Зачем нужна радиорелейная связь. Радиорелейные линии связи — особенности, применение

Радиорелейные линии (РРЛ) представляют собой цепочку приемо-передающих радиостанций (оконечных, промежуточных, узловых), которые осуществляют последовательную многократную ретрансляцию (прием, преобразование, усиление и передачу) передаваемых сигналов.

В зависимости от используемого вида распространения радиоволн РРЛ можно разделить на две группы: прямой видимости и тропосферные .

РРЛ прямой видимости являются одним из основных назем-ных средств передачи сигналов телефонной связи , программ звукового и ТВ вещания, цифровых данных и других сообщений на большие расстояния. Ширина полосы частот сигналов многоканальной телефонии и ТВ составляет несколько десятков мегагерц, поэтому для их передачи практически могут быть использованы диапазоны только дециметровых и сантиметровых волн, общая ширина спектра которых составляет 30 ГРц.

Кроме того, в этих диапазонах почти полностью отсутствуют атмосферные и промышленные помехи. Расстояние между соседними станциями (протяженность пролета) R зависит от рельефа местности и высоты подъема антенн. Обычно его выбирают близким или равным расстоянию прямой видимости R o . Для сферической поверхности Земли с учетом атмосферной рефракции

где h 1 и h 2 - высоты подвеса соответственно передающей и приемной антенн (в метрах). В реальных условиях, в случае мало пересеченной местности 40 - 70 км при высоте антенных мачт 60-100м.

Рис. 11.1. Условное изображение РРЛ.

Комплекс приемопередающей аппаратуры РРЛ для передачи информации на одной несущей частоте (или на двух несущих частотах при организации дуплексных связей) образует широкополосный канал, называемый стволом (радиостволом). Оборудование, предназначенное для передачи телефонных сообщений и включающее в себя кроме радиоствола модемы и аппаратуру объединения и разъединения каналов, называют телефонным стволом.

Соответствующий комплекс аппаратуры для передачи полных ТВ сигналов (вместе с сигналами звукового сопровождения, а часто и звукового вещания) называют ТВ стволом. Большинство современных РРЛ являются многоствольными. При этом, кроме рабочих стволов, могут быть один или два резервных ствола, а иногда и отдельный ствол служебной связи. С увеличением числа стволов возрастает соответственно и объем оборудования (число передатчиков и приемников) на станциях РРЛ.

Часть РРЛ (один из возможных вариантов) условно изображена на рис. 11.1, где непосредственно отмечены радиорелейные станции трех типов: оконечная (ОРС), промежуточная (ПРС) и узловая (УРС).

На ОРС производится преобразование сообщений, поступающих по соединительным линиям от междугородных телефонных станций (МТС), междугородных ТВ аппаратных (МТА) и междугородных вещательных аппаратных (МВА), в сигналы, передаваемые по РРЛ, а также обратное преобразование. На ОРС начинается и заканчивается линейный тракт передачи сигналов.


С помощью УРС разветвляются и объединяются потоки информации, передаваемые по разным РРЛ, на пересечении которых и располагается УРС. К УРС относят также станции РРЛ, на которых осуществляется ввод и вывод телефонных, ТВ и других сигналов, посредством которых расположенный вблизи от УРС населенный пункт связывается с другими пунктами данной линии.

Рис. 11.2. Структурная схема одноствольного ретранслятора РРЛ.

1 , 10 - антенны; 2,6 - фидерные тракты; 3,7 - приемо-передатчики; 4,9 - приемники;
5,8 - передатчики.

На ОРС или УРС всегда имеется технический персонал, который обслуживает не только эти станции, но и осуществляет контроль и управление с помощью специальной системы телеобслуживания ближайшими ПРС. Участок РРЛ (300-500 км) между соседними обслуживаемыми станциями делится примерно пополам так, что одна часть ПРС входит в зону телеобслуживания одной УРС (ОРС), а другая часть ПРС обслуживается другой УРС (ОРС).

ПРС выполняют функции активных ретрансляторов без выделения передаваемых сигналов электросвязи и введения новых и, как правило, работают без постоянного обслуживающего персонала. Структурная схема ретранслятора ПРС приведена на рис. 11.2. При активной ретрансляции сигналов на ПРС используют две антенны, расположенные на одной и той же мачте. В этих условиях трудно предотвратить попадание части мощности усиленного сигнала, излучаемого передающей антенной, на вход приемной антенны. Если не принять специальных мер, то указанная связь выхода и входа усилителя ретранслятора может привести к его само-возбуждению, при котором он перестает выполнять свои функции.



Рис. 11.3. Схемы распределения частот в РРЛ.

Эффективным способом устранения опасности самовозбуждения является разнесение по частоте сигналов на входе и выходе ретранслятора. При этом на ретрансляторе приходится устанавливать приемники и передатчики, работающие на разных частотах. Если на РРЛ предусматривается одновременная связь в прямом и обратном направлениях, то число приемников и передатчиков удваивается, и такой ствол называется дуплексным (см. рис. 11.2). В этом случае каждая антенна на станциях используется как для передачи, так и для приема высокочастотных сигналов на каждом направлении связи.

Одновременная работа нескольких радиосредств на станциях и на РРЛ в целом возможна лишь при устранении взаимовлияния между ними. С этой целью создаются частотные планы, т.е. планы распределения частот передачи, приема и гетеродинов на РРЛ.

Исследования показали, что в предельном случае для двусторонней связи по РРЛ (дуплексный режим) можно использовать лишь две рабочие частоты ƒ 1 и ƒ 2 . Пример РРЛ с таким двухчастотным планом условно изображен на рис. 11.3, а. Чем меньше на линии используется рабочих частот, тем сложнее устранить взаимовлияние сигналов, совпадающих по частоте, но предназначенных разным приемникам. Во избежание подобных ситуаций на РРЛ стараются использовать антенны с узкой диаграммой направленности, с возможно меньшим уровнем боковых и задних лепестков; применяют для разных направлений связи волны с различным типом поляризации; располагают отдельные станции так, чтобы трасса представляла собой некоторую ломаную линию.

Применение указанных мер не вызывает сложностей, если связь осуществляется в диапазоне сантиметровых волн. Реальные антенные устройства, работающие на менее высоких частотах, обладают меньшим направленным действием. Поэтому на РРЛ дециметрового диапазона приходится разносить частоты приема на каждой станции. В этом случае для прямого и обратного направлений связи выбирают различные пары частот ƒ 1 , ƒ 2 и ƒ 3 , ƒ 4 (четырехчастотный план) (см. рис. 11.3, б), и необходимая для системы связи полоса частот возрастет вдвое. Четырехчастотный план не требует указанных выше мер защиты, однако он неэкономичен с точки зрения использования полосы частот. Число радиостволов, которое может быть образовано в выделенном диапазоне частот, при четырехчастотном плане вдвое меньше, чем при двухчастотном.

Для радиорелейной связи в основном используются сантиметровые волны, поэтому двухчастотный план получил наибольшее распространение.

Радиорелейная связь (от радио и французского relais – промежуточная станция), радиосвязь, осуществляемая при помощи цепочки приемо-передающих радиостанций, как правило, отстоящих друг от друга на расстоянии прямой видимости их антенн. Таким образом, радиорелейная связь – это особый вид радиосвязи на ультракоротких волнах с многократной ретрансляцией сигнала .

Радиорелейная связь первоначально применялась для организации многоканальных линий телефонной и телевизионной связи, в которых сообщения передавались с помощью аналогового электрического сигнала. Одна из первых таких линий протяженностью 200 км с 5 телефонными каналами появилась в США в 1935 году. Она соединяла Нью-Йорк и Филадельфию.
В 1932–1934 г.г. в СССР была разработана приёмопередающая аппаратура, работающая на метровых волнах, и созданы опытные линии связи Москва–Кашира и Москва–Ногинск. Первое отечественное оборудование «Краб», используемое на линии радиорелейной связи через Каспийское море, между Красноводском и Баку (1953–1954 гг.), работало в метровом диапазоне.

В те годы для радиорелейных линий считалось наиболее целесообразным применение импульсной модуляции, техника которой была хорошо освоена в радиолокации, одновременно с временным уплотнением. Казалось, что при тогдашнем уровне развития технологий это сулит большие преимущества. Но цикл теоретических исследований и экспериментальных проработок, проведенных в Научно-исследовательском институте радио, подтвердил складывающееся в то время у специалистов в области радиорелейной связи мнение, что сочетание частотной модуляции с частотным уплотнением позволит создать линии, не уступающие даже наиболее совершенным коаксиальным кабельным системам. Надо подчеркнуть, что сказанное относится к концу 1940-х – началу 1950-х годов. А поскольку, как известно, развитие общества и науки идет по спирали, то сегодня современные новейшие технологии позволили вернуться к цифровым методам передачи на более высоком уровне – передача данных, цифровая телефония и телевидение.

В середине 50–х годов прошлого века в России было разработано семейство радиорелейной аппаратуры «Стрела» , работавшей в диапазоне 1600-2000 МГц: «Стрела П» – для пригородных линий, обеспечивающих передачу 12 телефонных каналов; «Стрела Т» – для передачи одной телевизионной программы на расстояние 300–400 км и «Стрела М» – для магистральных линий емкостью 24 канала и протяжённостью до 2500 км. На аппаратуре «Стрела» был построен ряд первых отечественных радиорелейных линий (РРЛ). Вот некоторые из них: Москва – Рязань, Москва – Ярославль – Нерехта – Кострома –Иваново, Фрунзе – Джалал Абад, Москва – Воронеж, Москва – Калуга, Москва – Тула.

Следующая разработка для РРЛ – аппаратура Р-60/120. Она позволяла создавать 3–6-ствольные магистральные линии длиной до 2500 км для передачи 60–120 телефонных каналов и на дальности до 1000 км для передачи телевизионных программ с выполнением рекомендаций МККТ и МККР по качественным показателям. Радиорелейные линии на базе аппаратуры Р–60/120 были построены в различных районах СССР. Одной из первых и, пожалуй, самой протяженной была линия Москва – Ростов-на-Дону. Оборудование типа Р-60/120, работавшее в диапазоне 2 ГГц, было предназначено для внутризоновых РРЛ.

Чтобы передавать телевизионные сигналы на большие расстояния, а также сигналы телефонных каналов, нужно было создать радиорелейное оборудование магистральных РРЛ.

Магистральным РРЛ были выделены соответствующие полосы частот в диапазонах 4 и 6 ГГц. В таких диапазонах, при одинаковых габаритных размерах антенн и прочих равных условиях, излучаемая в эфир мощность увеличивается в 2,5–3 раза за счёт большого коэффициента усиления антенны. Это было весьма существенно для достижения необходимых качественных показателей передаваемых сигналов телевидения и многоканальной телефонии. Первой отечественной радиорелейной системой магистральной радиорелейной связи была система Р-600 , работающая в диапазоне 4 ГГц. Первая магистральная радиорелейная линия Ленинград–Таллин, оборудованная аппаратурой Р-600, была построена в 1958 г., после этого началось их серийное производство.

Система и аппаратура Р-600 послужили основой дальнейшего совершенствования радиорелейного оборудования для магистральных РРЛ. В период 1960-1970 г.г. были разработаны, произведены и внедрены в эксплуатацию новые виды оборудования семейства Р-600: Р-600М, Р-6002М, Р-600-2МВ и «Рассвет», также работающие в диапазоне 4 ГГц. В телевизионном стволе обеспечивалась передача видеосигнала и сигнала звукового сопровождения. Основные технические показатели этих систем приведены в табл. 6.1.

Таблица 6.1

Параметр

«Рассвет»

Диапазон частот, ГГц

Поучастковая система резервирования

Мощность передатчика, Вт

Коэффициент шума приёмника, дБ

Емкость ТФ ствола, каналов ТЧ

Важнейшей разработкой, проводившейся в СССР в середине 60-х годов, было создание магистральной радиорелейной системы большой ёмкости «Восход». Она предназначалась, в первую очередь, для РРЛ Москва – Дальний Восток. Разработка системы связи, радиоаппаратуры, источников гарантированного электропитания, системы резервирования и методов контроля качества работы аппаратуры проводилась с учётом обеспечения высокой надёжности линии. Расчётный коэффициент исправного действия линии протяжённостью 12 500 км составлял 0,995, а потеря достоверности при передаче бинарной информации без кодовой защиты – не более . Сверхвысокочастотная (СВЧ) приёмопередающая аппаратура «Восход» работала в полосе частот 3400-3900 МГц. Все активные элементы аппаратуры «Восход» были выполнены на полупроводниковых приборах, исключение составляли СВЧ выходные ступени передатчиков и гетеродинных трактов, где использовались лампы бегущей волны (ЛБВ).

Для обеспечения высокой надежности в системе «Восход» было предусмотрено применение разнесенного по высоте приёма с быстродействующей системой автоматического выбора и параллельная работа передатчиков. Система разнесенного приёма, весьма эффективно решая задачу борьбы с замиранием сигналов на интервалах РРЛ, одновременно позволяла автоматически резервировать приёмники станции. Параллельная работа передатчиков обеспечивала их автоматическое резервирование и удвоение выходной мощности передатчиков, которая в аппаратуре «Восход» составляла 10 Вт. Вся система автоматического резервирования приёмопередающего оборудования замыкалась в пределах каждой станции, поэтому в «Восходе» не было необходимости передавать по служебным каналам какие-либо сигналы для управления работой системы резервирования (как это имеет место в радиорелейных системах с поучастковой системой резервирования стволов). Таким образом, особенностью системы «Восход» являлось отсутствие специального резервного ствола, что позволяло сделать все радиостволы рабочими и, следовательно, лучше использовать отведенную для системы полосу радиочастот.

В системе «Восход» было предусмотрено 8 широкополосных рабочих стволов, из которых 4 предназначались для работы на основном магистральном направлении и 4 – на ответвлениях или пересекающих магистралях. Все стволы универсальны, одинаково пригодны как для передачи сигналов многоканальной телефонии, так и для передачи сигналов телевизионных программ.

Телефонный ствол системы обеспечивал передачу сигналов 1920 каналов ТЧ в случае, когда аппаратура промежуточных станций размещалась в кабинах наверху башни (т. е. при коротких волноводах), а аппаратура узловых и оконечных станций – в наземных помещениях. Пропускная способность телефонного ствола при размещении аппаратуры в наземных помещениях на всех станциях составляла 1020 каналов ТЧ. В нижней части группового спектра телефонного ствола обеспечивалась передача сигналов служебной связи и дистанционного обслуживания (телеобслуживания). Система телеобслуживания позволяла иметь до 16 автоматизированных промежуточных станций между соседними узловыми станциями.

Телевизионный ствол системы давал возможность передавать видеосигнал и четыре канала тональных (звуковых) частот, организованных на поднесущих частотах и расположенных выше спектра видеосигнала. Эти тональные звуковые каналы использовались как для передач сигналов звукового сопровождения телевидения, так и радиовещания.

Следующим важным этапом в развитии техники радиорелейной связи стала разработка в 1970 году комплекса унифицированных радиорелейных систем связи «КУРС». Комплекс охватывал четыре системы связи, работающие в диапазонах 2, 4, 6 и 8 ГГц. Аппаратура в диапазонах 4 и 6 ГГц предназначалась для магистральных радиорелейных линий (РРЛ), а в диапазонах 2 и 8 ГГц – для зоновых РРЛ.

В приёмопередающей аппаратуре различных диапазонов частот широко использовались унифицированные узлы и блоки (УПЧ, умножители частоты и т. п.). Все они были выполнены на наиболее совершенных для того времени полупроводниковых приборах и других комплектующих изделиях отечественного производства.

Аппаратура КУРС-4 и КУРС-6 отличалась от предыдущих разработок и своей компактностью. Например, в системе КУРС-4 в одной стойке шириной 600 мм размещалось 4 приёмника или 4 передатчика. В табл. 6.2 приведены основные технические характеристики магистральных систем КУРС–4 и КУРС–6.

Таблица 6.2

Тип
аппаратуры

Полоса
частот, ГГц

Число стволов

Вид информа-ции

Число каналов ТЧ

Мощ-ность Пд, Вт

Шум-фак-тор Пм, дБ

Мощ-ность,
потреб-ляемая, Вт

3 + 1 или 7 + 1

3 + 1 или 7 + 1

К середине 70-х годов в стране была построена уникальная радиорелейная линия, протяженность которой составляла около 10 тыс. км, емкостью каждого ствола, равной 14 400 каналов тональной частоты. В эти годы суммарная протяженность радиорелейных линий в СССР превысила 100 тыс. км.

Последней разработкой в СССР для магистральной радиорелейной связи было создание нового поколения оборудования «Радуга». В его состав вошли: приёмопередающее оборудование, работающее в диапазоне 4 ГГц – «Радуга- 4»; приёмопередающее оборудование, работающее в диапазоне 6 ГГц – «Радуга- 6»; оборудование резервирования «Радуга».

Для «Радуги» было разработано новое поколение унифицированного оборудования «Рапира-М», включающего: оконечную аппаратуру телефонных и телевизионных стволов; ЧМ-модемы; аппаратуру служебной связи и телеобслуживания.

Магистральная радиорелейная система «Радуга-Рапира-М» позволяла создавать магистральные РРЛ в двух диапазонах частот: 4 ГГц (в полосе частот 3400–3900 МГц) и 6 ГГц (в полосе частот 5670–6170 МГц).

В каждом диапазоне возможна организация до семи рабочих стволов и одного резервного ствола. По каждому из рабочих стволов обеспечивалась:
в режиме передачи многоканальной (аналоговой) телефонии – передача сигналов 1920 каналов ТЧ и при необходимости дополнительно – 48 каналов ТЧ в спектре 60–252 кГц, а также передача в одном из телефонных стволов сигналов служебной связи в спектре 0,3–52 кГц, которые необходимы для нормальной работы РРЛ;

В режиме передачи телевидения – передача видеосигнала и сигналов 4 каналов звукового сопровождения и вещания.

Технические параметры оборудования системы «Радуга-Рапира-М» обеспечивали высокие качественные показатели и надежность работы каналов и трактов РРЛ, оснащенных этим оборудованием.

Таким образом, в России со времен СССР существует широко развитая сеть аналоговых магистральных и внутризоновых радиорелейных линий, что делает экономически целесообразным использование существующих радиорелейных станций для организации цифровых трактов. В настоящее время процесс модернизации аналоговых радиорелейных линий в цифровые называют цифровизацией.

К числу радиорелейных станций (РРС) цифровизация которых возможна, относятся: «Восход-М», «Курс-4», «Курс-6», «Курс-4М», «ГТТ-70/4000», «ГТТ-70/8000», «Ракита-8», «Радуга-4», «Радуга-6», «Радуга-АЦ», «Комплекс» и др. При цифровизации указанных РРС используется оборудование, обычно подключаемое по промежуточной частоте 70 МГц. Кроме того, возможен вариант дополнительной передачи цифрового сигнала Е1 (2048 кбит/с) без нарушения работы аналоговой РРЛ.

В конце прошлого века были разработаны различные варианты цифровых модемов на скорости от 2 до 34 Мбит/с. В результате, было создано семейство цифровых модемов для аналоговых РРЛ на скоростях: 2,048 Мбит/с, 8,448 Мбит/с, 17 Мбит/с и 34,368 Мбит/с.

Для организации передачи различной цифровой информации со скоростями

8,448 Мбит/с, 17 Мбит/с или 34,368 Мбит/с использовались свободные от аналоговой информации стволы. Модемы на эти скорости могут комплектоваться мультиплексной аппаратурой и, таким образом, обеспечивать передачу соответственно 4, 8 или 16 цифровых потоков по 2,048 Мбит/с, что хорошо согласуется с принципами построения синхронной цифровой иерархии (SDH).

Во всех типах цифровых модемов обеспечивался контроль входного и выходного сигналов, обнаружение и генерация сигналов индикации аварийного состояния (СИАС) и контроль коэффициента ошибок без перерыва и с перерывом связи. Было организовано производство всех названных цифровых модемов, и они нашли свое применение на действующей сети РРЛ.

Отечественной радиорелейной промышленности более 50 лет. За время своего развития отрасль вышла на ожидаемые позиции. Сегодня радиорелейные каналы (РРЛ) отлично зарекомендовали себя в обеспечении удаленных районов с низкой инфраструктурой, охвате больших пространств и местностей со сложной структурой геологии. К числу заметных отличий от проводной технологии добавился более низкий бюджет оснащения.

Радиорелейная связь относится к беспроводным каналам связи, но их не нужно путать с известным WI —FI . Отличия следующие:

  • В РРЛ создаются резервные каналы и применяется агрегирование. Теоретически, понятие дальности связи к радиорелейным станциям не применяется, так как расстояние ретрансляции зависит от количества вышек;
  • Высокая пропускная способность;
  • Работа в полном канальном дуплексе;
  • Использование собственных (локальных) диапазонов и высокоэффективных модуляций.

Применение радиорелейных линий связи

Радиорелейные линии связи находят широкое применение в различных отраслях промышленности. В общем случае беспроводные каналы заменяют проводные сети многоканальной телефонной связи. Лидером по протяженности радиорелейных линий связи остается Киргизия. Использование РРЛ обусловлено преобладанием горного рельефа на всей территории Республики. Вторым направлением оснащения современными линиями передачи остается телевидение. Учитывая, что средний радиус распространения вещания составляет 100 километров, федеральные каналы все чаще осваивают строительство так называемых беспрограммных телецентров.

Беспроводная связь РРЛ активно используется провайдерами интернета, сотовыми операторами. Известно применение радиорелейных каналов для организации корпоративной связи. Ввиду большего чем у WI —FI бюджета и необходимости получения лицензии, РЛЛ остается недоступным для малого и среднего бизнеса, частных лиц. Срок службы оборудования достигает 30 лет с учетом того, что комплексы могут работать даже в суровых условиях климата.

Традиционные РРЛ магистрального типа постепенно переходит в сегмент городских линий, уступая место оптоволоконным линиям. Однако такие шаги требуют согласования бюджета проекта. Безусловным остается применение РРЛ в северных, малозаселенных районах, где нет необходимости в прогнозировании трафика.

В практике развертывания РРЛ сегодня используются два типа технологии. Первый – PDH – плезиохронная цифровая иерархия. При такой организации передачи сигнала обеспечивается скорость в режимах 32 каналов или мультиплексирования на скорости от 2 до 139 Мбит в секунду. Считается устаревшей технологией радиорелейной связи. На смену предыдущему поколению пришел стандарт SDH . Иерархия цифровой синхронизации обеспечивает более устойчивые каналы связи посредством транспортных модулей STM . Скорость потоков в этом диапазоне варьируется от 155 Мбит в секунду до 160 Гбит. По утверждениям разработчиков стандарта, скорость передачи данных совместимой с PDH технологии может быть и выше.

В практике применения РРЛ-сетей используется несколько вариантов развертывания. Самый популярный сценарий размещения станций – пошаговое размещение вышек на маршруте оснащения. Применение технологии hop-by-hop обеспечивает возможность оперативного внесения изменений в действующие конфигурации или модернизацию устаревшего оборудования.

Принцип построения, используемое оборудование, применение

Основными компонентами, обеспечивающими передачу сигналов на большие расстояния, являются радиорелейные линии прямой видимости. В их задачи входит обеспечение устойчивой связи при передаче до потребителя сообщений в цифровом формате, вещания телевидения и звуковых эфиров. В состав волнового спектра входят диапазоны сантиметровых и дециметровых волн.

В используемых диапазонах прямой видимости не наблюдаются помехи атмосферного и техногенного происхождений. Расстояние между ближайшими станциями, работающих в ширине спектра 30 ГГц является расчетным, зависит от высоты вышек и рельефа в местности размещения.

Для передачи информации на одной частоте или дуплексе используется комплекс аппаратуры. Это радиоствол (канал с широкой пропускной способностью), телефонный ствол и ТВ ствол, предназначенные для передачи сигналов соответствующего типа. Топология построения комплекса оборудования представлена трехуровневой системой:

Радиорелейная связь нашла широкое применение в областях народного хозяйства. Принцип ретрансляции активно используется для организации и построения локальных сетей крупных корпораций. Надежность и достоверность передаваемых сигналов применяется для управления войсками и организации коммерческой связи.

Преимущества технологии РРЛ успешно внедряются в инфраструктуру производств, имеющих большое количество удаленных объектов. Это аэропорты, железнодорожные и морские министерства сообщений. Единственным недостатком, который остается ощутимым при возведении систем передачи данных остается необходимость обеспечения прямой видимости между ретрансляторами. Это требование ставит целый ряд условий перед службами технического оснащения, повышает бюджет проекта за счет необходимости увеличения числа промежуточных станций.

25.01.2011

Радиорелейная связь (от радио и французского relais – промежуточная станция), радиосвязь, осуществляемая при помощи цепочки приемо-передающих радиостанций, как правило, отстоящих друг от друга на расстоянии прямой видимости их антенн. Таким образом, радиорелейная связь – это особый вид радиосвязи на ультракоротких волнах с многократной ретрансляцией сигнала.

Радиорелейная связь первоначально применялась для организации многоканальных линий телефонной и телевизионной связи, в которых сообщения передавались с помощью аналогового электрического сигнала. Одна из первых таких линий протяженностью 200 км с 5 телефонными каналами появилась в США в 1935 году. Она соединяла Нью-Йорк и Филадельфию.
В 1932–1934 г.г. в СССР была разработана приёмопередающая аппаратура, работающая на метровых волнах, и созданы опытные линии связи Москва–Кашира и Москва–Ногинск. Первое отечественное оборудование «Краб», используемое на линии радиорелейной связи через Каспийское море, между Красноводском и Баку (1953–1954 гг.), работало в метровом диапазоне.

В те годы для радиорелейных линий считалось наиболее целесообразным применение импульсной модуляции, техника которой была хорошо освоена в радиолокации, одновременно с временным уплотнением. Казалось, что при тогдашнем уровне развития технологий это сулит большие преимущества. Но цикл теоретических исследований и экспериментальных проработок, проведенных в Научно-исследовательском институте радио, подтвердил складывающееся в то время у специалистов в области радиорелейной связи мнение, что сочетание частотной модуляции с частотным уплотнением позволит создать линии, не уступающие даже наиболее совершенным коаксиальным кабельным системам. Надо подчеркнуть, что сказанное относится к концу 1940-х – началу 1950-х годов. А поскольку, как известно, развитие общества и науки идет по спирали, то сегодня современные новейшие технологии позволили вернуться к цифровым методам передачи на более высоком уровне – передача данных, цифровая телефония и телевидение.

В середине 50–х годов прошлого века в России было разработано семейство радиорелейной аппаратуры «Стрела», работавшей в диапазоне 1600-2000 МГц: «Стрела П» – для пригородных линий, обеспечивающих передачу 12 телефонных каналов; «Стрела Т» – для передачи одной телевизионной программы на расстояние 300–400 км и «Стрела М» – для магистральных линий емкостью 24 канала и протяжённостью до 2500 км. На аппаратуре «Стрела» был построен ряд первых отечественных радиорелейных линий (РРЛ). Вот некоторые из них: Москва – Рязань, Москва – Ярославль – Нерехта – Кострома –Иваново, Фрунзе – Джалал Абад, Москва – Воронеж, Москва – Калуга, Москва – Тула.

Следующая разработка для РРЛ – аппаратура Р-60/120. Она позволяла создавать 3–6-ствольные магистральные линии длиной до 2500 км для передачи 60–120 телефонных каналов и на дальности до 1000 км для передачи телевизионных программ с выполнением рекомендаций МККТ и МККР по качественным показателям. Радиорелейные линии на базе аппаратуры Р–60/120 были построены в различных районах СССР. Одной из первых и, пожалуй, самой протяженной была линия Москва – Ростов-на-Дону. Оборудование типа Р-60/120, работавшее в диапазоне 2 ГГц, было предназначено для внутризоновых РРЛ.

Чтобы передавать телевизионные сигналы на большие расстояния, а также сигналы телефонных каналов, нужно было создать радиорелейное оборудование магистральных РРЛ.

Магистральным РРЛ были выделены соответствующие полосы частот в диапазонах 4 и 6 ГГц. В таких диапазонах, при одинаковых габаритных размерах антенн и прочих равных условиях, излучаемая в эфир мощность увеличивается в 2,5–3 раза за счёт большого коэффициента усиления антенны. Это было весьма существенно для достижения необходимых качественных показателей передаваемых сигналов телевидения и многоканальной телефонии. Первой отечественной радиорелейной системой магистральной радиорелейной связи была система Р-600, работающая в диапазоне 4 ГГц. Первая магистральная радиорелейная линия Ленинград–Таллин, оборудованная аппаратурой Р-600, была построена в 1958 г., после этого началось их серийное производство.

Система и аппаратура Р-600 послужили основой дальнейшего совершенствования радиорелейного оборудования для магистральных РРЛ. В период 1960-1970 г.г. были разработаны, произведены и внедрены в эксплуатацию новые виды оборудования семейства Р-600: Р-600М, Р-6002М, Р-600-2МВ и «Рассвет», также работающие в диапазоне 4 ГГц. В телевизионном стволе обеспечивалась передача видеосигнала и сигнала звукового сопровождения.

Важнейшей разработкой, проводившейся в СССР в середине 60-х годов, было создание магистральной радиорелейной системы большой ёмкости «Восход». Она предназначалась, в первую очередь, для РРЛ Москва – Дальний Восток. Разработка системы связи, радиоаппаратуры, источников гарантированного электропитания, системы резервирования и методов контроля качества работы аппаратуры проводилась с учётом обеспечения высокой надёжности линии. Расчётный коэффициент исправного действия линии протяжённостью 12 500 км составлял 0,995, а потеря достоверности при передаче бинарной информации без кодовой защиты – не более. Сверхвысокочастотная (СВЧ) приёмопередающая аппаратура «Восход» работала в полосе частот 3400-3900 МГц. Все активные элементы аппаратуры «Восход» были выполнены на полупроводниковых приборах, исключение составляли СВЧ выходные ступени передатчиков и гетеродинных трактов, где использовались лампы бегущей волны (ЛБВ).

Для обеспечения высокой надежности в системе «Восход» было предусмотрено применение разнесенного по высоте приёма с быстродействующей системой автоматического выбора и параллельная работа передатчиков. Система разнесенного приёма, весьма эффективно решая задачу борьбы с замиранием сигналов на интервалах РРЛ, одновременно позволяла автоматически резервировать приёмники станции. Параллельная работа передатчиков обеспечивала их автоматическое резервирование и удвоение выходной мощности передатчиков, которая в аппаратуре «Восход» составляла 10 Вт. Вся система автоматического резервирования приёмопередающего оборудования замыкалась в пределах каждой станции, поэтому в «Восходе» не было необходимости передавать по служебным каналам какие-либо сигналы для управления работой системы резервирования (как это имеет место в радиорелейных системах с поучастковой системой резервирования стволов). Таким образом, особенностью системы «Восход» являлось отсутствие специального резервного ствола, что позволяло сделать все радиостволы рабочими и, следовательно, лучше использовать отведенную для системы полосу радиочастот.

В системе «Восход» было предусмотрено 8 широкополосных рабочих стволов, из которых 4 предназначались для работы на основном магистральном направлении и 4 – на ответвлениях или пересекающих магистралях. Все стволы универсальны, одинаково пригодны как для передачи сигналов многоканальной телефонии, так и для передачи сигналов телевизионных программ.

Телефонный ствол системы обеспечивал передачу сигналов 1920 каналов ТЧ в случае, когда аппаратура промежуточных станций размещалась в кабинах наверху башни (т. е. при коротких волноводах), а аппаратура узловых и оконечных станций – в наземных помещениях. Пропускная способность телефонного ствола при размещении аппаратуры в наземных помещениях на всех станциях составляла 1020 каналов ТЧ. В нижней части группового спектра телефонного ствола обеспечивалась передача сигналов служебной связи и дистанционного обслуживания (телеобслуживания). Система телеобслуживания позволяла иметь до 16 автоматизированных промежуточных станций между соседними узловыми станциями.

Телевизионный ствол системы давал возможность передавать видеосигнал и четыре канала тональных (звуковых) частот, организованных на поднесущих частотах и расположенных выше спектра видеосигнала. Эти тональные звуковые каналы использовались как для передач сигналов звукового сопровождения телевидения, так и радиовещания.

Следующим важным этапом в развитии техники радиорелейной связи стала разработка в 1970 году комплекса унифицированных радиорелейных систем связи «КУРС». Комплекс охватывал четыре системы связи, работающие в диапазонах 2, 4, 6 и 8 ГГц. Аппаратура в диапазонах 4 и 6 ГГц предназначалась для магистральных радиорелейных линий (РРЛ), а в диапазонах 2 и 8 ГГц – для зоновых РРЛ.

В приёмопередающей аппаратуре различных диапазонов частот широко использовались унифицированные узлы и блоки (УПЧ, умножители частоты и т. п.). Все они были выполнены на наиболее совершенных для того времени полупроводниковых приборах и других комплектующих изделиях отечественного производства.

Аппаратура КУРС-4 и КУРС-6 отличалась от предыдущих разработок и своей компактностью. Например, в системе КУРС-4 в одной стойке шириной 600 мм размещалось 4 приёмника или 4 передатчика.

К середине 70-х годов в стране была построена уникальная радиорелейная линия, протяженность которой составляла около 10 тыс. км, емкостью каждого ствола, равной 14 400 каналов тональной частоты. В эти годы суммарная протяженность радиорелейных линий в СССР превысила 100 тыс. км.

Последней разработкой в СССР для магистральной радиорелейной связи было создание нового поколения оборудования «Радуга». В его состав вошли: приёмопередающее оборудование, работающее в диапазоне 4 ГГц – «Радуга- 4»; приёмопередающее оборудование, работающее в диапазоне 6 ГГц – «Радуга- 6»; оборудование резервирования «Радуга».

Для «Радуги» было разработано новое поколение унифицированного оборудования «Рапира-М», включающего: оконечную аппаратуру телефонных и телевизионных стволов; ЧМ-модемы; аппаратуру служебной связи и телеобслуживания.

Магистральная радиорелейная система «Радуга-Рапира-М» позволяла создавать магистральные РРЛ в двух диапазонах частот: 4 ГГц (в полосе частот 3400–3900 МГц) и 6 ГГц (в полосе частот 5670–6170 МГц).

В каждом диапазоне возможна организация до семи рабочих стволов и одного резервного ствола. По каждому из рабочих стволов обеспечивалась:
в режиме передачи многоканальной (аналоговой) телефонии – передача сигналов 1920 каналов ТЧ и при необходимости дополнительно – 48 каналов ТЧ в спектре 60–252 кГц, а также передача в одном из телефонных стволов сигналов служебной связи в спектре 0,3–52 кГц, которые необходимы для нормальной работы РРЛ;
в режиме передачи телевидения – передача видеосигнала и сигналов 4 каналов звукового сопровождения и вещания.

Технические параметры оборудования системы «Радуга-Рапира-М» обеспечивали высокие качественные показатели и надежность работы каналов и трактов РРЛ, оснащенных этим оборудованием.

Таким образом, в России со времен СССР существует широко развитая сеть аналоговых магистральных и внутризоновых радиорелейных линий, что делает экономически целесообразным использование существующих радиорелейных станций для организации цифровых трактов. В настоящее время процесс модернизации аналоговых радиорелейных линий в цифровые называют цифровизацией.

К числу радиорелейных станций (РРС) цифровизация которых возможна, относятся: «Восход-М», «Курс-4», «Курс-6», «Курс-4М», «ГТТ-70/4000», «ГТТ-70/8000», «Ракита-8», «Радуга-4», «Радуга-6», «Радуга-АЦ», «Комплекс» и др. При цифровизации указанных РРС используется оборудование, обычно подключаемое по промежуточной частоте 70 МГц. Кроме того, возможен вариант дополнительной передачи цифрового сигнала Е1 (2048 кбит/с) без нарушения работы аналоговой РРЛ.

В конце прошлого века были разработаны различные варианты цифровых модемов на скорости от 2 до 34 Мбит/с. В результате, было создано семейство цифровых модемов для аналоговых РРЛ на скоростях: 2,048 Мбит/с, 8,448 Мбит/с, 17 Мбит/с и 34,368 Мбит/с.

Для организации передачи различной цифровой информации со скоростями 8,448 Мбит/с, 17 Мбит/с или 34,368 Мбит/с использовались свободные от аналоговой информации стволы. Модемы на эти скорости могут комплектоваться мультиплексной аппаратурой и, таким образом, обеспечивать передачу соответственно 4, 8 или 16 цифровых потоков по 2,048 Мбит/с, что хорошо согласуется с принципами построения синхронной цифровой иерархии (SDH).

Во всех типах цифровых модемов обеспечивался контроль входного и выходного сигналов, обнаружение и генерация сигналов индикации аварийного состояния (СИАС) и контроль коэффициента ошибок без перерыва и с перерывом связи. Было организовано производство всех названных цифровых модемов, и они нашли свое применение на действующей сети РРЛ.

Главная Радиорелейная связь РАДИОРЕЛЕЙНая СВЯЗь

1.1. ПРИНЦИПЫ РАДИОРЕЛЕЙНОЙ СВЯЗИ. КЛАССИФИКАЦИЯ РАДИОРЕЛЕЙНЫХ СИСТЕМ

В самом общем виде радиорелейную линию (РРЛ) связи можно определить как цепочку приемопередающих радиостанций. Приемник каждой станции принимает сигнал, посылаемый передатчиком предыдущей станции, и усилива-ет его. Усиленный сигнал поступает на передатчик данной станции и далее излучается в направлении следующей станции. Построенная таким образом цепочка станций обеспечивает высококачественную и надежную передачу различных сообщений па больщие расстояния.

В зависимости от используемого вида распространения радиоволи РРЛ можно разделить иа два класса: радиорелейные линии прямой видимости, в которых существует прямая видимость между антеннами соседних станций, и тропосферные радиорелейные линии, в которых нет прямой видимости между антеннами соседних станций.

Наиболее распространены РРЛ прямой видимости, которые работают в диапазонах дециметровых и сантиметровых волн. В этих диапазонах возможно построение щирокополосных приемников и передатчиков. Поэтому РРЛ обеспечивают передачу широкополосных сигналов и, в первую очередь, сигналов многоканальной телефонии и телевидения. В диапазонах дециметровых и особенно сантиметровых воли возможно применение остронаправлеиных антенн, так как благодаря малой длине волиы оказывается возможным построение таких антенн приемлемых габаритных размеров. Использование остронаправлеиных антенн, имеющих больщой коэффициент усиления (1000-10 000 и более по мощности) позволяет обходиться небольщимн мощностями передатчиков (от долей ватт до 10-20 Вт) и, следовательно, иметь компактную и экономичную аппаратуру. Для линий этого класса выделены соответствующие полосы частот в диапазонах 2, 4, 6, 8, 11 и 13 ГГц и в более высокочастотных диапазонах.

Необходимость прямой видимости между антеннами соседних станций требует поднятия антенн над уровнем земли и, следовательно, строительства соответствующих антенных опор - бащеи или мачт. Высота подвеса антеии определяется расстоянием между соседними станциями, а также характером рельефа местности между ними. В зависимости от этих факторов высота оцор может доходить до 100 м, а иногда и более. В ряде случаев, при благопринтном рельефе местности, антенны могут располагаться на небольщой высоте, например иа крыще здания, в котором установлена аппаратура.

Расстояние между соседними станциями обычно находится в пределах 40-70 км. В отдельных случаях эти интервалы сокращаются до 20-30 км из-за необходимости подведения линии в конкретно заданный пункт, а также в случае особо неблагоприятного рельефа местности.

По пропускной способности радиорелейные системы прямой видимости разделяются на три основных вида:

Радиорелейные системы больщой емкости. Емкость радиоствола таких систем составляет 600-2700 иногда и более каналов ТЧ или канал передачи сигналов изображения телевидения с одним или несколькими каналами передачи звуковых сигналов телевидения и звукового вещания. Эти системы используются для организации магистральных радиорелейных линий большой протиженности.

Построение радиорелейной линии. Система резервироеания

Радиорелейные системы средней емкости. Емкость радиоствола этих систем составляет 60-600 каналов ТЧ или канал передачи сигналов изображения телевидения с одним или несколькими каналами передачи звуковых сигналов телевидения и звукового вещания. В отдельных случаях системы этого класса не рассчитаны иа передачу сигналов изображения телевидения. Такие системы используются для организации внутризоновых соединительных линий.

Малоканальные радиорелейные системы с числом каналов ТЧ в радиостволе от 6 до 60. Эти системы не рассчитаны на передачу телевизионных сигналов, они используются для организации местных соединительных линий.

Приведенная классификация радиорелейных систем иосит условный характер: она отражает в основном то положение, которое имеет место на стационарных радиорелейных линиях Министерства связи СССР и министерств связи союзных республик. Радиорелейные системы для технологических связей (иа железнодорожном транспорте, газопроводах, линиях электропередач и т. п.) имеют свою специфику и не всегда укладываются в выще приведенную классификацию. То же относится и к радиорелейным телевизионным системам для репортажных целей.

При передаче сигналов многоканальной телефонии в радиорелейных системах больщой и средней емкостей применяется, как правило, аппаратура кабельных систем передачи с частотным разделением каналов.

В малоканальных радиорелейных системах применяется как аппаратура с частотным, так и с временным разделением каналов.

В настоящем Справочнике рассматриваются радиорелейные системы, в которых используются аппаратура кабельных систем передачи с частотным разделением каналов и частотная модуляция радиосигнала.

1.2. ПОСТРОЕНИЕ РАДИОРЕЛЕЙНОЙ ЛИНИИ. СИСТЕМА РЕЗЕРВИРОВАНИЯ

Стои.мость бащеи или,мачт, аитеиио-фидериых сооружений, технических зданий и систем электроснабжения значительно превыщает стоимость приемопередатчиков. Поэтому для повыщення экономической эффективности п пропускной способности радиорелейные системы, как правило, делают многоствольны-

"с. 1.1. Структурная схема станций многоканальной радиорелейной линии

МИ, в которых на каждой станции работают на различных частотах несколько приемо-передатчиков на общую антенно-фндерную систему, используя одну в ту же антенную опору, техническое здание и систему энергоснабжения.

Упрощенная структурная схема многоствольной радиорелейной линии приведена на рис. 1.1. Работа нескольких приемопередатчиков Пм-Пд на общую антенную систему осуществляется с помощью систем СВЧ уплотнения (разделительных фильтров н устройств сложения сигналов приема и передачи).

Для обеспечения высокой надежности работы на РРЛ применяетси резервирование оборудования. Различают две основные системы резервирования: постанциоиную и поучастковую.

Постанционнаи система резервирования (рис. 1.2) предусматривает на каждый рабочий приемопередатчик наличие резервного, имеющего те же ра- бочие частоты. При аварии рабочего приемопередатчика происходит автоматическая замена его резервным. Система, управляющая автоматическим резервированием (СУР), работает самостоятельно на каждой станции..

Недостатки систем: большой объем приемопередающего оборудования (100-процентный резерв); отсутствие какой-либо защиты от замираний сигналов; сложность устройств СВЧ коммутации и большое времи коммутации в случае использования механических переключателей. В современных радиорелейных системах постанционное резервирование не применяется.

При поучастковой системе резервирования каждое направление между двумя узловыми (или узловой и оконечной) станциями свизываются в единую

систему (рис. 1.3). Дли целей ре-

зрвироваипя выделяется отдельный резервный ствол, работающий на своих частотах. Аппаратура резервного ствола постоянно включена. При отсутствии аварии в рабочих стволах резервный ствол не загружен передачей. Для коитроли за качеством работы стволов по ним непрерывно передаются спе-:и:алы1ые пилот-сигналы.

Пплот-сигпал вводится в ствол через модулятор первой станции участка резервирования, а выделя-

Рис. 1.2. Структурная схема постапцпонного ре- ется специальным демОДуЛЯТО-

зсрвироваипя ром ИЗ последней станцип этого

участка. Выделенный пилот-сигнал сравнивается с величиной шума в специальном измерительном канале. Если отношение шума к пилот-сигналу превышает заданную величину или уровень пилот-сигнала падает ниже нормы, то начинается проиесс переключения на резервный ствол. Для этого на станции, находящейся на конце участка, включается генератор обратных аварийных сигналов (ГОАС). Для каждого рабочего ствола имеется отдельный ГОАС, работающий на своей частоте. Обратный аварийный сигнал по специальному каналу в системе служебной связи подается на первую станцию участка резервирования, где он воздействует на переключающее устройство, которое производит подключение резервного ствола параллельно поврежденному. В результате этого сообщение н пилот-сигнал начинают передаваться также и по резервному стволу. Выделенный на выходе резервного ствола (на последней станции участка резервирования) пилот-сигнал преобразуется в сигнал команды, который производит дальнейшее переключение тракта передачи с выхода поврежденного рабочего ствола на выход резервного ствола. Время перерыва связи при поучастковом резервировании определяется параметрами аппаратуры резервирования п характером аварии.

При так называемой «мгновенно")» аварии (например, нарушении контакта или замыкании в приемопередающем тракте какой-либо станции участка резервирования) время перерыва связи слагается из времени пробега обратного

Построеиие радиореяейиой линии. Система резервирования

аварийного сигнала от приемного конца до передающего конца участка, времена пробега полезного сообщения по резервному стволу от передающего конца участка до приемного, времени пробега управляющих сигналов в аппаратуре

Пилош-сигиал

РаЪочий стШ

пилот-Г*1 сигнала. Анализ.

Пшт-сигиал

Радот cmSon

Резервный стВол

сл1/шонШ~ с Вязи

Рис. 1.3. Структурная схема поучасткового резервирования

резервирования и времени срабатывания переключающих устройств. Время перерыва связи при «мгновенной» аварии обычно находится в пределах 10- 40 мс.

При так называемой «медленной» аварии (например, глубоком замирании сигнала), когда параметр, по которому определяется состояние аварии (отношение уровня шума к пилот-сигналу), изменяется со скоростью, не превышающей 100 дБ/с, время перерыва связи определяется только временем, необходимым для срабатывания переключающего устройства на премном конце участка резервированпя. Это время при современном уровне техники может быть сведено к единицам микросекунд.

Достоинство поучастковой системы резервирования - меньший, чем при по-стаиционной системе резервирования, объем приемопередающего оборудования (один резервный ствол на несколько рабочих стволов); малое времи переключения на резерв; определения защита от глубоких замирений сигнала интерференционного характера из-за слабой корреляции глубоких замираний сигнала в стволах, работающих на различных частотах. Эта защита тем эффективнее, чем больше разница между частотами, на которых работают рабочий н резервный стволы. Но эта разница иногда может быть недостаточной, так как для работы радиорелейной системы выделены конкретные полосы частот, выходить за пределы которых недопустимо.

Следует также иметь в виду, что система поучасткового резервирования дает определенную защиту от замираний сигнала только в то время, когда резервный ствол не используется для резервирования вышедшего из строи оборудования рабочего ствола.

Систему поучасткового резервирования радиорелейных систем принято сокращенно обозначать суммой двух цифр, из которых первая обозначает число рабочих стволов, а вторая - число резервных стволов. Так, система 3-1-1 означает радиорелейную систему, имеющую три рабочих ствола и одни резервный ствол.

1.3. ПЛАНЫ РАСПРЕДЕЛЕНИЯ ЧАСТОТ

В РАДИОРЕЛЕЙНЫХ СИСТЕМАХ СВЯЗИ ПРЯМОЙ

ВИДИМОСТИ

Двухчастотная система (рис. 1.4) экономична с точки зрения использования полосы частот, выделенной для радиорелейной связи в данном диапазоне, но требует высоких защитных свойств антенн от приема сигналов с обратного направления. При двух частотной системе используются рупорно-параболиче-ские, высококачественные осесимметричные антенны и другие типы антенн, имеющие защитное действие -60-70 дБ.

Четырехчастотная система (рис. 1.5) допускает использование более простых и дешевых антенных систем. Однако количество дуплексных радиостволов, которое может быть образовано в данной полосе частот при четырехчастотной системе, в 2 раза меньше, чем при двухчастотной системе. Как правило, в современной радиорелейной аппаратуре применяется двухчастотная система. Четырехчастотная система обычно использовалась на РРЛ с перископическими антеннами в диапазоне 2 ГГц.

Частоты приема и передачи в одном радиостволе РРЛ чередуются от станции к станции. Станции, на которых прием осуществляется на более низкой частоте, а передача на более высокой частоте, обозначаются символом «НВ>, а

Передача

Передача

Передача

Рис. 1.4. Двухчастотная система

Рис. 1.5. Четырехчастотная система

Планы распределения частот для многоствольных РРЛ разработаны таким образом, чтобы свести к минимуму интерференционные помехи, возникающие при одновременной работе нескольких приемников и передатчиков на общий антенио-фидериый тракт.

Планы распределеиня частот

Во всех современных радиорелейных системах применяются планы радиочастот, в которых частоты приема размещаются в одной половине отведенной полосы частот, а частоты передачи - в другой половине.

Станция N-

Станция N°3

Рис. 1.6. Схема участка т;)ассы РРЛ

Puc. 1.7. Система с разнесенными частотами приема и передачи

Структурная схема радиорелейной станции, использующей данный принцип приведена на рис. 1.7. Для приема и передачи сигналов используется одна общая антенна. Система разделительных фильтров рассчитана на работу только в половине полосы частот, отведенной для радиорелейной системы. Тракты приема и передачи объединяются в общий тракт с помощью поляризационного фильтра или ферритового циркулятора (УС) (см. рис 17)

План распределения частот радиорелейной системы кУРС-2М в диапазоне Иц приведен на рис. 1.8. Он соответствует Рекомендации 382-2МККР и ооеспечивает оганизацию шести дуплексных стволов по двухчастотной системе зЛ\ дуплексных стволов по четырехчастотной системе). Номинальные по формуле нижней половине диапазона определяются

/» = /, -208 + 29 п,

а в верхней половине диапазона f„ - no формуле /„«/,+ 5+29 п

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то