Активно емкостное сопротивление. Сопротивление конденсатора. Формула индуктивного сопротивления

Z = R + i X , где Z - импеданс, R - величина активного сопротивления , X - величина реактивного сопротивления, i - мнимая единица .

В зависимости от величины X какого-либо элемента электрической цепи, говорят о трёх случаях:

  • X > 0 - элемент проявляет свойства индуктивности .
  • X = 0 - элемент имеет чисто активное сопротивление .
  • X < 0 - элемент проявляет ёмкостные свойства.

Величина реактивного сопротивления может быть выражена через величины индуктивного и ёмкостного сопротивлений:

Индуктивное сопротивление (X L ) обусловлено возникновением ЭДС самоиндукции . Электрический ток создает магнитное поле. Изменение тока, и как следствие изменение магнитного поля, вызывает ЭДС самоиндукции, которая препятствует изменению тока. Величина индуктивного сопротивления зависит от индуктивности элемента и частоты протекающего тока:

Ёмкостное сопротивление (X C ). Величина ёмкостного сопротивления зависит от ёмкости элемента С и также частоты протекающего тока:

См. также

Активное сопротивлние


Wikimedia Foundation . 2010 .

Смотреть что такое "Ёмкостное сопротивление" в других словарях:

    Величина, характеризующая сопротивление, оказываемое переменному току электрической ёмкостью цепи (или её участка). Ёмкостное сопротивление синусоидальному току Хс = 1/ωС, где ω угловая частота, С ёмкость. Измеряется в омах. * * * ЕМКОСТНОЕ… … Энциклопедический словарь

    ёмкостное сопротивление - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN reactancecapacity… …

    ёмкостное сопротивление - talpinė varža statusas T sritis fizika atitikmenys: angl. capacitance; capacity reactance; capacitive reactance vok. kapazitiver Widerstand, m rus. ёмкостное сопротивление, n pranc. capacitance, f; réactance capacitive, f … Fizikos terminų žodynas

    См.Сопротивление ёмкостное …

    См. Сопротивление ёмкостное … Большой энциклопедический политехнический словарь

    Физ. величина, характеризующая сопротивление, оказываемое переменному току электрич. ёмкостью цепи (или её участка). Ё.с. синусоидальному току Хс = 1/w С, где w угловая частота, С ёмкость. Измеряется в омах … Естествознание. Энциклопедический словарь

    зарядное ёмкостное сопротивление - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN charge capacitance … Справочник технического переводчика

    СОПРОТИВЛЕНИЕ - (1) аэродинамическое (лобовое) сила, с которой газ действует на движущееся в нём тело. Оно всегда направлено в сторону, противоположную скорости движения тела, и является одной из составляющих аэродинамической силы; (2) С. гидравлическое… … Большая политехническая энциклопедия

    ёмкостное реактивное сопротивление - — Тематики нефтегазовая промышленность EN capacitive reactance … Справочник технического переводчика

    Электрическое, величина, характеризующая сопротивление, оказываемое переменному току электрической ёмкостью (См. Электрическая ёмкость) и Индуктивностью цепи (её участка); измеряется в омах (См. Омаха). В случае синусоидального тока при… … Большая советская энциклопедия

Под емкостным сопротивлением понимается особый характер противодействия переменному току, наблюдаемый в цепях с электрической ёмкостью. При этом емкостное сопротивление конденсатора зависит не только от включённых в цепь элементов, но и от параметров протекающего в ней тока (смотрите рисунок ниже).

Png?x15027" alt="Зависимость ёмкостного сопротивления от частоты" width="600" height="592">

Зависимость ёмкостного сопротивления от частоты

Отметим также, что конденсатор относится к категории реактивных элементов, потери энергии на которых в цепи переменного тока не происходит.

Формула емкостного сопротивления

Для того чтобы определиться с ёмкостным сопротивлением в той или иной схеме, потребуется выявить следующие параметры:

  • Частота протекающего в цепочке переменного тока;
  • Номинальное значение ёмкости конденсатора;
  • Наличие в цепи других радиотехнических элементов.

После того, как учтены все перечисленные выше факторы, можно будет определить ёмкостное сопротивление конденсатора по следующей формуле:

Эта формула указывает на обратно пропорциональную зависимость сопротивления от величины ёмкости и частоты питающего напряжения.

Благодаря такому характеру его изменения, конденсаторы могут работать в следующих частотно-зависимых схемах:

  • Интегральные и дифференциальные устройства;
  • Резонансные цепочки различного класса;
  • Специальные фильтрующие элементы.

Добавим к этому возможность использования конденсаторов в качестве демпферных элементов в цепи переменного тока, нагруженной на мощные (силовые) агрегаты.

Векторное представление ёмкости

Для получения более чёткого представления о том, что такое ёмкостное сопротивление, можно воспользоваться векторным представлением протекающих в конденсаторе процессов.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/05/2-vektornoe-predstavlenie-768x576..jpg 800w" sizes="(max-width: 600px) 100vw, 600px">

Векторное представление

После изучения диаграммы можно заметить, что ток в цепи конденсатора меняет фазу с опережением напряжения на 90 градусов. Из характера взаимодействия основных электрических величин делается вывод о том, что конденсатор оказывает сопротивление изменению напряжения на нём.

Чем больше ёмкость, тем медленнее происходит её перезарядка до полного напряжения (и тем меньше ёмкостное сопротивление данного элемента). Этот вывод полностью совпадает с приведённой ранее формулой.

Дополнительная информация. При исследовании включенных в цепи переменного тока индуктивностей обнаруживается обратная закономерность, когда ток, наоборот, отстаёт по фазе от изменений напряжения.

Отметим, что в обоих случаях наблюдаемые различия в фазных параметрах указывают на реактивный характер сопротивления этих элементов.

Ёмкостное сопротивление

Единицы измерения

Конденсатор, как обладатель электрической ёмкости, напоминает по своим показателям автомобильный аккумулятор. Но, в отличие от АКБ, ёмкостной заряд на нём держится совсем недолго, что объясняется наличием утечек в диэлектрике и частичной разрядкой через окружающую среду.

При этом ёмкость (как и у аккумулятора) определяет накопительные свойства конденсатора или его способность удерживать энергию между обкладками.

Обратите внимание! В системе СИ этот показатель измеряется в Фарадах, которые представляют собой очень крупную единицу измерения.

На практике чаще всего пользуются более мелкими единицами измерения емкости, а именно :

  • Пикофарады, соответствующие 10-12 Фарады (Ф);
  • Нанофарады, равные 10-9Ф;
  • Микрофарады (мкФ), составляющие 10-6 от Фарады.

Все эти единицы для кратности обозначаются как «пФ», «нФ» и «мФ» соответственно.

Пример расчета емкостного сопротивления

Иногда конденсаторы устанавливаются в цепочках гашения напряжения с целью получения меньших его значений (вместо понижающих трансформаторов).

Но если аккуратно обращаться с таким преобразователем, вполне можно будет собрать его своими руками. При расчёте требуемой ёмкости обычно исходят из следующих соображений:

  • Включаемый последовательно с нагрузкой конденсатор характеризуется импедансом, аналогом сопротивления для ёмкости;
  • Этот показатель соответствует отдельному плечу в делителе напряжения, вторым элементом которого является сопротивление нагрузки;
  • Соотношение сопротивлений обоих плеч выбирается с таким расчётом, чтобы на нагрузке осталось требуемое напряжение (12 Вольт, например), а весь остаток от 220 Вольт рассеивался бы на самом конденсаторе.

Дополнительная информация. Для улучшения переходных характеристик делительной цепочки иногда параллельно конденсатору включается ещё один из резисторов, называемый разрядным.

Png?x15027" alt="Схема для расчёта ёмкостного сопротивления" width="596" height="208">

Схема для расчёта ёмкостного сопротивления

В нашем случае выбираются следующие данные:

  • Uвх=220 Вольт;
  • Uвых=12 Вольт;
  • Iнагр=0,1Ампер (ток в нагрузке выбирается согласно её паспорта).

Исходя из них, можно определить значение сопротивления нагрузки:

Rн=220/0,1=2200 Ом или 2,2 Ком.

Для вычисления величины ёмкости, на которой должны «упасть» оставшиеся 208 Вольт, используются следующие показатели:

  • Uс=208 Вольт;
  • Iс=0,1Ампер;
  • Fсети=50 Гц.

После этого можно вычислить омическое сопротивление конденсатора, достаточное для того, чтобы на нём было 208 Вольт:

Xc=Uс/Iс=208/0,1=2080.

Ёмкость конденсатора получается из рассмотренной ранее зависимости:

Исходя из этого, получим:

С = 1/Хс2 π Fсети = 1/2080х6, 28х50 = 0,0000015311 Фарады или 1,5 мкФ.

Сопротивление Rраз выбирается равным примерно 10 Ком или более.

Свойства емкостей

При параллельном включении нескольких конденсаторов их ёмкости складываются между собой. При этом общее ёмкостное сопротивление (согласно рассмотренным выше формулам) уменьшается. Если же все конденсаторные элементы соединены в последовательную цепочку, их суммарная ёмкость вычисляется как обратные значения каждой из составляющей.

Ёмкостное сопротивление последовательно включенных элементов в этом случае, наоборот, увеличивается. В заключение отметим, что такой характер изменения ёмкости и импеданса объясняется свойствами конденсатора, способного накапливать заряд на своих обкладках.

Видео

Реактивное сопротивление электрическое сопротивление переменному току, обусловленное передачей энергии магнитным полем в индуктивностях или электрическим полем в конденсаторах.

Элементы, обладающие реактивным сопротивлением, называют реактивными.

Реактивное сопротивление катушки индуктивности.

При протекании переменного тока I в катушке, магнитное поле создаёт в её витках ЭДС, которая препятствует изменению тока.
При увеличении тока, ЭДС отрицательна и препятствует нарастанию тока, при уменьшении - положительна и препятствует его убыванию, оказывая таким образом сопротивление изменению тока на протяжении всего периода.

В результате созданного противодействия, на выводах катушки индуктивности в противофазе формируется напряжение U , подавляющее ЭДС, равное ей по амплитуде и противоположное по знаку.

При прохождении тока через нуль, амплитуда ЭДС достигает максимального значения, что образует расхождение во времени тока и напряжения в 1/4 периода.

Если приложить к выводам катушки индуктивности напряжение U , ток не может начаться мгновенно по причине противодействия ЭДС, равного -U , поэтому ток в индуктивности всегда будет отставать от напряжения на угол 90°. Сдвиг при отстающем токе называют положительным.

Запишем выражение мгновенного значения напряжения u исходя из ЭДС (ε ), которая пропорциональна индуктивности L и скорости изменения тока: u = -ε = L(di/dt) .
Отсюда выразим синусоидальный ток .

Интегралом функции sin(t) будет -соs(t) , либо равная ей функция sin(t-π/2) .
Дифференциал dt функции sin(ωt) выйдет из под знака интеграла множителем 1.
В результате получим выражение мгновенного значения тока со сдвигом от функции напряжения на угол π/2 (90°).
Для среднеквадратичных значений U и I в таком случае можно записать .

В итоге имеем зависимость синусоидального тока от напряжения согласно Закону Ома, где в знаменателе вместо R выражение ωL , которое и является реактивным сопротивлением:

Реактивное сопротивлениие индуктивностей называют индуктивным.

Реактивное сопротивление конденсатора.

Электрический ток в конденсаторе представляет собой часть или совокупность процессов его заряда и разряда – накопления и отдачи энергии электрическим полем между его обкладками.

В цепи переменного тока, конденсатор будет заряжаться до определённого максимального значения, пока ток не сменит направление на противоположное. Следовательно, в моменты амплитудного значения напряжения на конденсаторе, ток в нём будет равен нулю. Таким образом, напряжение на конденсаторе и ток всегда будут иметь расхождение во времени в четверть периода.

В результате ток в цепи будет ограничен падением напряжения на конденсаторе, что создаёт реактивное сопротивление переменному току, обратно-пропорциональное скорости изменения тока (частоте) и ёмкости конденсатора.

Если приложить к конденсатору напряжение U , мгновенно начнётся ток от максимального значения, далее уменьшаясь до нуля. В это время напряжение на его выводах будет расти от нуля до максимума. Следовательно, напряжение на обкладках конденсатора по фазе отстаёт от тока на угол 90 °. Такой сдвиг фаз называют отрицательным.

Ток в конденсаторе является производной функцией его заряда i = dQ/dt = C(du/dt) .
Производной от sin(t) будет cos(t) либо равная ей функция sin(t+π/2) .
Тогда для синусоидального напряжения u = U amp sin(ωt) запишем выражение мгновенного значения тока следующим образом:

i = U amp ωCsin(ωt+π/2) .

Отсюда выразим соотношение среднеквадратичных значений .

Закон Ома подсказывает, что 1/ωC есть не что иное, как реактивное сопротивление для синусоидального тока:

Реактивное сопротивление конденсатора в технической литературе часто называют ёмкостным. Может применяться, например, в организации ёмкостных делителей в цепях переменного тока.

Онлайн-калькулятор расчёта реактивного сопротивления

Необходимо вписать значения и кликнуть мышкой в таблице.
При переключении множителей автоматически происходит пересчёт результата.

Реактивное сопротивление ёмкости
X C = 1 /(2πƒC)

Опыт показывает, что если последовательно с лампочкой соединить конденсатор и подключить их к генератору постоянного напряжения, то лампочка не горит. Это понятно, так как обкладки конденсатора разделены диэлектриком, и цепь оказывается разомкнутой. При подключении конденсатора к источнику постоянного тока возникает кратковременный импульс тока, который зарядит конденсатор до напряжения источника, а затем ток прекратится. Но если эту цепь подключить к источнику переменного напряжения, то лампочка горит. Переменный ток представляет собой вынужденные электромагнитные колебания, происходящие под действием переменного электромагнитного поля генератора. При включении конденсатора в цепь переменного тока процесс его зарядки длится четверть периода. После достижения амплитудного значения напряжение между обкладками конденсатора уменьшается, и конденсатор в течение четверти периода разряжается. В следующую четверть периода конденсатор снова заряжается, но знак заряда на его обкладках изменяется на противоположный и т.д. Через диэлектрик, разделяющий обкладки конденсатора, как и в цепи постоянного тока, электрические заряды не проходят. Но по проводам, соединяющим обкладки конденсатора с источником напряжения, течет переменный ток разрядки и зарядки конденсатора. Поэтому лампочка, включенная последовательно с конденсатором, будет гореть непрерывно. Если теперь конденсатор отсоединить, то лампочка горит ярче. Следовательно, конденсатор оказывает переменному току сопротивление, которое называется емкостным сопротивлением .

Рассмотрим цепь (рис. 1), состоящую из конденсатора и подводящих проводов, сопротивление которых пренебрежительно мало, и генератора переменного напряжения.

Пусть напряжение на конденсаторе изменяется по закону \(~U = U_0\sin wt.\) Как известно, заряд на обкладках конденсатора можно определить по формуле \(~q = CU = CU_0\sin wt.\) Сила тока \(~I = q".\) Следовательно,

\(~I = -wCU_0\cos wt = wCU_0\sin(wt+\frac {\pi}2).\)

Отсюда \(~I=I_0\sin (wt +\frac {\pi}2),\)

где \(~I_0=wCU_o\) - амплитудное значение силы тока:

\(~I_0=\frac {U_0}{\frac 1{wC}}; I_0 =\frac {U_0}{X_C},\)

где \(~X_C = \frac 1{wC}.\)

Выразив амплитудные значения через действующие \(~I_0 = \sqrt2 I \) и \(~U_0 = \sqrt2 U,\) получим \(~I= \frac U{X_C}, \) т.е. действующее значение силы тока связано с деиству-Хс ющим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение на участке цепи постоянного тока. Это позволяет рассматривать величину Х с как сопротивление конденсатора переменному току:

\(~X_C = \frac 1{wC}\) - емкостное сопротивление.

В СИ единицей емкостного сопротивления является ом (Ом).

Как видно из полученной выше формулы, если в цепи включено только емкостное сопротивление, колебания силы тока в этой цепи опережают по фазе колебания напряжения на конденсаторе на \(~\frac {\pi}2,\) что изображено на графике и на векторной диаграмме (рис. 2).

Мгновенная мощность

\(~P=IU = I_0\sin (wt +\frac {\pi}2)U_0\sin wt = I_0U_0\sin wt \cos wt =\frac {I_0U_0}2 \sin 2wt,\)

т.е. мощность периодически изменяется с двойной частотой, а среднее значение мощности - за период \(\mathcal h P \mathcal i =0,\) так как \(~\mathcal h \sin 2wt \mathcal i = 0.\) Первую и третью четверти периода, когда конденсатор заряжается, он получает энергию от генератора, а вторую и четвертую четверти периода, когда конденсатор разряжается, он отдает энергию генератору.

Таким образом, так же, как активное сопротивление, емкостное сопротивление ограничивает силу тока в цепи, но в отличие от активного сопротивления на емкостном сопротивлении электрическая энергия не превращается необратимо в другие виды энергии.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 402-404.

Емкостное сопротивление это сопротивление переменному току, которое оказывает электрическая емкость. Ток в цепи с емкостью опережает напряжение по фазе на 90 градусов. Емкостное сопротивление является реактивным, то есть потерь энергии в нем не происходит как, например, в активном сопротивлении. Емкостное сопротивление обратно пропорционально частоте переменного тока.

Проведем эксперимент, для этого нам понадобится. Конденсатор лампа накаливания и два источника напряжения один постоянного тока другой переменного. Для начала построим цепь, состоящую из источника постоянного напряжения, лампы и конденсатора все это включено последовательно.

Рисунок 1 — конденсатор в цепи постоянного тока

При включении тока лампа вспыхнет на короткое время, а потом погаснет. Так как для постоянного тока конденсатор имеет большое электрическое сопротивление. Оно и понятно ведь между обкладками конденсатора находится диэлектрик, через который постоянный ток не способен пройти. А вспыхнет лампа по тому, что в момент включения источника постоянного напряжения идет кратковременный импульс тока, заряжающий конденсатор. А раз ток идет значит и лампа светится.

Теперь в этой цепи заменим источник постоянного напряжения на генератор переменного. При включении такой цепи мы обнаружим, что лампа буде светится непрерывно. Происходит это по тому, что конденсатор в цепи переменного тока заряжается за четверть периода. Когда напряжение на нем достигнет амплитудного значения, напряжение на нем начинает уменьшаться, и он будет, разряжается следующие четверть периода. В следующие пол периода процесс повторится снова, но напряжение в этот раз уже будет отрицательным.

Таким образом, в цепи непрерывно течет ток хотя он и меняет при этом свое направление дважды за период. Но через диэлектрик конденсатора заряды не проходят. Как же это происходит.

Представим себе конденсатор, подключаемый к источнику постоянного напряжения. При включении, источник убирает электроны с одной обкладки, тем самым создавая на ней положительный заряд. А на второй обкладке добавляет электронов, создавая тем самым равный по величине, но противоположный по знаку отрицательный заряд. В момент перераспределения зарядов в цепи протекает ток заряда конденсатора. Хотя электроны при этом не движутся через диэлектрик конденсатора.

Рисунок 2 — заряд конденсатора

Если теперь из цепи исключить конденсатор, то лампа будет светить ярче. Это говорит о том, что емкость создает сопротивление, току ограничивая его величину. Происходит это из-за того что при заданной частоте тока значение ёмкости мало и она не успевает накопить достаточно энергии в виде зарядов на своих обкладках. И при разряде будет протекать ток меньше чем способен развить источник тока.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то