Алгоритмы и структуры данных для начинающих: стеки и очереди

При освоении программирования, рано или поздно, возникает вопрос: "Что такое стек? ".
Наиболее наглядным способом объяснения я считаю программу на языке ассемблера (не пугайтесь), которая просто добавляет данные в стек.

Стек - это структура данных присущая всей программируемой технике. Чаще всего принцип работы стека сравнивают со стопкой тарелок: чтобы взять вторую сверху, нужно снять верхнюю. Часто стек называют магазином - по аналогии с магазином в огнестрельном оружии (стрельба начнётся с патрона, заряженного последним).

Зачем все это нужно?

Вы вряд ли сможете написать программу, которая не будет использовать функции (подпрограммы). При вызове функции в стек копируется адрес для возврата после окончания выполнения данной подпрограммы. По окончании её выполнения адрес возвращается из стека в счетчик команд и программа продолжает выполняться с места после функции.
Также в стек необходимо помещать регистры, которые используются в данной подпрограмме (в языках высокого уровня этим занимается компилятор).
Все вышесказанное характерно для так называемого аппаратного стека. Надеюсь вы догадываетесь, что такая структура данных (LIFO - last in, first out) полезна далеко не только при работе на низком уровне. Часто возникает необходимость хранить данные в таком порядке (например известный алгоритм разбора арифметических выражений основан на работе со стеком), тогда программисты реализуют программный стек.

Как это работает?

Давайте разберем работу со стеком на примере контроллеров семейства MSP430. Я выбрал их только из-за того что у меня оказалась установленной среда для работы с ними.
В MSP430 стек основан на предекрементной схеме. Т.е. перед тем как вы записываете данные в стек он уменьшает адрес вершины стека (верхней тарелки). Бывает также постдекрементный/постинкрементный (вычитание/добавление вершины стека происходит после записи данных) и прединкрементный (перед записью адрес вершины увеличивается).
Если стек увеличивает свой адрес при записи данных, говорят о стеке растущем вверх, если же уменьшает - вниз.
За хранения адреса вершины стека отвечает регистр SP.

Как видите адрес вершины по умолчанию у нас 0x0A00.

Рассмотрим вот такую программу:

PUSH #0123h ; Помещение числа 0123h на вершину стека (TOS) ; копируем данные из памяти MOV.W &0x0A00, R5 MOV.W &0x09FE, R6 ; пишем еще два числа PUSH #9250h PUSH #0000h ; выводим данные из стека POP R8 POP R9 POP R10

Что делает эта программа?

Командой PUSH мы помещаем данные 0123h в стек. Казалось бы этой командой мы запишем 0123h в память по адресу 0x0A00, но мы ведь помним, что стек у нас предекрементный. Поэтому сначала адрес уменьшается на 2 (0x0A00 - 2 = 0x09FE) и в ячейку с полученным адресом записываются данные.

Вот так выглядела память изначально:

После выполнения команды PUSH (красным выделены изменения):

Итак данные записались.
Проверим так ли это выполнив две команды пересылки (mov). Сначала получим данные из ячейки 0x0A00 и запишем их в регистр R5, а затем запишем в регистр R6 данные из ячейки 0x09FE.
После этого в регистрах будет данные:

При выполнении команд POP вершина стека будет увеличиваться на 2 при каждой команде, а в регистры R8-10 попадут данные: 0x0000, 0x9250 и 0x0123 соответственно.
При добавлении других данные память (которая все еще содержит данные, выведенные из стека) будет заполнена новыми значениями.

Проиллюстрировать работу со стеком можно так (слева на право):

Изначально адресом стека был 0x0A00, в нем хранились 0000. При выполнении PUSH верхушкой стека стала ячека ниже (с адресом 0x09FE) и в неё записались данные. С каждой следующей командой верхушка находиться ниже в памяти.
При выполнении команды POP картина обратная.

Жду ваши вопросы в комментариях.

Мы используем всё более продвинутые языки программирования, которые позволяют нам писать меньше кода и получать отличные результаты. За это приходится платить. Поскольку мы всё реже занимаемся низкоуровневыми вещами, нормальным становится то, что многие из нас не вполне понимают, что такое стек и куча, как на самом деле происходит компиляция, в чём разница между статической и динамической типизацией, и т.д. Я не говорю, что все программисты не знают об этих понятиях - я лишь считаю, что порой стоит возвращаться к таким олдскульным вещам.

Сегодня мы поговорим лишь об одной теме: стек и куча. И стек, и куча относятся к различным местоположениям, где происходит управление памятью, но стратегия этого управления кардинально отличается.

Стек

Стек - это область оперативной памяти, которая создаётся для каждого потока. Он работает в порядке LIFO (Last In, First Out), то есть последний добавленный в стек кусок памяти будет первым в очереди на вывод из стека. Каждый раз, когда функция объявляет новую переменную, она добавляется в стек, а когда эта переменная пропадает из области видимости (например, когда функция заканчивается), она автоматически удаляется из стека. Когда стековая переменная освобождается, эта область памяти становится доступной для других стековых переменных.

Из-за такой природы стека управление памятью оказывается весьма логичным и простым для выполнения на ЦП; это приводит к высокой скорости, в особенности потому, что время цикла обновления байта стека очень мало, т.е. этот байт скорее всего привязан к кэшу процессора. Тем не менее, у такой строгой формы управления есть и недостатки. Размер стека - это фиксированная величина, и превышение лимита выделенной на стеке памяти приведёт к переполнению стека. Размер задаётся при создании потока, и у каждой переменной есть максимальный размер, зависящий от типа данных. Это позволяет ограничивать размер некоторых переменных (например, целочисленных), и вынуждает заранее объявлять размер более сложных типов данных (например, массивов), поскольку стек не позволит им изменить его. Кроме того, переменные, расположенные на стеке, всегда являются локальными.

В итоге стек позволяет управлять памятью наиболее эффективным образом - но если вам нужно использовать динамические структуры данных или глобальные переменные, то стоит обратить внимание на кучу.

Куча

Куча - это хранилище памяти, также расположенное в ОЗУ, которое допускает динамическое выделение памяти и не работает по принципу стека: это просто склад для ваших переменных. Когда вы выделяете в куче участок памяти для хранения переменной, к ней можно обратиться не только в потоке, но и во всем приложении. Именно так определяются глобальные переменные. По завершении приложения все выделенные участки памяти освобождаются. Размер кучи задаётся при запуске приложения, но, в отличие от стека, он ограничен лишь физически, и это позволяет создавать динамические переменные.

Вы взаимодействуете с кучей посредством ссылок, обычно называемых указателями - это переменные, чьи значения являются адресами других переменных. Создавая указатель, вы указываете на местоположение памяти в куче, что задаёт начальное значение переменной и говорит программе, где получить доступ к этому значению. Из-за динамической природы кучи ЦП не принимает участия в контроле над ней; в языках без сборщика мусора (C, C++) разработчику нужно вручную освобождать участки памяти, которые больше не нужны. Если этого не делать, могут возникнуть утечки и фрагментация памяти, что существенно замедлит работу кучи.

В сравнении со стеком, куча работает медленнее, поскольку переменные разбросаны по памяти, а не сидят на верхушке стека. Некорректное управление памятью в куче приводит к замедлению её работы; тем не менее, это не уменьшает её важности - если вам нужно работать с динамическими или глобальными переменными, пользуйтесь кучей.

last in - first out , «последним пришёл - первым вышел»).

Чаще всего принцип работы стека сравнивают со стопкой тарелок: чтобы взять вторую сверху, нужно снять верхнюю.

В некоторых языках (например, Lisp , Python ) стеком можно назвать любой список, так как для них доступны операции pop и push. В языке C++ стандартная библиотека имеет класс с реализованной структурой и методами . И т. д.

Энциклопедичный YouTube

    1 / 3

    Информатика. Структуры данных: Стек. Центр онлайн-обучения «Фоксфорд»

    #9. Стек / 1. Ассемблер и процедуры / Программирование с нуля

    Основы сетей передачи данных. Модель OSI и стек протоколов TCP IP. Основы Ethernet.

    Субтитры

Программный стек

Организация в памяти

Зачастую стек реализуется в виде однонаправленного списка (каждый элемент в списке содержит помимо хранимой информации в стеке указатель на следующий элемент стека).

Но также часто стек располагается в одномерном массиве с упорядоченными адресами. Такая организация стека удобна, если элемент информации занимает в памяти фиксированное количество слов, например, 1 слово. При этом отпадает необходимость хранения в элементе стека явного указателя на следующий элемент стека, что экономит память. При этом указатель стека (Stack Pointer , - SP ) обычно является регистром процессора и указывает на адрес головы стека.

Предположим для примера, что голова стека расположена по меньшему адресу, следующие элементы располагаются по нарастающим адресам. При каждом вталкивании слова в стек, SP сначала уменьшается на 1 и затем по адресу из SP производится запись в память. При каждом извлечении слова из стека (выталкивании) сначала производится чтение по текущему адресу из SP и последующее увеличение содержимого SP на 1.

При организации стека в виде однонаправленного списка значением переменной стека является указатель на его вершину - адрес вершины. Если стек пуст, то значение указателя равно NULL.

Пример реализации стека на языке С:

struct stack { char * data ; struct stack * next ; };

Операции со стеком

Возможны три операции со стеком: добавление элемента (иначе проталкивание, push ), удаление элемента (pop ) и чтение головного элемента (peek ) .

При проталкивании (push ) добавляется новый элемент, указывающий на элемент, бывший до этого головой. Новый элемент теперь становится головным.

При удалении элемента (pop ) убирается первый, а головным становится тот, на который был указатель у этого объекта (следующий элемент). При этом значение убранного элемента возвращается.

void push ( STACK * ps , int x ) // Добавление в стек нового элемента { if ( ps -> size == STACKSIZE ) // Не переполнен ли стек? { fputs ( "Error: stack overflow \n " , stderr ); abort (); } else { ps -> items [ ps -> size ++ ] = x ; } } int pop ( STACK * ps ) // Удаление из стека { if ( ps -> size == 0 ) // Не опустел ли стек? { fputs ( "Error: stack underflow \n " , stderr ); abort (); } else { return ps -> items [ -- ps -> size ]; } }

Область применения

Программный вид стека используется для обхода структур данных, например, дерево или граф . При использовании рекурсивных функций также будет применяться стек, но аппаратный его вид. Кроме этих назначений, стек используется для организации

Аналогичные процессы происходят при аппаратном прерывании (процессор X86 при аппаратном прерывании сохраняет автоматически в стеке ещё и регистр флагов). Кроме того, компиляторы размещают локальные переменные процедур в стеке (если в процессоре предусмотрен доступ к произвольному месту стека).

До использования стека он должен быть инициализирован так, чтобы регистры SS:ESP указывали на адрес головы стека в области физической оперативной памяти, причем под хранение данных в стеке необходимо зарезервировать нужное количество ячеек памяти (очевидно, что стек в ПЗУ , естественно, не может быть организован). Прикладные программы, как правило, от операционной системы получают готовый к употреблению стек. В защищенном режиме работы процессора сегмент состояния задачи содержит четыре селектора сегментов стека (для разных уровней привилегий), но в каждый момент используется только один стек .

Стек

Стек - самая популярная и, пожалуй, самая важная структура данных в программировании. Стек представляет собой запоминающее устройство, из которого элементы извлекаются в порядке, обратном их добавлению. Это как бы неправильная очередь, в которой первым обслуживают того, кто встал в нее последним. В программистской литературе общепринятыми являются аббревиатуры, обозначающие дисциплину работы очереди и стека. Дисциплина работы очереди обозначается FIFO, что означает первым пришел - первым уйдешь (First In First Out). Дисциплина работы стека обозначается LIFO, последним пришел - первым уйдешь (Last In First Out).

Стек можно представить в виде трубки с подпружиненым дном, расположеной вертикально. Верхний конец трубки открыт, в него можно добавлять, или, как говорят, заталкивать элементы. Общепринятые английские термины в этом плане очень красочны, операция добавления элемента в стек обозначается push, в переводе "затолкнуть, запихнуть". Новый добавляемый элемент проталкивает элементы, помещеные в стек ранее, на одну позицию вниз. При извлечении элементов из стека они как бы выталкиваются вверх, по-английски pop ("выстреливают").

Примером стека может служить стог сена, стопка бумаг на столе, стопка тарелок и т.п. Отсюда произошло название стека, что по-английски означает стопка. Тарелки снимаются со стопки в порядке, обратном их добавлению. Доступна только верхняя тарелка, т.е. тарелка на вершине стека . Хорошим примером будет также служить железнодорожный тупик, в который можно составлять вагоны.

Стек применяется довольно часто, причем в самых разных ситуациях. Объединяет их следующая цель: нужно сохранить некоторую работу, которая еще не выполнена до конца, при необходимости переключения на другую задачу. Стек используется для временного сохранения состояния не выполненного до конца задания. После сохранения состояния компьютер переключается на другую задачу. По окончании ее выполнения состояние отложенного задания восстанавливается из стека, и компьютер продолжает прерванную работу.

Почему именно стек используется для сохранения состояния прерванного задания? Предположим, что компьютер выполняет задачу A. В процессе ее выполнения возникает необходимость выполнить задачу B. Состояние задачи A запоминается, и компьютер переходит к выполнению задачи B. Но ведь и при выполнении задачи B компьютер может переключиться на другую задачу C, и нужно будет сохранить состояние задачи B, прежде чем перейти к C. Позже, по окончании C будет сперва восстановлено состояние задачи B, затем, по окончании B, - состояние задачи A. Таким образом, восстановление происходит в порядке, обратном сохранению, что соответствует дисциплине работы стека.



Стек позволяет организовать рекурсию, т.е. обращение подпрограммы к самой себе либо непосредственно, либо через цепочку других вызовов. Пусть, например, подпрограмма A выполняет алгоритм, зависящий от входного параметра X и, возможно, от состояния глобальных данных. Для самых простых значений X алгоритм реализуется непосредственно. В случае более сложных значений X алгоритм реализуется как сведение к применению того же алгоритма для более простых значений X. При этом подпрограмма A обращается сама к себе, передавая в качестве параметра более простое значение X. При таком обращении предыдущее значение параметра X, а также все локальные переменные подпрограммы A сохраняются в стеке. Далее создается новый набор локальных переменных и переменная, содержащая новое (более простое) значение параметра X. Вызванная подпрограмма A работает с новым набором переменных, не разрушая предыдущего набора. По окончании вызова старый набор локальных переменных и старое состояние входного параметра X восстанавливаются из стека, и подпрограмма продолжает работу с того места, где она была прервана.

На самом деле даже не приходится специальным образом сохранять значения локальных переменных подпрограммы в стеке. Дело в том, что локальные переменные подпрограммы (т.е. ее внутренние, рабочие переменные, которые создаются в начале ее выполнения и уничтожаются в конце) размещаются в стеке, реализованном аппаратно на базе обычной оперативной памяти. В самом начале работы подпрограмма захватывает место в стеке под свои локальные переменные, этот участок памяти в аппаратном стеке называют обычно блок локальных переменных или по-английски frame ("кадр "). В момент окончания работы подпрограмма освобождает память, удаляя из стека блок своих локальных переменных.

Кроме локальных переменных, в аппаратном стеке сохраняются адреса возврата при вызовах подпрограмм. Пусть в некоторой точке программы A вызывается подпрограмма B . Перед вызовом подпрограммы B адрес инструкции, следующей за инструкцией вызова B, сохраняется в стеке. Это так называемый адрес возврата в программу A. По окончании работы подпрограмма B извлекает из стека адрес возврата в программу A и возвращает управление по этому адресу. Таким образом, компьютер продолжает выполнение программы A, начиная с инструкции, следующей за инструкцией вызова. В большинстве процессоров имеются специальные команды, поддерживающие вызов подпрограммы с предварительным помещением адреса возврата в стек и возврат из подпрограммы по адресу, извлекаемому из стека. Обычно команда вызова назывется call, команда возврата - return.

В стек помещаются также параметры подпрограммы или функции перед ее вызовом. Порядок их помещения в стек зависит от соглашений, принятых в языках высокого уровня. Так, в языке Си или C++ на вершине стека лежит первый аргумент функции, под ним второй и так далее. В Паскале все наоборот, на вершине стека лежит последний аргумент функции. (Поэтому, кстати, в Си возможны функции с переменным числом аргументов, такие, как printf, а в Паскале нет.)

В Фортране-4, одном из самых старых и самых удачных языков программирования, аргументы передаются через специальную область памяти, которая может располагаться не в стеке, поскольку до конца 70-х годов XX века еще существовали компьютеры вроде IBM 360 или ЕС ЭВМ без аппаратной реализации стека. Адреса возврата также сохранялись не в стеке, а в фиксированных для каждой подпрограммы ячейках памяти. Программисты называют такую память статической в том смысле, что статические переменные занимают всегда одно и то же место в памяти в любой момент работы программы. При использовании только статической памяти рекурсия невозможна, поскольку при новом вызове предыдущие значения локальных переменных разрушаются. В эталонном Фортране-4 использовались только статические переменные, а рекурсия была запрещена. До сих пор язык Фортран широко используется в научных и инженерных расчетах, однако, современный стандарт Фортрана-90 уже вводит стековую память, устраняя недостатки ранних версий языка.

(англ. last in - first out , «последним пришёл - первым вышел»).

Чаще всего принцип работы стека сравнивают со стопкой тарелок: чтобы взять вторую сверху, нужно снять верхнюю.

В некоторых языках (например, Lisp , Python ) стеком можно назвать любой список, так как для них доступны операции pop и push. В языке C++ стандартная библиотека имеет класс с реализованной структурой и методами . И т. д.

Программный стек

Организация в памяти

Зачастую стек реализуется в виде однонаправленного списка (каждый элемент в списке содержит помимо хранимой информации в стеке указатель на следующий элемент стека).

Но также часто стек располагается в одномерном массиве с упорядоченными адресами. Такая организация стека удобна, если элемент информации занимает в памяти фиксированное количество слов, например, 1 слово. При этом отпадает необходимость хранения в элементе стека явного указателя на следующий элемент стека, что экономит память. При этом указатель стека (Stack Pointer , - SP ) обычно является регистром процессора и указывает на адрес головы стека.

Предположим для примера, что голова стека расположена по меньшему адресу, следующие элементы располагаются по нарастающим адресам. При каждом вталкивании слова в стек, SP сначала уменьшается на 1 и затем по адресу из SP производится запись в память. При каждом извлечении слова из стека (выталкивании) сначала производится чтение по текущему адресу из SP и последующее увеличение содержимого SP на 1.

При организации стека в виде однонаправленного списка значением переменной стека является указатель на его вершину - адрес вершины. Если стек пуст, то значение указателя равно NULL.

Пример реализации стека на языке С:

struct stack { char * data ; struct stack * next ; };

Операции со стеком

Возможны три операции со стеком: добавление элемента (иначе проталкивание, push ), удаление элемента (pop ) и чтение головного элемента (peek ) .

При проталкивании (push ) добавляется новый элемент, указывающий на элемент, бывший до этого головой. Новый элемент теперь становится головным.

При удалении элемента (pop ) убирается первый, а головным становится тот, на который был указатель у этого объекта (следующий элемент). При этом значение убранного элемента возвращается.

void push ( STACK * ps , int x ) // Добавление в стек нового элемента { if ( ps -> size == STACKSIZE ) // Не переполнен ли стек? { fputs ( "Error: stack overflow \n " , stderr ); abort (); } else { ps -> items [ ps -> size ++ ] = x ; } } int pop ( STACK * ps ) // Удаление из стека { if ( ps -> size == 0 ) // Не опустел ли стек? { fputs ( "Error: stack underflow \n " , stderr ); abort (); } else { return ps -> items [ -- ps -> size ]; } }

Область применения

Программный вид стека используется для обхода структур данных , например, дерево или граф . При использовании рекурсивных функций также будет применяться стек, но аппаратный его вид. Кроме этих назначений, стек используется для организации стековой машины , реализующей вычисления в обратной польской записи .

Для отслеживания точек возврата из подпрограмм используется стек вызовов.

Идея стека используется в стековой машине среди стековых языков программирования .

Применение стека упрощает и ускоряет работу программы, так как идет обращение к нескольким данным по одному адресу.

Аппаратный стек

До использования стека он должен быть инициализирован так, чтобы регистры SS:ESP указывали на адрес головы стека в области физической оперативной памяти, причём под хранение данных в стеке необходимо зарезервировать нужное количество ячеек памяти (очевидно, что стек в ПЗУ , естественно, не может быть организован). Прикладные программы, как правило, от операционной системы получают готовый к употреблению стек. В защищённом режиме работы процессора сегмент состояния задачи содержит четыре селектора сегментов стека (для разных уровней привилегий), но в каждый момент используется только один стек .

Примечания

  1. Машина Тьюринга: Введение (неопр.) . Проверено 12 февраля 2013.
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то