих целей такой схемы было достаточно. Но теперь мы хотим усилить сигнал переменного напряжения и подать его на динамик. Это означает, что мы больше не можем выпрямлять сигнал с выхода микрофона, поскольку для подачи на транзистор нам нужен неискаженный сигнал! Удалим из схемы мостовой выпрямитель и заменим лампу на динамик.


Так как микрофон может генерировать напряжения, превышающие прямое падение напряжения на PN-переходе база-эмиттер, последовательно с микрофоном я поместил резистор. Давайте промоделируем схему на рисунке ниже с помощью SPICE. Список соединений приведен ниже.


SPICE модель аудио усилителя с общим эмиттером common-emitter amplifier vinput 1 0 sin (0 1.5 2000 0 0) r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 8 v1 4 0 dc 15 .model mod1 npn .tran 0.02m 0.74m .plot tran v(1,0) i(v1) .end

На графиках моделирования (рисунок выше) показаны как входное напряжение (сигнал переменного напряжения с амплитудой 1,5 вольта и частотой 2000 Гц), так и ток через батарею 15 вольт, который совпадает с током через динамик. Здесь мы видим полную синусоиду входного переменного напряжения (и с положительной, и с отрицательной полуволнами) и полуволны выходного тока только одной полярности. Если бы мы на самом деле подали этот сигнал на динамик, звук из него был бы сильно искажен.

Что не так с этой схемой? Почему она не будет точно воспроизводить полную форму переменного напряжения от микрофона? Ответ на этот вопрос можно найти путем тщательной проверки модели транзистора на основе диода и источника тока (рисунок ниже).


Ток коллектора контролируется, или регулируется, в режиме стабилизации тока на постоянном значении в соответствии с величиной тока, протекающего через переход база-эмиттер. Обратите внимание, что оба пути протекания тока через транзистор являются однонаправленными: только одно направление! Несмотря на наше намерение использовать транзистор для усиления сигнала переменного тока, он, по сути, является устройством постоянного тока, которое способно работать с токами только одного направления. Мы можем подать входной сигнал переменного напряжения между базой и эмиттером, но электроны в этой схеме не смогут протекать во время того полупериода, когда переход база-эмиттер будет смещен в обратном направлении. Следовательно, транзистор будет оставаться в режиме отсечки на протяжении всей этой части периода. Он будет «включаться» в активный режим только в том случае, если входное напряжение имеет правильную полярность, чтобы смещать переход база-эмиттер в прямом направлении, и только тогда, когда это напряжение достаточно велико, чтобы превысить прямое падение напряжения перехода. Помните, что биполярные транзисторы являются устройствами, которые управляются током: они регулируют ток коллектора, основываясь на протекании тока от базы к эмиттеру, а не на наличии напряжения между базой и эмиттером.

Единственный способ, с помощью которого мы можем заставить транзистор выдавать в динамик сигнала без искажения его формы, заключается в том, чтобы удерживать транзистор в активном режиме всё время. Это значит, что мы должны поддерживать ток через базу в течение всего периода входного сигнала. Следовательно, PN-переход база-эмиттер должен постоянно быть смещен в прямом направлении. К счастью, это может быть достигнуто с помощью постоянного напряжения смещения, добавленного к входному сигналу. При подключении источника постоянного напряжения с достаточно большим уровнем последовательно с источником сигнала переменного напряжения прямое смещение может поддерживаться во всех точках синусоиды сигнала (рисунок ниже).


V смещ удерживает транзистор в активном режиме common-emitter amplifier vinput 1 5 sin (0 1.5 2000 0 0) vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 8 v1 4 0 dc 15 .model mod1 npn .tran 0.02m 0.78m .plot tran v(1,0) i(v1) .end Благодаря V смещ выходной ток I(v(1)) не искажается

При наличии источника напряжения смещения 2,3 вольта транзистор остается в активном режиме на протяжении всего периода синусоиды, верно воспроизводя форму сигнала на динамике (рисунок выше). Обратите внимание, что входное напряжение (измеренное между узлами 1 и 0) колеблется между примерно 0,8 вольта и 3,8 вольта, как и ожидалось, размах составляет 3 вольта (амплитуда напряжения источника равна 1,5 вольта). Выходной ток (протекает через динамик) изменяется от нуля до почти 300 мА и на 180° отличается по фазе от входного сигнала (с микрофона).

На рисунке ниже показан другой вид этой же схемы, на этот раз с несколькими осциллографами, подключенными к интересующим нас точкам для отображения соответствующих сигналов.


Вход базы смещен вверх. Выход инвертирован.

Важной частью является необходимость смещения в схеме транзисторного усилителя для получения полного воспроизведения формы сигнала. Отдельный раздел этой главы будет полностью посвящен объектам и способам смещения. На данный момент достаточно понять, что смещение может потребоваться для получения на выходе усилителя напряжения и тока правильной формы.

Теперь, когда у нас есть работающая схема усилителя, мы можем исследовать ее напряжение, ток и усиление. Типовой транзистор, используемый в этих исследованиях, имеет значение β = 100, о чем свидетельствует короткая распечатка параметров транзистора, приведенная ниже (этот список параметров для краткости был сокращен).

SPICE параметры биполярного транзистора:

Type npn is 1.00E-16 bf 100.000 nf 1.000 br 1.000 nr 1.000

β указан под аббревиатурой " bf ", что фактически означает "бета, прямое" (“beta, forward”). Если бы мы захотели вставить для исследования наш собственный коэффициент β, мы могли бы сделать это в строке.model в списке соединений SPICE.

Так как β - это отношение тока коллектора к току базы, и у нас нагрузка соединена последовательно с коллектором транзистора, а наш источник соединен последовательно с базой, отношение выходного тока к входному току будет равно бета. Таким образом, усиление по току в этом примере усилителя составляет 100.

Усиление по напряжению посчитать немного сложнее, чем усиление по току. Как всегда, коэффициент усиления по напряжению определяется как отношение выходного напряжения к входному напряжению. Чтобы экспериментально определить его, мы изменим наш последний анализ SPICE для построения графика не выходного тока, а выходного напряжения, чтобы сравнить два графика напряжения (рисунок ниже).

Common-emitter amplifier vinput 1 5 sin (0 1.5 2000 0 0) vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 8 v1 4 0 dc 15 .model mod1 npn .tran 0.02m 0.78m .plot tran v(1,0) v(3) .end Выходное напряжение V(1) на сопротивлении r динамик для сравнения со входным сигналом

При построении в одном масштабе (от 0 до 4 вольт) мы видим, что выходной сигнал на рисунке выше имеет меньшую амплитуду, чем входной сигнал, и к тому же он находится на более высоком уровне смещения по сравнению с входным сигналом. Поскольку коэффициент усиления по напряжению для усилителя переменного тока определяется отношением амплитуд, мы можем игнорировать любую разницу в смещениях по постоянному напряжению между этими двумя сигналами. Несмотря на это, входной сигнал всё равно больше выходного, что говорит о том, что коэффициент усиления по напряжению меньше 1 (отрицательное значение в дБ).

Честно говоря, этот низкий коэффициент усиления по напряжению не характерен для всех усилителей с общим эмиттером. Это является следствием большого несоответствия между входным сопротивлением и сопротивлением нагрузки. Наше входное сопротивление (R1) здесь составляет 1000 Ом, а нагрузка (динамик) составляет только 8 Ом. Поскольку коэффициент усиления по току определяется исключительно β, и поскольку этот параметр β фиксирован, коэффициент усиления по току для этого усилителя не изменится с изменением любого из этих сопротивлений. Однако коэффициент усиления по напряжению зависит от этих сопротивлений. Если мы изменим сопротивление нагрузки, сделав его более большим, падение напряжения на нем пропорционально увеличится при тех же значениях токов, и мы увидим на графике сигнал с большей амплитудой. Давайте попробуем промоделировать схему снова, но на этот раз с нагрузкой 30 Ом (рисунок ниже).

Common-emitter amplifier vinput 1 5 sin (0 1.5 2000 0 0) vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 30 v1 4 0 dc 15 .model mod1 npn .tran 0.02m 0.78m .plot tran v(1,0) v(3) .end Увеличение r динамик до 30 Ом увеличивает выходное напряжение

На этот раз размах выходного напряжения значительно больше, чем у входного напряжения (рисунок выше). При внимательном рассмотрении мы видим, что размах выходного сигнала составляет примерно 9 вольт, примерно в 3 раза больше размаха входного сигнала.

Мы можем выполнить еще одни компьютерный анализ этой схемы, на этот раз поручая SPICE с точки зрения переменного напряжения, давая нам значения амплитуд входных и выходных напряжений, вместо осциллограмм (таблица ниже).

Список соединений SPICE для печати входных и выходных значений переменных напряжений.

Common-emitter amplifier vinput 1 5 ac 1.5 vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 30 v1 4 0 dc 15 .model mod1 npn .ac lin 1 2000 2000 .print ac v(1,0) v(4,3) .end freq v(1) v(4,3) 2.000E+03 1.500E+00 4.418E+00

Измерения амплитуд сигналов на входе и на выходе показали 1,5 вольта на входе и 4,418 вольта на выходе. Это дает нам коэффициент усиления по напряжению 2,9453 (4,418 В / 1,5 В), или 9,3827 дБ.

Поскольку коэффициент усиления по току для усилительного каскада с общим эмиттером фиксирован и равен β, а входное и выходное напряжения будут равных входному и выходному токам, умноженным на соответствующие сопротивления, мы можем получить формулу для приближенного определения коэффициента усиления по напряжению:

Как вы можете видеть, расчетный коэффициент усиления по напряжению довольно близок к результатам моделирования. При идеально линейном поведении транзисторов эти два набора значений будут точно равны. SPICE делает умную работу по учету многих «причуд» работы биполярного транзистора при их анализе, следовательно, присутствует и небольшое несоответствие между расчетными значениями и результатами моделирования.

Эти коэффициенты усиления по напряжению остаются неизменными независимо от того, где в схеме мы измеряем выходное напряжение: между коллектором и эмиттером или на резисторе нагрузки, как это было сделано при последнем анализе. Изменение значения выходного напряжения для любого заданного значения входного напряжения будет оставаться неизменным. В качестве доказательства этого утверждения рассмотрите два следующих анализа SPICE. Первое моделирование на рисунке ниже проведено во временной области, чтобы получить графики входного и выходного напряжений. Вы заметите, что эти два сигнала отличаются по фазе на 180°. Второе моделирование в таблице ниже представляет собой анализ по переменному напряжению, предоставляющий просто показания пиковых напряжений для входа и для выхода.

Список соединений SPICE для первого анализа:

Common-emitter amplifier vinput 1 5 sin (0 1.5 2000 0 0) vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 30 v1 4 0 dc 15 .model mod1 npn .tran 0.02m 0.74m .plot tran v(1,0) v(3,0) .end Усилительный каскад с общим эмиттером с R динамик усиливает сигнал по напряжению

Список соединений SPICE для анализа по переменному току:

Common-emitter amplifier vinput 1 5 ac 1.5 vbias 5 0 dc 2.3 r1 1 2 1k q1 3 2 0 mod1 rspkr 3 4 30 v1 4 0 dc 15 .model mod1 npn .ac lin 1 2000 2000 .print ac v(1,0) v(3,0) .end freq v(1) v(3) 2.000E+03 1.500E+00 4.418E+00

У нас всё еще пиковое напряжение на выходе равно 4,418 вольт при пиковом напряжении на входе 1,5 вольта. Единственное отличие от данных последнего моделирования - это то, что в первом моделировании нам видна фаза выходного напряжения.

До сих пор в примерах схем, показанных в этом разделе, мы использовали только NPN транзисторы. PNP транзисторы также можно использовать в любом типе схемы усилительного каскада, если соблюдается правильность полярностей и направлений токов, и схема с общим эмиттером не является исключением. Инверсия и усиление выходного сигнала у усилителя на PNP транзисторе, аналогичны усилителю на NPN транзисторе, только полярности батарей будут противоположными (рисунок ниже).


Подведем итоги:

  • Усилительные транзисторные каскады с общим эмиттером носят такое название, потому что у входного и выходного напряжений есть общая точка подключения к транзистору - эмиттер (не учитывая каких-либо источников питания).
  • Транзисторы - это, по сути, устройства постоянного тока: они не могут напрямую обрабатывать напряжения или токи, которые меняют своё направление. Чтобы заставить их работать для усиления сигналов переменного напряжения, входной сигнал должен быть смещен постоянным напряжением, чтобы удерживать транзистор в активном режиме на протяжении всего периода синусоиды сигнала. Это называется смещением.
  • Если выходное напряжение в схеме усилителя с общим эмиттером измеряется между эмиттером и коллектором, оно будет на 180° отличаться по фазе от входного напряжения. Таким образом, усилитель с общим эмиттером называется схемой инвертирующего усилителя.
  • Коэффициент усиления по току транзисторного усилителя с общим эмиттером с нагрузкой, подключенной последовательно с коллектором, равен β. Коэффициент усиления по напряжению транзисторного усилителя с общим эмиттером может быть приблизительно рассчитан по формуле:
    \
    где R вых - это резистор, соединенный последовательно с коллектором; а R вх - это резистор, соединенный последовательно с базой.
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то