Язык программирования fortran (фортран). Версия языка программирования фортран

Алфавит - в программировании – система неразложимых, уверенно отличимых друг от друга символов (букв, цифр, знаков препинания и др. символов), используемых для построения языков программирования.

Синтаксис - сторона языка программирования, которая описывает структуру программ как наборов символов. Синтаксису языка противопоставляется его семантика. Синтаксис языка описывает «чистый» язык, в то же время семантика приписывает значения различным синтаксическим конструкциям.

Сема́нтика - в программировании - система правил определения поведения отдельных языковых конструкций. Семантика определяет смысловое значение предложений алгоритмического языка.

Языки программирования низкого уровня – Автокод, Ассемблер,

Языки программирования высокого уровня -Фортран, Алгол, Кобол, Паскаль, Бейсик, Си++, Пролог

Языки программирования сверхвысокого уровня – APL, Алгол-68

Вычислительные Языки программирования - Фортран, Паскаль, Алгол, Бейсик, Си

Языки символьной обработки – Лисп, Пролог, Снобол и др.

Языки первого поколения:

Машинные коды были языком программирования первого поколения

Языки второго поколения:

Ассемблер

Языки третьего поколения:

эти языки часто обозначаются как языки «высокого» уровня.

Языки четвертого поколения:

Бейсик, Кобол, Си и Паскаль

Языки программирования пятого поколения:

Пролог, ЛИСП, Си++, Visual Basic, Delphi.

Язык программирования Фортра́н (Fortran)

Первый язык программирования высокого уровня, имеющий транслятор. Создан в период с 1954 по 1957 год группой программистов под руководством Джона Бэкуса в корпорации IBM. Название Fortran является акронимом от FORmula TRANslator (переводчик формул). Фортран широко используется в первую очередь для научных и инженерных вычислений. Одно из преимуществ современного Фортрана - большое количество написанных на нём программ и библиотек подпрограмм. Большинство таких библиотек является фактически достоянием человечества: они доступны в исходных кодах, хорошо документированы, отлажены и весьма эффективны. Поэтому изменять, а тем более переписывать их на других языках программирования накладно, несмотря на то, что регулярно производятся попытки автоматического конвертирования FORTRAN-кода на современные языки программирования.

Современный Фортран (Fortran 95 и Fortran 2003) приобрёл черты, необходимые для эффективного программирования для новых вычислительных архитектур, позволяет применять современные технологии программирования, в частности, ООП.

Эволюция стандартов языка

Фортран - жёстко стандартизированный язык, именно поэтому он легко переносится на различные платформы. Новые стандарты языка в значительной мере сохраняют преемственность с более старыми, что позволяет использовать коды ранее написанных программ и их модифицировать.

FORTRAN 77 (1980)

Введено множество улучшений:

Введены операторы открытия и закрытия файла (OPEN, CLOSE) и вывода на стандартное устройство - PRINT.

Добавлены строковый тип данных и функции для его обработки.

Введён блочный оператор IF и конструкция IF THEN - ELSE IF THEN - END IF, а также оператор включения фрагмента программы INCLUDE.

Введена возможность работы с файлами прямого доступа.

Увеличена максимальная размерность массива с 3 до 7. Сняты ограничения на индексы массива.

Усовершенствованы и расширены возможности работы с процедурами.

Введено понятие внутреннего файла (каковыми являются массивы, числовые и строковые переменные). Внутренние файлы позволяют, в частности, осуществлять преобразование число-строка и строка-число стандартным операторами чтения и записи READ и WRITЕ.

Fortran 90 (1991)

Значительно переработан стандарт языка.

Введён свободный формат написания кода. Появились дополнительные описания IMPLICIT NONE, TYPE, ALLOCATABLE, POINTER, TARGET, NAMELIST.

Введены управляющие операторы и конструкции. Добавлены DO … END DO (вместо завершения цикла меткой), DO WHILE, оператор передачи управления на начало цикла CYCLE, конструкция выбора SELECT CASE (для замены громоздких конструкций IF и операторов GOTO), а также заключительный оператор программной единицы, модульной или внутренней процедуры END.

Введён инструментарий указателей и функции для работы с оперативной памятью (по аналогии с языком С).

Введены операторы работы с динамической памятью (ALLOCATE, DEALLOCATE, NULLIFY).

Добавлены программные компоненты MODULE, PRIVATE, PUBLIC, CONTAINS, INTERFACE, USE, INTENT.

Введено маскирование присваивания массивов (присваивание при выполнении наложенного на элементы массива логического условия без использования операторов условия), а также работа с сечениями массивов. Введён оператор и конструкция WHERE для частичной замены циклов (правая часть оператора присваивания не изменяется). Маскирование присваивания распространяется практически на все операторы, конструкции и функции, оперирующие с массивами.

Стандартные операции присваивания, сложения, вычитания, а также деления и умножения на число распространены на массивы и их секции, определяемые сечениями. В этом случае осуществляется поэлементное присваивание.

Появились новые встроенные функции, в первую очередь для работы с массивами. Функции для вычислений в массивах: ALL(лог. произведение) и MASK(логическое сложение), COUNT(число истинных элементов), PRODUCТ(произведение элементов массива), SUM(сложение элементов массива), DOT_PRODUCT (скалярное произведение), MATMUL (умножение матриц). Добавились справочные функции, а также функции переформирования и свёртки массивов.

В языке появились элементы ООП. Введены производные типы данных. Отдельно объявлен список устаревших черт языка, предназначенных для удаления в будущем.

Добавлены дополнительные функции для работы со строковыми данными, в частности, функции TRIM (удаление завершающих пробелов) и REPEAT(кратное копирование строки) и функции выравнивания по левой и правой границам.

Fortran 95 (1997)

Коррекция предыдущего стандарта. Введён оператор и конструкция FORALL, позволяющие более гибко, чем оператор и конструкция WHERE, присваивать массивы и заменять громоздкие циклы. FORALL позволяет заменить любое присваивание сечений или оператор и конструкцию WHERE, в частности, обеспечивает доступ к диагонали матрицы. Данный оператор считается перспективным в параллельных вычислениях, способствуя более эффективному, чем циклы, осуществлению распараллеливания.

Fortran 2003 (2004)

Дальнейшее развитие поддержки ООП в языке. Взаимодействие с операционной системой. Добавлены также следующие возможности:

Асинхронный ввод-вывод данных.

Средства взаимодействия с языком C

Усовершенствование динамического размещения данных

Стандартом предполагается поддержка средствами языка параллельных вычислений (Co-Arrays Fortran). Также предполагается увеличить максимальную размерность массивов до 15, добавить встроенные специальные математические функции и др.

История создания языка программирования Фортран. Существующие стандарты. Версия языка программирования Фортран.

Программы для первых ЭВМ программисты писали на языках машинных команд. Это очень трудоемкий и длительный процесс. Проходило значительное время между началом составления программы и началом ее использования. Решить эту проблему можно было лишь путем создания средств автоматизации программирования.
Первыми "инструментами", которые экономили труд программистов, стали подпрограммы. В августе 1944 года для релейной машины "Марк-I" под руководством Грейс Хоппер (женщина-программист, морской офицер ВМФ США) была написана первая подпрограмма для вычисления sinx.
Не одну Грейс Хоппер волновала проблема облегчения труда программистов. В 1949 году Джон Моучли (один из создателей ЭВМ ENIAC) разработал систему SHORT Code, которую можно считать предшественницей языков программирования высокого уровня. Программист записывал решаемую задачу в виде математических формул, преобразовывал формулы в двухбуквенные коды. В дальнейшем специальная программа переводила эти коды в двоичный машинный код. Таким образом, Дж. Моучли разработал один из первых примитивных интерпретаторов. А в 1951 году Г. Хоппер создала первый компилятор А-0. Ею же впервые был введен этот термин.

Первые языки высокого уровня: Кобол и Фортран
В 50-е годы прошлого века группа под руководством Г. Хоппер приступила к разработке нового языка и компилятора В-0. Новый язык позволил бы программировать на языке, близком к обычному английскому. Разработчики языка выбрали около 30 английских слов, для распознавания которых Г. Хоппер придумала способ, сохранившийся в операторах будущих языков программирования: каждое слово содержит неповторимую комбинацию из первой и третьей букв. Благодаря этому компилятор при создании машинного кода программы может игнорировать все остальные буквы в слове.
Необходимость появления такой системы, язык которой приближен к разговорному, Г. Хоппер связывала с тем, что область применения ЭВМ будут расширяться, в связи с чем будет расти и круг пользователей. По словам Г. Хоппер, следует оставить попытки "превратить их всех в математиков ".
В 1958 году система В-0 получила название FLOW-MATIC и была ориентирована на обработку коммерческих данных. В 1959 году был разработан язык COBOL (Common Business Oriented Language) (Кобол) машинно независимый язык программирования высокого уровня для соответствующим транслятором с этого языка. Консультантом при создании языка COBOL вновь выступила Г. Хоппер.
В 1954 году публикуется сообщение о создании языка FORTRAN (FORmula TRANslation) (Фортран). Местом рождения языка стала штаб-квартира фирмы IBM в Нью-Йорке. Одним из главных разработчиков является

Джон Бэкус. Он же стал автором НФБ (нормальная форма Бэкуса), которая используется для описания синтаксиса многих языков программирования. В тот же период в европейских странах и в СССР популярным становится язык ALGOL. Как и FORTRAN, он ориентировался на математические задачи. В нем была реализована передовая для того времени технология программирования структурное программирование.

Фортран в СССР.

Фортран в СССР появился позже, чем на Западе, поскольку поначалу у нас более перспективным языком считался Алгол. Во внедрении Фортрана большую роль сыграло общение советских физиков со своими коллегами из CERN, где в 1960-х годах почти все расчёты велись с использованием программ на Фортране.

Первый советский компилятор с Фортрана был создан в 1967 г. для машины «Минск-2», однако он не получил большой известности. Широкое внедрение Фортрана началось после создания в 1968 г. компилятора ФОРТРАН-ДУБНА для машины БЭСМ-6. Машины ЕС ЭВМ, появившиеся в 1972 г., уже изначально имели транслятор Фортрана («позаимствованный» с IBM/360 вместе с другим программным обеспечением).

Стандарты

Язык подвергался стандартизации в рамках ANSI и ISO

Были разработаны стандарты - Фортран 66, Фортран 77, Фортран 90, Фортран 95, Фортран 2003 и Фортран 2008.

Стандартизация языков программирования создает предпосылки для повышения мобильности программного обеспечения для компьютеров любой архитектуры. Стандартизация Фортрана является одной из причин долгожительства языка, так как именно благодаря стандартизации обеспечена возможность использования огромного фонда прикладных программ, которые созданы за десятилетия существования языка.

Фортран - жёстко стандартизированный язык, именно поэтому он легко переносится на различные платформы. Существует несколько международных стандартов языка:

FORTRAN IV (позже положенный в основу FORTRAN 66 (1966);

FORTRAN 77 (1978) множество улучшений: строковый тип данных и функции для его обработки, блочные операторы IF, ELSE IF, ELSE, END IF, оператор включения фрагмента программы INCLUDE и т. д.

Fortran 90 (1991) значительно переработан стандарт языка. Введён свободный формат написания кода. Появились дополнительные описания IMPLICIT NONE, TYPE, ALLOCATABLE, POINTER, TARGET, NAMELIST; управляющие конструкции DO … END DO, DO WHILE,CYCLE , SELECT CASE, WHERE; работа с динамической памятью (ALLOCATE, DEALLOCATE, NULLIFY); программные компоненты MODULE, PRIVATE, PUBLIC, CONTAINS, INTERFACE, USE, INTENT. Появились новые встроенные функции, в первую очередь, для работы с массивамив языке появились элементы ООП

Fortran 95 (1997) - коррекция предыдущего стандарта Fortran 2003 (2004)дальнейшее развитие поддержки ООП в языке. Взаимодействие с операционной системой Введён оператор и конструкция FORALL, позволяющие более гибко, чем оператор и конструкция WHERE, присваивать массивы и заменять громоздкие циклы. FORALL позволяет заменить любое присваивание сечений или оператор и конструкцию WHERE, в частности, обеспечивает доступ к диагонали матрицы. Данный оператор считается перспективным в параллельных вычислениях, способствуя более эффективному, чем циклы, осуществлению распараллеливания.

Fortran 2003 (2004) Дальнейшее развитие поддержки ООП в языке. Взаимодействие с операционной системой. Добавлены также следующие возможности: 1. Асинхронный ввод-вывод данных 2. Средства взаимодействия с языком. 3. Усовершенствование динамического размещения данных. Fortran 2008 (2010) Стандартом предполагается поддержка средствами языка параллельных вычислений (Co-Arrays Fortran). Также предполагается увеличить максимальную размерность массивов до 15, добавить встроенные специальные математические функции и др.

Версия языка программирования Фортран

Программисты, разрабатывавшие программы исключительно на ассемблере, выражали серьезное сомнение в возможности появления высокопроизводительного языка высокого уровня, поэтому основным критерием при разработке компиляторов Фортрана являлась эффективность исполняемого кода. Для этого языка было создано огромное количество библиотек, начиная от статистических комплексов и кончая пакетами управления спутниками, поэтому Фортран продолжает активно использоваться. Имеется стандартная версия Фортрана WF(High Performance Fortran) для параллельных суперкомпьютеров с множеством процессоров.

Cobol (Кобол). Это компилируемый язык для применения в экономической области и решения бизнес задач, разработанный в начале 60-х годов. Он отличается большой «многословностью» - его операторы иногда выглядят как обычные английские фразы. В Коболе были реализованы очень мощные средства работы с большими объемами данных, хранящимися на различных внешних носителях. На этом языке создано очень много приложений, которые активно эксплуатируются и сегодня.

Algol (Алгол). Компилируемый язык, созданный в 1960 году. Он был призван заменить Фортран, но из-за более сложной структуры не получил широкого распространения. В 1968 году была создана версия Алгол 68, по своим возможностям и сегодня опережающая многие языки программирования, однако из-за отсутствия достаточно эффективных компьютеров для нее не удалось своевременно создать хорошие компиляторы.

Pascal (Паскаль). Язык Паскаль, созданный в конце 70-х годов основоположником множества идей современного программирования Никлаусом Виртом, во многом напоминает Алгол, но в нем ужесточен ряд требований к структуре программы и имеются возможности, позволяющие успешно применять его при создании крупных проектов.

Basic (Бейсик). Для этого языка имеются и компиляторы, и интерпретаторы, а по популярности он занимает первое место в мире. Он создавался в 60-х годах в качестве учебного языка и очень прост в изучении. Это один из перспективных языков программирования.

С (Си). Данный язык был создан в лаборатории Bell и первоначально не рассматривался как массовый. Он планировался для замены ассемблера, чтобы иметь возможность создавать столь же эффективные и компактные программы, и в то же время не зависеть от конкретного типа процессора. На этом языке в 70-е годы написано множество прикладных и системных программ и ряд известных операционных систем (Unix).

Java (Джава, Ява). Этот язык был создан компанией Sun в начале 90-х годов на основе Си++. Он призван упростить разработку приложений на основе Си++ путем исключения из него всех низкоуровневых возможностей. Но главная особенность этого языка - компиляция не в машинный код, а в платформно независимый байт-код (каждая команда занимает один байт). Этот байт-код может выполняться с помощью интерпретатора - виртуальной Java-машины (Java Virtual Machine), версии которой созданы сегодня для любых платформ. Благодаря наличию мно­жества Java-машин программы на Java можно переносить не только на уровне исходных текстов, но и на уровне двоичного байт-кода, поэтому по популярности язык Ява сегодня занимает второе место в мире после Бейсика.

В последнее время получили распространение системы программирования, ориентированные на создание Windows-приложений :

· пакет Borland Delphi (Дельфи) - блестящий наследник семейства компиляторов Borland Pascal, предоставляющий качественные и очень удобные средства визуальной разработки. Его исключительно быстрый компилятор позволяет эффективно и быстро решать практически любые задачи прикладного программирования.

· пакет Microsoft Visual Basic - удобный и популярный инструмент для создания Windows-программ с использованием визуальных средств. Содержит инструментарий для создания диаграмм и презентаций .

· пакет Borland C++ - одно из самых распространённых средств для разработки DOS и Windows приложений.

Среди учёных, например, ходит такая присказка, что любая математическая задача уже имеет решение на Фортране, и, действительно, можно найти среди тысяч фортрановских пакетов и пакет для перемножения матриц , и пакет для решения сложных интегральных уравнений , и многие, многие другие. Ряд таких пакетов создавался на протяжении десятилетий и популярен в научной среде по сей день, например - IMSL (англ. ).

Большинство таких библиотек является фактически достоянием человечества: они доступны в исходных кодах, хорошо документированы, отлажены и весьма эффективны. Поэтому изменять, а тем более переписывать их на других языках программирования накладно, несмотря на то, что регулярно производятся попытки автоматического конвертирования FORTRAN-кода на современные языки программирования.

Современный Фортран (Fortran 95 и Fortran 2003) приобрёл черты, необходимые для эффективного программирования для новых вычислительных архитектур, позволяет применять современные технологии программирования, в частности, ООП .

Эволюция стандартов языка

Фортран - жёстко стандартизированный язык, именно поэтому он легко переносится на различные платформы. Новые стандарты языка в значительной мере сохраняют преемственность с более старыми, что позволяет использовать коды ранее написанных программ и их модифицировать .

FORTRAN 66 (1972) На базе стандарта фирмы IBM FORTRAN IV FORTRAN 77 (1980) Введено множество улучшений: Fortran 90 (1991) Значительно переработан стандарт языка. Fortran 95 (1997) Коррекция предыдущего стандарта. Введён оператор и конструкция FORALL, позволяющие более гибко, чем оператор и конструкция WHERE, присваивать массивы и заменять громоздкие циклы. FORALL позволяет заменить любое присваивание сечений или оператор и конструкцию WHERE, в частности, обеспечивает доступ к диагонали матрицы. Данный оператор считается перспективным в параллельных вычислениях, способствуя более эффективному, чем циклы, осуществлению распараллеливания . Fortran 2003 (2004) Дальнейшее развитие поддержки ООП в языке. Взаимодействие с операционной системой. Добавлены также следующие возможности: Fortran 2008 (2010) Стандартом предполагается поддержка средствами языка параллельных вычислений (Co-Arrays Fortran) . Также предполагается увеличить максимальную размерность массивов до 15, добавить встроенные специальные математические функции и др.

Компиляторы

С момента первоначальной разработки языка, компиляторы Фортрана производит фирма IBM. В настоящее время фирмой IBM поставляется оптимизирующий компилятор VS Fortran для мэйнфреймов IBM System z , история развития различных версий которого восходит ещё к 1964 году , а также компилятор XL Fortran для платформ на базе архитектуры PowerPC - AIX , Linux и суперкомпьютера Blue Gene (выпускалась также версия для Mac OS X , когда компьютеры Macintosh использовали процессоры PowerPC). Оба этих компилятора содержат очень сложные оптимизаторы, являющиеся результатом непрерывной научной работы специалистов IBM на протяжении полувека. На базе компилятора IBM Fortran XL фирмой Absoft, бизнес-партнёром IBM, создан и поставляется компилятор Absoft Pro Fortran для систем на базе процессоров PowerPC (Linux, Mac OS X) и Intel (Linux, Mac OS X, Windows) .

Фонд свободного программного обеспечения GNU выпускал открытый компилятор Фортрана-77 g77, доступный практически для любой платформы и полностью совместимый с GCC . Сейчас ему на смену пришел компилятор GFortran , в котором реализованы практически все конструкции стандарта Фортран-95 и многие конструкции стандартов Фортран-2003 и Фортран-2008. Он также полностью обратно совместим с Фортран-77. Также существует независимый проект g95 по созданию на основе GCC компилятора Фортран-95.

Возможности и структура программы

Фортран имеет достаточно большой набор встроенных математических функций, поддерживает работу с целыми, вещественными и комплексными числами высокой точности. Выразительные средства языка изначально были весьма бедны, поскольку Фортран был одним из первых языков высокого уровня. В дальнейшем в Фортран были добавлены многие лексические конструкции, характерные для структурного, функционального и даже объектно-ориентированного программирования.

Перфокарта с разметкой колонок для Фортрана.

Структура программ изначально была ориентирована на ввод с перфокарт и имела ряд удобных именно для этого случая свойств. Так, 1-я колонка служила для маркировки текста как комментария (символом C ), с 1-й по 5-ю располагалась область меток, а с 7-й по 72-ю располагался собственно текст оператора или комментария. Колонки с 73-й по 80-ю могли служить для нумерации карт (чтобы восстановить случайно рассыпавшуюся колоду) или для краткого комментария, транслятором они игнорировались. Если текст оператора не вписывался в отведённое пространство (с 7-й по 72-ю колонку), в 6-ой колонке следующей карты ставился признак продолжения, и затем оператор продолжался на ней. Расположить два или более оператора в одной строке (карте) было нельзя. Когда перфокарты ушли в историю, эти достоинства превратились в серьёзные неудобства.

Именно поэтому в стандарт Фортрана, начиная с Fortran 90, в добавление к фиксированному формату исходного текста появился свободный формат, который не регламентирует позиции строки, а также позволяет записывать более одного оператора на строку. Введение свободного формата позволило создавать код, читаемость и ясность которого не уступает коду, созданному при помощи других современных языков программирования, таких как или Java .

Своего рода «визитной карточкой» старого Фортрана является огромное количество меток, которые использовались как в операторах безусловного перехода GOTO , так и в операторах циклов, и в операторах описания форматного ввода/вывода FORMAT. Большое количество меток и операторов GOTO часто делало программы на Фортране трудными для понимания.

Именно этот негативный опыт стал причиной, по которой в ряде современных языков программирования (например, Java) метки и связанные с ними операторы безусловного перехода сильно видоизменены.

Однако современный Фортран избавлен от избытка меток за счёт введения таких операторов, как DO … END DO, DO WHILE, SELECT CASE. Более того, в современных стандартах языка оставлен лишь классический оператор GOTO, применяемый во многих языках и поныне. Вычисляемый оператор GOTO, а также конструкция ENTRY - множественного входа в процедуры, были исключены.

Также к положительным чертам современного Фортрана стоит отнести большое количество встроенных операций с массивами и гибкую поддержку массивов с необычной индексацией. Пример:

Real ,dimension (: ,: ) :: V ... allocate (V(- 2 : 2 ,0 : 10 ) ) ! Выделить память под массив, индексы которого могут ! меняться в пределах от -2 до 2 (первый индекс) ! и от 0 до 10 - второй ... V (2 ,2 : 3 ) = V(- 1 : 0 ,1 ) ! Повернуть кусочек массива write(* ,* ) V(1 ,: ) ! Напечатать все элементы массива V, первый индекс которых равен 1. deallocate (V)

Hello, World!

Фиксированный формат (символами «␣» выделены пробелы в позициях строки с 1 по 6):

␣␣␣␣␣␣PROGRAM hello ␣␣␣␣␣␣PRINT* , "Hello, World!" ␣␣␣␣␣␣END

Свободный формат:

Program hello print * , "Hello, World!" end

Замечания.

  • Оператор PROGRAM не является обязательным. Строго говоря, единственный обязательный оператор Фортран-программы - оператор END .
  • Выбор прописных или строчных букв для написания операторов программы произволен. С точки зрения современных стандартов языка Фортран, множество прописных букв и множество строчных букв при написании операторов языка совпадают.

Взаимодействие с другими языками

Многие системы программирования позволяют компоновать полученные в результате трансляции фортрановской программы объектные файлы с объектными файлами, полученными от компиляторов с других языков, что позволяет создавать более гибкие и многофункциональные приложения. Для языка Фортран также доступно большое количество библиотек, содержащих как подпрограммы решения классических вычислительных задач (LAPACK , IMSL, BLAS), задач организации распределённых вычислений (MPI , pvm), так и задач построения графических интерфейсов (Quickwin , FORTRAN/TK) или доступа к СУБД (Oracle).

Фортран в СССР

Примечания

  1. См., например: Netlib Repository at UTK and ORNL
  2. А. М. Горелик . Эволюция языка программирования Фортран (1957-2007) и перспективы его развития//Вычислительные методы и программирование, 2008, Т. 9, с. 53-71
  3. Бартеньев О.В. Современный Фортран . - М .: Диалог МИФИ, 2005. - ISBN 5-86404-113-0
  4. А. М. Горелик. объектно-ориентированное программирвание на современном Фортране
  5. С. Д. Алгазин, В. В. Кондратьев. Программирование на Visual Fortran. - М .: «Диалог МИФИ », 2008. - 448 с. - ISBN 5-8243-0759-8
  6. Горелик А. М.Новости
  7. VS FORTRAN
  8. XL Fortran for Linux
  9. Absoft Pro Fortran Compiler Suites General Overview
  10. Sun Studio - Benchmarks
  11. Очерк Александра Расторгуева о появлении Фортрана в Дубне
  12. История компьютерной графики в России

Литература

  • Fortran. Programmer"s Reference Manual. The Fortran Automatic Coding System for the IBM 704 EDPM . - IBM Corp., 1956. - 51 с.
  • ISO/IEC 1539-2:2000 Information technology - Programming languages - Fortran - Part 2: Varying length character strings
  • Роберт У. Себеста. 2.3. Компьютер IBM 704 и язык Фортран // Основные концепции языков программирования = Concepts of Programming Languages / Пер. с англ. - 5-е изд. - М .: Вильямс, 2001. - С. 63-69. - 672 с. - 5000 экз. - ISBN 5-8459-0192-8 (рус.), ISBN 0-201-75295-6 (англ.)

Ссылки

  • gfortran - Компилятор Фортрана 95/2003/2008, часть Коллекции компиляторов GNU
  • в Прогопедии - энциклопедии языков программирования (рус.)

Лекция 3. Структура программы. Реализация алгоритма линейной структуры на Фортране.

Структура программы на Фортране

Программа в общем случае состоит из головной (MAIN) программы и подпрограмм (SUBROUTINE и (или) FUNCTION).

    В головной программе запрограммирован весь алгоритм решения задачи.

    Программа всегда начинает и завершает выполнение в головной программе .

    В подпрограмме запрограммирована логически законченная часть алгоритма.

    Подгрограмма выполняется только при ее вызове и после исполнения управление передается назад.

    Подпрограммы облегчают программирование, разбивая алгоритм на части (структурное программирование).

    Подпрограммы позволяют создать заготовки наиболее часто решаемых типовых задач.

    Библиотеки стандартных программ состоят из подпрограмм, написанных профессионалами.

СТРУКТУРА ФОРТРАН - ПРОГРАММЫ

Общая структура основной (головной) Фортран - программы (MAIN PROGRAM ):

[ PROGRAM имя программы ]

[ ! КОММЕНТАРИИ ]

[ неисполняемые операторы - объявления ]

[ исполняемые операторы ]

END [ PROGRAM [имя программы ] ]

    – НЕОБЯЗАТЕЛЬНАЯ ЧАСТЬ КОНСТРУКЦИИ

    ТЕКСТ, ИЗОБРАЖЕННЫЙ ЗДЕСЬ КРАСНЫМ КУРСИВОМ ИМЕЕТ ВПОЛНЕ ОПРЕДЕЛЕННЫЙ СМЫСЛ И ЗАПИСЫВАЕТСЯ В СООТВЕТСТВИИ С ТРЕБОВАНИЯМИ ЯЗЫКА

    END ОПЕРАТОР ОБЯЗАТЕЛЬНО ЗАВЕРШАЕТ ПРОГРАММУ

Определение. Операторы – последовательность символов, которая задает определенные действия. Операторы делятся на: исполняемые и неисполняемые.

Исполняемые операторы задают действия над данными. Различают следующие типы таких операторов:

1. Операторы обработки информации.

    Операторы присваивания

    Операторы чтения (ввода)

    Операторы записи (вывода)

2. Операторы, управляющие работой программы во времени.

Неисполняемые операторы служат для описания типа данных или некоторых элементов программы, поэтому их часто называют операторами описания или просто описаниями или объявлениями.

Комментарии предназначены человеку для документирования программы и для улучшения понимания алгоритма и операторов.

Алгоритм линейной структуры

Алгоритм является линейным , если все шаги алгоритма выполняются последовательно в их естественном порядке для любых исходных данных , возможных в данной задаче. Запись шагов алгоритма в этом случае осуществляется последовательно.

Рассмотрим возможныев таких алгоритмах действия (шаги алгоритма и соответствующие им операторы Фортрана).

Операторы начала и конца программы

Первая строка программы рассматривается как начало программы. В современных версиях Фортрана принято оформлять программу оператором начала программы, за которым указывается имя программы:

PROGRAM {имя программы}

Обычно имя программы выбирают так, чтобы оно отражало назначение (содержание) программы. Например, PRIMER, SUMMA и т.д.:

PROGRAM PRIMER_1 ! имя программы PRIMER_1

PROGRAM POISK ! имя программы указывает на ее содержание

Оператор начала программы не обязателен, а вот заканчиваться программа должна обязательно оператором конца программы – END (см. раздел «Структура Фортран-программы). В Фортране-90 каждый оператор обычно занимает отдельную строку. Если в строке записывается несколько операторов, они разделяются точкой с запятой «; ».

Операторы ввода/вывода

При выполнении алгоритма необходимо, чтобы исходные данные задачи были доступны исполнителю, т.е. находились в памяти компьютера. Для этого часто пользуются следующим шагом алгоритма, предусматривающим ввод данных с внешнего устройства ввода (например, с клавиатуры).

Рассмотрим простой ввод данных с клавиатуры, для которого используется оператор READ, для вывода результатов на экран – оператор PRINT.

Общий вид операторов и правила работы с ними приведены ниже. Например, требуется ввести значения четырех переменных t, y, k и f:

READ* , t, y, k, f ! В списке ввода имена переменных отделяются запятыми

Такой оператор означает ввод четырех значений переменных последовательно с клавиатуры. На этапе выполнения программы, значения вводятся с клавиатуры, они должны быть разделены друг от друга либо запятыми, либо пробелами, либо нажатием ENTER. Пока не будут введены все значения из списка, выполнение программы будет блокировано. Примеры ввода значений:

0.56 -2.756 100 0.003 ! Числа отделяются пробелом или

0.56, -2.756, 100, 0.003 ! Числа отделяются запятой или

0.56 ! Числа отделяются клавишей ENTER

В результате выполнения оператора ввода, переменная t получит значение 0.56, y получит значение -2.756, k будет равно 100, а f – 0.003. В списке ввода можно использовать только имена переменных, констант, и вводятся они в той же последовательности с клавиатуры, как было задано в операторе.

Для вывода результатов в алгоритме предусматривается специальный шаг – вывод:

ВЫВОД список вывода

Здесь список вывода представляет в простейшем случае список имен переменных, значения которых должны быть выведены. Например,

Список вывода также может содержать поясняющие результат текстовые строки, например, вывод ′q=′, q, ′ масса m=′, m

В фортран – программе этот шаг алгоритма в простейшем случае заменяется оператором

PRINT* , список вывода

В списке вывода можно использовать, кроме переменных и констант, поясняющий текст, который заключается в апострофы или кавычки. Например, задан оператор вывода на экран

PRINT *,’x=’,x,’ y=’,y

Пусть в результате выполнения некоторых вычислений программы, x стало равным 3.09, а y = 5.01. Тогда на экране компьютера появится следующая строка:

Таким образом, текст, взятый в апострофы в операторе вывода, будет напечатан без изменения, а на месте имен переменных будут отображены их значения.

Наличие звездочки и запятой после слова READ/PRINT обязательны! Звездочка * означает, что значения переменных вводятся/выводятся на экран «по умолчанию», в том стандартном виде, который закодирован в Фортране.

Список вывода оператора PRINT может содержать:

    имена переменных,

    строковые константы (записываются в одиночных или двойных кавычках) для пояснения результатов и вывода текста,

    арифметические выражения. В этом случае сначала вычисляется значение арифметического выражения, а затем вычисленное значение выводится на экран.

Примеры:

PRINT*, ″WWOD M,N ″ ! вывод на экран текстовой подсказки для ввода

PRINT*, z, y ! Вывод только значений переменных z и y

PRINT*, ″ Z= ″, z, ″ Y= ″, y ! Вывод значений переменных z и y с пояснением

Вывод значения корня квадратного из числа 2 с пояснением:

PRINT*, " SQRT(2.0) =" , SQRT(2.0)

    Каждый оператор вывода формирует одну запись.

    Для поясняющих текстов (длиной до 256 символов) отводится столько места, сколько указано в символьной константе, текст прижимается к левому краю. Поэтому рекомендуется в конце и начале текста добавлять пробелы для улучшения вида.

Оператор присваивания

Одним из наиболее распространенных шагов алгоритмов в математических задачах является вычисления по формулам. Результатам вычислений по формулам часто присваивают свои обозначения (имена переменных), чтобы пользоваться ими в дальнейшем.

Для записи операции присваивания будем в дальнейшем использовать символ = (не следует путать его с обычным знаком равенства).

Операцию присваивания будем также использовать для явного задания начальных значений величин и переприсваивания значений.

Шаг алгоритма, в котором описывается вычисление по формулам или осуществляется явное задание значений, будем называть присваиванием. В блок-схеме такой шаг алгоритма изображается с помощью блока обработки. В Фортран – программе его заменяет арифметический оператор присваивания.

Арифметический оператор присваивания

Это выполняемый оператор, с помощью которого проводятся вычисления по формулам, задаются начальные значения, осуществляется «пересылка» значений из одной ячейки памяти в другую (переприсваивание значений).

Общий вид этого оператора: x = АВ,

где x – имя переменной (простой или с индексами), АВ - арифметическое выражение (правая часть формулы), = знак присваивания.

Для компьютера этот оператор - указание о выполнении следующих действий:

1) вычислить значение арифметического выражения (АВ) в правой части оператора при текущих значениях входящих в него переменных;

2) привести значение полученного результата к типу переменной, находящейся в правой части оператора;

3) присвоить переменой, находящейся в правой части оператора, вычисленное и приведенное к типу переменной значение результата.

Примеры

REAL:: A=3.4, F=5.25, B=9.7

A=F ! значение переменной F присваивается переменной A

J=B ! значение переменной B присваивается переменной J

PRINT*, “A=”,A,” F=”,F,” J=”,J ! вывод результатов на экран

A=5.25 F=5.25 J=9

INTEGER:: J=2, I

REAL:: A=3.3, F=5.25, B

Переменной B присваивается результат вычисления! выражения J*A+F , преобразованного к вещественному типу

PRINT*, “B=”, B ! вывод результата на экран

Переменной I присваивается результат вычисления! выражения J*A+F , преобразованного к целому типу

PRINT*, “ I=”, I ! вывод результата на экран

В результате выполнения программы, на экране увидим следующий результат:

Рассмотрим примеры программ, составленных на основе линейного алгоритма.

Для значений x=0.2, , , d = x + b .

Блок-схема алгоритма:

Программа примера 3 :

T=(B*Z-SIN(Z)) / (Y+C*D*(Y*Z)**(1./7.))

PRINT*,” T=”,T

Обратите внимание, что в этой программе дополнительно введены переменные Z и Y, чтобы несколько раз не вычислять повторяющиеся в формуле для t выражения. Плюс операция возведения в степень здесь заменена операцией умножения, на которую компьютер тратит меньше времени, чем на возведение в степень. В принципе, вы можете использовать операцию возведения в степень, и на небольших программах это не является существенным. Однако, если программа сложная и содержит несколько тысяч операторов со сложными вычислениями, то рекомендуется, где это возможно, заменить операцию возведения в степень операцией умножения, что уменьшит затраты компьютера и увеличит скорость выполнения программы.

Пример 4. Составить программу вычисления площади вписанной в треугольник окружности , радиус , где –периметр треугольника.

Исходными данными задачи являются стороны треугольника a, b, c. Составьте блок-схему алгоритма самостоятельно.

Программа примера 4 :

program primer_4

parameter (pi=3.14159) !оператор задания констант

print*, “ Vvedite a, b, c” ! вывод поясняющего текста на экран

read*, a,b,c ! ввод длин сторон треугольника

p=a+b+c ! вычисление периметра треугольника

r=sqrt((p – a)*(p – b)*(p – c))/p) ! вычисление радиуса, вписанной окружности

s=pi*r**2 ! определение площади окружности

print*,” s=”,s ! вывод результата

В указанном примере число π имеет имя pi , поскольку в Фортране можно использовать только латинские буквы.

Вопросы к Лекции 3:

    Какова структура программы на Фортране?

    Для чего используются подпрограммы?

    Что содержит основная Фортран-программа (MAIN)?

    Изобразите схематично общую структуру программы на Фортране.

    Что такое подпрограмма?

    Что хранится в библиотеках стандартных программ?

    Дайте определение оператора.

    Что называется исполняемыми операторами?

    Какие операторы называют неисполняемыми?

    Какие операторы относятся к операторам обработки информации?

    Для чего нужны комментарии в программе?

    Что называют алгоритмом линейной структуры?

    Какая последовательность действий характерна для программы, реализующей линейный алгоритм?

    Как записывается оператор начала программы? Обязателен ли он?

    Запишите оператор конца программы в общем виде. Обязателен ли этот оператор при написании программы?

    Для чего используется оператор ввода? Как правильно он записывается?

    Как выглядит общий вид оператора вывода на экран?

    Для чего в записи операторов ввода/вывода используется символ звездочка *?

    Как можно разделять переменные при вводе их значений с клавиатуры?

    Какой порядок ввода переменных должен соблюдаться?

    Какие данные можно выводить с помощью оператора ввода?

    Для каких целей предназначен оператор вывода?

    Как можно вывести текст на экран компьютера?

    Запишите оператор вывода двух переменных a=4.5, k=3.

    Как оформить оператор вывода двух переменных a=4.5, k=3 с пояснительным текстом?

    Что называется оператором присваивания?

    Что представляет собой арифметический оператор присваивания?

    Запишите общий вид оператора присваивания.

    Какие действия должен выполнить компьютер в результате выполнения оператора присваивания?

    К какому типу приводится результирующее значение переменной, полученное в результате вычисления арифметического выражения?

    Почему в программе часто заменяют, где возможно, операцию возведения в степень операцией умножения?

* "Магия ПК" 2000 №6(28), С. 49–50.

В 1955 году увидел свет первый алгоритмический язык высокого уровня FORTRAN (FORmula TRANslator – транслятор формул). Он использовался в основном для решения научно-технических и инженерных задач, а разработали его сотрудники фирмы IBM под руководством Джона Бэкуса . Чуть позже, в 1957 году, Джон Бэкус и его сотрудники установили в IBM (Beстингхауз) первый компилятор языка Фортран. Программисты, ранее работавшие исключительно на Ассемблере, скептически относились к возможностям высокопроизводительного языка высокого уровня, поэтому основным критерием при разработке стандартов на Фортран и создания компиляторов с этого языка была эффективность исполняемого кода. Кстати, термин "компилятор" тогда еще широко не использовался, хотя уже был введен Грейс Хоппер – единственной в США женщиной-адмиралом, которую называли также "первой леди программирования и бабушкой Кобола".
Большинство операторов Фортрана транслировались непосредственно в одну–две машинные команды, простые синтаксические конструкции и активное использование меток и goto позволяло получить очень быстрый код, и в результате программы на Фортране подчас работали быстрее ассемблерных. Сама внутренняя структура оттранслированной программы была также очень простой – весь код, все подпрограммы и все данные вместе с общим блоком размещались исключительно в статической памяти, из-за чего, правда, невозможно было использовать рекурсию.
Поскольку Фортран был первым языком высокого уровня, отвечающим нуждам большинства пользователей того времени, да еще и простым в изучении, распространился он очень быстро.
Из-за широкого распространения этого языка и появления множества Фортран-программ (преимущественно вычислительного характера) насущным стал вопрос его стандартизации. Сначала это был стандарт Fortran IV 1964 года, затем, по мере появления новых идей, в 1978 году был принят новый стандарт Fortran 77 (f77) с большим числом более современных и гибких синтаксических расширений. Сегодня наиболее распространенным вариантом Фортрана являются Fortran 90 (f90) и Fortran 95 . Группа энтузиастов заканчивает работу над суперверсией языка F2k, которая будет опубликована в этом году.
Хотя в новые версии языка вносились подчас как ненужные дополнения (например, расширения, связанные с динамической аллокацией памяти), так и полезные, типа модульной организации программы, работы с частями массивов и др., сегодня этот язык нельзя назвать перспективным для изучения, так как синтаксис его значительно устарел.
Однако тем, кому довольно часто приходится решать различные вычислительные задачи, совсем не обязательно каждый раз брать в руки учебник по математике и "начинать с нуля". В 90% подобных случаев то, что вы ищете, уже давно реализовано и отлажено на Фортране. Поэтому, скорее всего, жизнь Фортрану обеспечена надолго.
Есть и еще одна, сравнительно молодая ниша для Фортрана – параллельные вычисления, где строгая семантика языка позволяет получать высокопроизводительные программы. Обычно используется стандарт f90, немного расширенный набором операторов для указания пригодных к распараллеливанию частей программы. Параллельный Фортран имеет свой стандарт HPF (High Performance Fortran). Тем не менее фанаты Фортрана, девизом которых стала легендарная фраза "Зачем мне изучать другие языки, когда я могу всё написать на Фортране", ощущали его очевидную непригодность для крупномасштабных проектов, связанную с привязанностью к синтаксису 50-х годов, и пытались ввести в него модные идеи ООП, но объектный Фортран в качестве стандарта так и не появился.
Среди бесплатно распространяемых версий Фортрана наиболее известен f2c, реализованный для всех UNIX-систем и преобразующий текст Фортран-программы в Си-код. Для DOS имеется версия bcf77, распространяемая бесплатно. Из коммерческих версий в первую очередь надо отметить Microsoft Fortran, позволяющий создавать dll-библиотеки, и Watcom Fortran, генерирующий высокоэффективный код. Для задач, требующих высокой точности вычислений, предназначен компилятор фирмы MicroWay. А вообще различные по качеству компиляторы Фортрана имеются на абсолютно всех компьютерных платформах.
Однако основная заслуга Фортрана в другом. Когда появилась необходимость в разработке очень крупных проектов, недостатки Фортрана, связанные в первую очередь с "тяжелой" отладкой, стали излишне обременительны. Поэтому Фортран послужил сильнейшим стимулом для развития теории отладки и тестирования программ. Появились сотни синтаксических верификаторов Фортран-текстов, вылавливающих скрытые логические ошибки. В дальнейшем из этого направления выросли такие теоретические области программирования, как эквивалентные оптимизирующие преобразования программ, высокоуровневая компиляция, автоматическое тестирование и т.д. Так что про Фортран забывать никак нельзя. Использовать его в качестве инструментария в задачах системной интеграции, наверное, не имеет смысла, но то, что было наработано лучшими программистами за 30–40 лет, вполне может ускорить процесс разработки. По крайней мере, программных "кирпичиков" для Фортрана ныне существует несравненно больше, чем для других языков программирования. ■

* * *
Джон Бэкус родился 3 декабря 1924 в Филадельфии, штат Пенсильвания, в богатой семье, детские годы провел в Вилмингтоне. Закончив школу в 1942 году, он поступил в университет штата Вирджиния на химический факультет (по настоянию отца-химика), но спустя некоторое время перестал заниматься и в 1943 году был призван на военную службу.
Бэкус начинал служить в бригаде противовоздушной обороны в форте Stewart, штат Джорджия, но впоследствии был направлен в колледж для изучения медицины.
Некоторое время он с увлечением работал в городской больнице, но в 1946 году охладел к этой работе, оставил армию и переехал в Нью-Йорк, хотя не знал за что браться и как жить дальше.
Через некоторое время Бэкус поступил в школу подготовки радиотехников. "У меня был очень хороший преподаватель, и он попросил, чтобы я вычислил характеристики некоторых схем. Это было страшно утомительно, но крайне интересно".
Вскоре Бэкус поступил в Колумбийский университет (Нью-Йорк), чтобы изучать математику, где и получил высшее образование (1949 г.). Незадолго перед тем, как закончить обучение, он посетил компьютерный центр IBM на Мэдисон Авеню. И здесь удача во второй раз улыбнулась ему – в 1950 году Бэкус стал программистом компании IBM.
О доминировании IBM в компьютерной индустрии впервые заговорили в 1952 году. Всё началось с модели 701, известной также под именем Defence Calculator (оборонный вычислитель). Сразу после выпуска модели 701 специалисты подразделения прикладных исследований приступили к ее совершенствованию (1955–1956 годы).

Наиболее серьезные изменения предложил внести Джон Бэкус, впоследствии принимавший активное участие в создании компьютера 704. В частности, благодаря ему появилась технология так называемого "ускоренного кодирования" (speed-coding), позволившая заметно упростить написание программ для 701. "Возможность ускоренного формирования кода для машины 701, которая представляла собой одноадресный компьютер с фиксированной запятой без индексных регистров, превратила ее в систему с плавающей запятой, произвольной адресацией и индексными регистрами, – вспоминал Бэкус. – Таким образом, пользователям больше не нужно было мучиться с двоичным кодом".
Уже тогда появились первые компоненты технологии быстрого написания программ, которая используется сегодня. Фактически данная система стала предшественницей аналогичных комплексов, которые были выпущены в 50–60 годах и впоследствии вытеснены языками высокого уровня.
А в 1955 году Бэкус "изобрел" Фортран, первый машинный язык высокого уровня. Впоследствии, вспоминая этот период, Бэкус скажет: "Мы не знали, к чему стремиться, и не знали, как это сделать". Первоначально все работы планировалось завершить в начале 1954 года, однако разработка языка завершилась практически через два года.
Первая версия компилятора состояла из 25000 строк машинного кода, записанного на магнитной ленте. Каждая IBM 704 обеспечивалась копией программы с руководством по программированию на 51 странице.
В 1959 году Бэкус разработал грамматические правила для описания синтаксиса языков высокого уровня (нормальная форма Бэкуса-Наура, сокращенно БНФ).
В 1976 году Джон Бэкус был награжден Национальной медалью за вклад в науку, а с 1991 года перестал заниматься компьютерной тематикой.

Владимир Буслаев

OCR: fir-vst, 2016

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то