Амплитудная модуляция аналоговых сигналов. Амплитудная модуляция и ее совершенствование

На панели любого современного радиоприемника есть переключатель AM-FM. Как правило, обычный потребитель не задумывается о том, что означают эти буквы, ему достаточно запомнить, что на FM есть его любимая УКВ-радиостанция, транслирующая сигнал в стереозвучании и с прекрасным качеством, а на АМ можно поймать «Маяк». Если же вникнуть в технические подробности хотя бы на уровне пользовательской инструкции, то выяснится, что АМ - это амплитудная модуляция, а FM - частотная. Чем же они отличаются?

Для того чтобы из громкоговорителя радиоприемника зазвучала музыка, должен претерпеть определенные изменения. В первую очередь его следует сделать пригодным для радиотрансляции. Амплитудная модуляция стала первым способом, которым инженеры-связисты научились передавать речевые и музыкальные программы в эфире. Американец Фессенден в 1906 году с помощью механического генератора получил колебания в 50 килогерц, ставшие первой в истории несущей частотой. Далее он решил техническую проблему самым простым способом, установив микрофон на выходе обмотки. При воздействии на угольный порошок внутри мембранной коробки менялось его сопротивление, и величина сигнала, поступающего от генератора на передающую антенну, уменьшалась или увеличивалась в зависимости от них. Так была изобретена амплитудная модуляция, то есть изменение размаха несущего сигнала таким образом, чтобы форма огибающей линии соответствовала форме передаваемого сигнала. В двадцатые годы механические генераторы были вытеснены электронно-ламповыми. Это значительно уменьшило габариты и вес передатчиков.

Отличается от амплитудной тем, что размах несущей волны остается неизменным, меняется ее частота. По мере развития электронной базы и схемотехники появились другие способы, с помощью которых информационный сигнал «садился» на частоту радиодиапазона. Изменение фазы и широты импульса дали название фазовой и широтно-импульсной модуляциям. Казалось, что амплитудная модуляция как способ радиотрансляции устарела. Но вышло иначе, она сохранила свои позиции, хотя и в несколько измененном виде.

Растущие требования к информационной насыщенности частот побуждали инженеров искать способы увеличить количество каналов, передаваемых на одной волне. Возможности многоканальной трансляции определяются и барьером Найквиста, однако, помимо квантования сигнала, появилась возможность увеличить информационную нагрузку на посредством изменения фазы. Квадратурно-амплитудная модуляция - это такой способ передачи, при котором на одной частоте передаются разные сигналы, сдвинутые по фазе относительно друг друга на 90 градусов. Четырехфазность образует квадратуру или комбинацию двух составляющих, описываемых тригонометрическими функциями sin и cos, отсюда и название.

Квадратурная амплитудная модуляция получила широкое распространение в цифровой связи. По своей сути она представляет собой сочетание фазной и амплитудной модуляции.

Амплитудная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда
Первый опыт передачи речи и музыки по радио методом амплитудной модуляции произвёл в 1906 году американский инженер Р. Фессенден. Несущая частота 50 кГц радиопередатчика вырабатывалась машинным генератором (альтернатором), для её модуляции между генератором и антенной включался угольный микрофон, изменяющий затухание сигнала в цепи. С 1920 года вместо альтернаторов стали использоваться генераторы на электронных лампах. Во второй половине 1930-х годов, по мере освоения ультракоротких волн, амплитудная модуляция постепенно начала вытесняться из радиовещания и радиосвязи на УКВ частотной модуляцией. С середины XX века в служебной и любительской радиосвязи на всех частотах внедряется модуляция с одной боковой полосой (ОБП), которая имеет ряд важных преимуществ перед АМ. Поднимался вопрос о переводе на ОБП и радиовещания, однако это потребовало бы замены всех радиовещательных приёмников на более сложные и дорогие, поэтому не было осуществлено. В конце XX века начался переход к цифровому радиовещанию с использованием сигналов с амплитудной манипуляцией.
Аудиосигнал может модулировать амплитуду (AM) или частоту (ЧМ) несущей. Пусть S(t) — информационный сигнал, |S(t)|<1, U_c(t) — несущее колебание. Тогда амплитудно-модулированный сигнал U_\text{am}(t) может быть записан следующим образом: U_\text{am}(t)=U_c(t).\qquad\qquad(1) Здесь m — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал U_c(t), модулированный по амплитуде сигналом S(t) с коэффициентом модуляции m. Предполагается также, что выполнены условия: |S(t)|<1,\quad 0Пример Допустим, что мы хотим промодулировать несущее колебание моногармоническим сигналом. Выражение для несущего колебания с частотой \omega_c имеет вид (начальную фазу положим равной нулю U_c(t)=C\sin(\omega_c t). Выражение для модулирующего синусоидального сигнала с частотой \omega_s имеет вид U_s(t)=U_0\sin(\omega_s t+\varphi), где \varphi — начальная фаза. Тогда U_\mathrm{am}(t)=C\sin(\omega_c t). Приведённая выше формула для y(t) может быть записана в следующем виде: U_\mathrm{am}(t)=C\sin(\omega_c t)+\frac{mCU_0}{2}(\cos((\omega_c-\omega_s)t-\varphi)-\cos((\omega_c+\omega_s)t+\varphi)). Радиосигнал состоит из несущего колебания и двух синусоидальных колебаний, называемых боковыми полосами, каждое из которых имеет частоту, отличную от \omega_c. Для синусоидального сигнала, использованного здесь, частоты равны \omega_c+\omega_s и \omega_c-\omega_s. Пока несущие частоты соседних радиостанций достаточно разнесены, и боковые полосы не перекрываются между собой, станции не будут влиять друг на друга.

Для передачи на расстояние без проводов речи, музыки, изображения используется переменное напряжение высокой частоты (свыше 100 кГц), излучаемое в пространстве антенной радиопередатчика. Чтобы осуществить радиотелефонную передачу сигнала, амплитуда высокой частоты передатчика или его частота должна меняться по закону низкой (звуковой) частоты Амплитудная модуляция характеризуется коэффициентом глубины модуляции (m), который выражает отношение приращения амплитуды высокой частоты (dUm) к ее среднему значению (Um):m= dUm/Um * 100%В процессе радиопередачи он может меняться от 0 до 80 процентов - более увеличивать нецелесообразно, так как могут появляться нелинейные искажения сигнала низкой частоты. Если модуляцию высокой частоты произвести сигналом одной какой-либо низкой частоты (Fн), то промодулированный сигнал будет представлять совокупность трех частот: несущей, верхней боковой и нижней боковой. Если же модуляцию произвести целым спектром частот, то получится спектр высоких частот с верхней и нижней боковыми полосами. Поэтому один вещательный радиопередатчик занимает в высокочастотном диапазоне полосу шириной не менее 10 кГц.

где – амплитуда несущей; – коэффициент пропорциональности, выбираемый так, чтобы амплитуда всегда была положительной. Частота и фаза несущего гармонического колебания при AM остаются неизменными.

Для математического описания AM сигнала в (2.2) вместо коэффициента , зависящего от конкретной схемы модулятора, вводится индекс модуляции:

,

т.е. отношение разности между максимальным и минимальным значениями амплитуд AM сигнала к сумме этих значений. Для симметричного модулирующего сигнала AM сигнал также симметричный, т.е. . Тогда индекс модуляции равен отношению максимального приращения амплитуды, к амплитуде несущей.

Амплитудная модуляция гармоническим колебанием. В простейшем случае модулирующий сигнал является гармоническим колебанием с частотой . При этом выражение

соответствует однотональному AM сигналу, представленному на рис. 2.26.

Однотональный AM сигнал можно представить в виде суммы трех гармонических составляющих с частотами: – несущей; – верхней боковой и – нижней боковой:

.

Спектральная диаграмма однотонального AM сигнала, построенная по (2.7), симметрична относительно несущей частоты (рис. 2.2,в). Амплитуды боковых колебаний с частотами и одинаковы и даже при не превышают половины амплитуды несущего колебания .

Гармонические модулирующие сигналы и соответственно однотональный AM сигнал на практике встречаются редко. В большинстве случаев модулирующие первичные сигналы являются сложными функциями времени (рис.2.3,а). Любой сложный сигнал можно представить в виде конечной или бесконечной суммы гармонических составляющих, воспользовавшись рядом или интегралом Фурье. Каждая гармоническая составляющая сигнала с частотой приведет к появлению в AM сигнале двух боковых составляющих с частотами .

Множеству гармонических составляющих в модулирующем сигнале с частотами будет соответствовать множество боковых составляющих с частотами . Для наглядности такое преобразование спектра при AM показано на рис. 2.3,б. Спектр сложномодулированного AM сигнала, помимо несущего колебания с частотой , содержит группы верхних и нижних боковых колебаний, образующих соответственно верхнюю боковую полосу и нижнюю боковую полосу AM сигнала.

При этом верхняя боковая полоса частот является масштабной копией спектра информационного сигнала, сдвинутого в область высоких частот на величину . Нижняя боковая полоса частот также повторяет спектральную диаграмму сигнала , но частоты в ней располагаются в зеркальном порядке относительно несущей частоты .

Ширина спектра AM сигнала равна удвоенному значению наиболее высокой частоты спектра модулирующего низкочастотного сигнала, т. е. .

Наличие двух боковых полос обусловливает расширение занимаемой полосы частот примерно в два раза, по сравнению со спектром информационного сигнала. Мощность, приходящаяся на колебание несущей частоты, постоянна. Мощность, заключенная в боковых полосах, зависит от индекса модуляции и увеличивается с увеличением глубины модуляции. Однако даже в крайнем случае, когда , только всей мощности колебания приходится на две боковые полосы.

Амплитудная модуляция - это процесс формирования амплитудно-моду-лированного сигнала, т.е. сигнала, амплитуда которого изменяется по закону модулирующего сигнала (передаваемого сообщения). Этот процесс реализуется амплитудным модулятором.

Амплитудный модулятор должен формировать высокочастотное колебание, аналитическое выражение для которого в общем случае имеет вид

где - огибающая модулированного колебания, описываемая функцией, которая характеризует закон изменения амплитуды;

Модулирующий сигнал;

И - частота и начальная фаза высокочастотного колебания.

Для получения такого сигнала необходимо осуществить перемножение высокочастотного (несущего) колебания и низкочастотного модулирующего сигнала таким образом, чтобы сформировалась огибающая вида . Наличие постоянной составляющей в структуре огибающей обеспечивает однополярность ее изменения, коэффициент исключает перемодуляцию, т.е. обеспечивает глубину модуляции . Понятно, что такая операция перемножения будет сопровождаться трансформацией спектра, что позволяет рассматривать амплитудную модуляцию как существенно нелинейный или параметрический процесс.

Структура амплитудного модулятора в случае использования нелинейного элемента представлена на рис. 8.4.

Рис. 8.4. Структурная схема амплитудного модулятора

Нелинейный элемент осуществляет преобразование несущего колебания и модулирующего сигнала, в результате чего формируется ток (или напряжение), в спектре которого содержатся составляющие в полосе частот от до , причем - наивысшая частота в спектре модулирующего сигнала. Полосовой фильтр выделяет эти составляющие спектра, формируя амплитудно-модулированный сигнал на выходе.

Перемножение двух сигналов можно осуществить с помощью нелинейного элемента, характеристика которого аппроксимируется полиномом, содержащим квадратичный член. Благодаря этому формируется квадрат суммы двух сигналов, содержащий их произведение.

Суть сказанного и общую идею формирования амплитудно-модулированного колебания иллюстрируют достаточно простые математические преобразования в предположении, что осуществляется тональная (одной частотой) модуляция.

1. В качестве нелинейного элемента используем транзистор , ВАХ которого аппроксимируется полиномом второй степени .

2. На вход нелинейного элемента подается напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.

3. Спектральный состав тока определяется следующим образом:


В полученном выражении спектральные составляющие расположены в порядке возрастания их частот. Среди них имеются составляющие с частотами , и , которые образуют амплитудно-модулированное колебание, т.е.

В передающих устройствах обычно совмещают процессы модуляции и усиления, что обеспечивает минимальные искажения модулированных сигналов. С этой целью амплитудные модуляторы строят по схеме резонансных усилителей мощности, в которых изменение амплитуды высокочастотных колебаний достигается изменением положения рабочей точки по закону модулирующего сигнала.

Схема и режимы работы амплитудного модулятора

Схема амплитудного модулятора на основе резонансного усилителя представлена на рис. 8.5.

Рис. 8.5. Схема амплитудного модулятора на основе резонансного усилителя

На вход резонансного усилителя, работающего в нелинейном режиме, подаются:

несущее колебание от автогенератора с помощью высокочастотной трансформаторной связи контура входной цепи с базой транзистора;

модулирующий сигнал с помощью низкочастотного трансформатора .

Конденсаторы и - блокировочные, обеспечивают развязку входных цепей по частотам несущего колебания и модулирующего сигнала, т.е. развязку по высокой и низкой частотам. Колебательный контур в цепи коллектора настроен на частоту несущего колебания, добротность контура обеспечивает полосу пропускания , где - наивысшая частота в спектре модулирующего сигнала.

Выбором рабочей точки определяется режим работы модулятора. Возможны два режима: режим малых и режим больших сигналов.

а. Режим малых входных сигналов

Этот режим устанавливается выбором рабочей точки в середине квадратичного участка ВАХ транзистора. Выбором амплитуды несущего колебания обеспечивается работа модулятора в пределах этого участка (рис. 8.6).

Рис. 8.6. Режим малых входных сигналов амплитудного модулятора

Амплитуда напряжения на колебательном контуре, резонансная частота которого равна несущей частоте, определяется амплитудой первой гармоники тока, т.е. , где - резонансное сопротивление контура. Учитывая, что средняя крутизна ВАХ в пределах рабочего участка равна отношению амплитуды первой гармоники к амплитуде несущего колебания, т.е. , можно записать

.

Под воздействием модулирующего напряжения, подаваемого на базу транзистора, будет изменяться положение рабочей точки, а значит, будет изменяться и средняя крутизна ВАХ. Так как амплитуда напряжения на колебательном контуре пропорциональна средней крутизне, то для обеспечения амплитудной модуляции несущего колебания необходимо обеспечить линейную зависимость крутизны от модулирующего сигнала. Покажем, что это возможно при использовании рабочего участка ВАХ, аппроксимируемого полиномом второй степени.

Итак, в пределах квадратичного участка ВАХ, описываемого полиномом , существует входное напряжение, равное сумме двух колебаний: несущего и модулирующего, т.е.

Спектральный состав тока коллектора определяется следующим образом:

Выделяем первую гармонику тока:

Таким образом, амплитуда первой гармоники равна:

Как видно из полученного выражения, амплитуда первой гармоники тока линейно зависит от модулирующего напряжения. Следовательно, средняя крутизна также будет линейно зависеть от модулирующего напряжения.

Тогда напряжение на колебательном контуре будет равно:

Следовательно, на выходе рассматриваемого модулятора формируется амплитудно-модулированный сигнал вида:

Здесь - коэффициент глубины модуляции;

- амплитуда высокочастотного колебания на выходе модулятора в отсутствие модуляции, т.е. при .

При проектировании передающих систем важным требованием является формирование амплитудно-модулированных колебаний большой мощности при достаточном КПД . Очевидно, что рассмотренный режим работы модулятора не может обеспечить эти требования, особенно первое из них. Поэтому наиболее часто используют так называемый режим больших сигналов.

б. Режим больших входных сигналов

Этот режим устанавливается выбором рабочей точки на ВАХ транзистора, при котором усилитель работает с отсечкой тока. В свою очередь, выбором амплитуды несущего колебания обеспечивается изменение амплитуды импульсов тока коллектора по закону модулирующего сигнала (рис. 8.7). Это приводит к аналогичному изменению амплитуды первой гармоники коллекторного тока и, следовательно, изменению амплитуды напряжения на колебательном контуре модулятора, так как

и .

Рис. 8.7. Режим больших входных сигналов амплитудного модулятора

Изменение амплитуды входного высокочастотного напряжения во времени сопровождается изменением угла отсечки, а значит, и коэффициента . Следовательно, форма огибающей напряжения на контуре может отличаться от формы модулирующего сигнала, что является недостатком рассмотренного метода модуляции. Для обеспечения минимальных искажений необходимо устанавливать определенные пределы изменения угла отсечки и работать при не слишком большом коэффициенте модуляции .

В схеме амплитудного модулятора, приведенной на рис. 8.8, модулирующий сигнал подается на базу транзистора генератора стабильного тока. Значение этого тока пропорционально входному напряжению. При малых значениях входных напряжений амплитуда выходного напряжения будет зависеть от модулирующего сигнала следующим образом

где - коэффициенты пропорциональности.

Характеристики амплитудного модулятора

Для выбора режима работы модулятора и оценки качества его работы используют различные характеристики, основными из которых являются: статическая модуляционная характеристика, динамическая модуляционная характеристика и частотная характеристика.

Рис. 8.8. Схема амплитудного модулятора с генератором тока

а. Статическая модуляционная характеристика

Статическая модуляционная характеристика (СМХ) - это зависимость амплитуды выходного напряжения модулятора от напряжения смещения при постоянной амплитуде напряжения несущей частоты на входе, т.е. .

При экспериментальном определении статической модуляционной характеристики на вход модулятора подается только напряжение несущей частоты (модулирующий сигнал не подается), изменяется величина (как бы имитируется изменение модулирующего сигнала в статике) и фиксируется изменение амплитуды несущего колебания на выходе. Вид характеристики (рис. 8.9,а) определяется динамикой изменения средней крутизны ВАХ при изменении напряжения смещения. Линейный возрастающий участок СМХ соответствует квадратичному участку ВАХ, так как на этом участке с ростом напряжения смещения средняя крутизна растет. Горизонтальный участок СМХ соответствует линейному участку ВАХ, т.е. участку с постоянной средней крутизной. При переходе транзистора в режим насыщения появляется горизонтальный участок ВАХ с нулевой крутизной, что и отражается спадом СМХ

Статическая модуляционная характеристика позволяет определить величину напряжения смещения и приемлемый диапазон изменения модулирующего сигнала с целью обеспечения его линейной зависимости от выходного напряжения. Работа модулятора должна происходить в пределах линейного участка СМХ. Величина напряжения смещения должна соответствовать середине линейного участка, а максимальное значение модулирующего сигнала не должна выходить за пределы линейного участка СМХ. Можно также определить максимальный коэффициент модуляции , при котором еще нет искажений. Его величина равна .

Рис. 8.9. Характеристики амплитудного модулятора

б. Динамическая модуляционная характеристика

Динамическая модуляционная характеристика (ДМХ) - это зависимость коэффициента модуляции от амплитуды модулирующего сигнала, т.е. . Получить эту характеристику можно экспериментальным путем, либо по статической модуляционной характеристике. Вид ДМХ представлен на рис. 8.9,б. Линейный участок характеристики соответствует работе модулятора в пределах линейного участка СМХ.

в. Частотная характеристика

Частотная характеристика - это зависимость коэффициента модуляции от частоты модулирующего сигнала, т.е. . Влияние входного трансформатора приводит к завалу характеристики на низких частотах (рис. 8.9,в). С ростом частоты модулирующего сигнала боковые составляющие амплитудно-модулированного колебания удаляются от несущей частоты. Это приводит к их меньшему усилению в силу избирательных свойств колебательного контура, что обусловливает завал характеристики на более высоких частотах . Если полоса частот, занимаемая модулирующим сигналом, находится в пределах горизонтального участка частотной характеристики, то искажения при модуляции будут минимальны.

Балансный амплитудный модулятор

Для эффективного использования мощности передатчика применяют балансную амплитудную модуляцию. При этом формируется амплитудно-модулированный сигнал, в спектре которого отсутствует составляющая на несущей частоте.

Схема балансного модулятора (рис. 8.10) представляет собой сочетание двух типовых схем амплитудных модуляторов с определенными соединениями их входов и выходов. Входы по частоте несущего колебания соединены параллельно, а выходы подключены с инверсией относительно друг друга, образуя разность выходных напряжений. Модулирующий сигнал подается на модуляторы в противофазе. В результате на выходах модуляторов имеем

И , а на выходе балансного модулятора

Рис. 8.10. Схема балансного амплитудного модулятора

Таким образом, в спектре выходного сигнала имеются составляющие с частотами и . Составляющей с частотой несущего колебания нет.

Продолжаем серию общеобразовательных статей, под общим названием «Теория радиоволн».
В предыдущих статьях мы познакомились с радиоволнами и антеннами: Давайте ближе познакомимся с модуляцией радиосигнала.

В рамках этой статьи, будет рассмотрена аналоговая модуляция следующих видов:

  • Амплитудная модуляция
  • Амплитудная модуляция c одной боковой полосой
  • Частотная модуляция
  • Линейно-частотная модуляция
  • Фазовая модуляция
  • Дифференциально-фазовая модуляция
Амплитудная модуляция
При амплитудной модуляции, огибающая амплитуд несущего колебания изменяется по закону, совпадающему с законом передаваемого сообщения. Частота и фаза несущего колебания при этом не меняется.

Одним из основных параметров АМ, является коэфициент модуляции(M).
Коэффициент модуляции - это отношение разности между максимальным и минимальным значениями амплитуд модулированного сигнала к сумме этих значений(%).
Проще говоря, этот коэффициент показывает, насколько сильно значение амплитуда несущего колебания в данный момент отклоняется от среднего значения.
При коэффициенте модуляции больше 1, возникает эффект перемодуляции, в результате чего происходит искажение сигнала.

Спектр АМ

Данный спектр свойственен для модулирующего колебания постоянной частоты.

На графике, по оси Х представлена частота, по оси У - амплитуда.
Для АМ, кроме амплитуды основной частоты, находящейся в центре, представлены также значения амплитуд справа и слева от частоты несущей. Это так называемые левая и правая боковые полосы. Они отнесены от частоты несущей на расстояние равное частоте модуляции.
Расстояние от левой до правой боковой полосы называют ширина спектра .
В нормальном случае, при коэффициенте модуляции <=1, амплитуды боковых полос меньше или равны половине амплитуды несущей.
Полезная информация заключена только в верхней или нижней боковых полосах спектра. Основная спектральная составляющая - несущая, не несет полезной информации. Мощность передатчика при амплитудной модуляции в большей части расходуется на «обогрев воздуха», за счет не информативности самого основного элемента спектра.

Амплитудная модуляция с одной боковой полосой

В связи с неэффективностью классической амплитудной модуляции, была придумана амплитудная модуляция с одной боковой полосой.
Суть ее заключается в удалении из спектра несущей и одной из боковых полос, при этом вся необходимая информация передается по оставшейся боковой полосе.

Но в чистом виде в бытовом радиовещании этот вид не прижился, т.к. в приемнике нужно синтезировать несущую с очень высокой точностью. Используется в аппаратуре уплотнения и любительском радио.
В радиовещании чаще используют АМ с одной боковой полосой и частично подавленной несущей:

При такой модуляции соотношение качество/эффективность наилучшим образом достигается.

Частотная модуляция

Вид аналоговой модуляции, при которой, частота несущей изменяется по закону модулирующего низкочастотного сигнала. Амплитуда при этом остается постоянной.

а) - несущая частота, б) модулирующий сигнал, в) результат модуляции

Наибольшее отклонение частоты от среднего значения, называется девиацией .
В идеальном варианте, девиация должна быть прямо пропорционально амплитуде модулирующего колебания.

Спектр при частотной модуляции выглядит следующим образом:

Состоит из несущей и симметрично отстающей от нее вправо и влево гармоник боковых полос, на частоту кратную частоте модулирующего колебания.
Данный спектр представляет гармоническое колебание. В случае реальной модуляции, спектр имеет более сложные очертания.
Различают широкополосную и узкополосную ЧМ модуляцию.
В широкополосной - спектр частот, значительно превосходит частоту модулирующего сигнала. Применяется в ЧМ радиовещании.
В радиостанциях применяют в основном узкополосную ЧМ модуляцию, требующую более точной настройки приемника и соответственно более защищенную от помех.
Спектры широкополосной и узкополосной ЧМ представлены ниже

Спектр узкополосной ЧМ напоминает амплитудную модуляцию, но если учесть фазу боковых полос, то окажется, что эти волны имеют постоянную амплитуду и переменную частоту, а не постоянную частоту и переменную амплитуду (AM). При широкополосной ЧМ амплитуда несущей может быть очень малой, что обусловливает высокую эффективность ЧМ; это значит, что большая часть передаваемой энергии содержится в боковых частотах, несущих информацию.

Основные преимущества ЧМ, перед АМ - энергоэффективность и помехоустойчивость.

Как разновидность ЧМ, выделяют Линейно-частотную модуляцию.
Суть ее заключается в том, что частота несущего сигнала изменяется по линейному закону.

Практическая значимость линейно-частотно-модулированных (ЛЧМ) сигналов заключается в возможности существенного сжатия сигнала при приеме с увеличением его амплитуды над уровнем помех.
ЛЧМ находят применение в радиолокации.

Фазовая модуляция
В реальности, больше применяют термин фазовая манипуляция, т.к. в основном производят модуляцию дискретных сигналов.
Смысл ФМ таков, что фаза несущей, изменяется скачкообразно, при приходе очередного дискретного сигнала, отличного от предыдущего.

Из спектра можно видеть, почти полное отсутствие несущей, что указывают на высокую энергоэффективность.
Недостаток данной модуляции в том, что ошибка в одном символе, может привести к некорректному приему всех последующих.

Дифференциально-фазовая манипуляция
В случае этой модуляции, фаза меняется не при каждом изменении значения модулирующего импульса, а при изменении разности. В данном примере при приходе каждой «1».

Преимущество этого вида модуляции в том, что в случае возникновения случайной ошибки в одном символе, это не влечет дальнейшую цепочку ошибок.

Стоит отметить, что существуют также фазовые манипуляции такие как квадратурная, где используется изменение фазы в пределах 90 градусов и ФМ более высоких порядков, но их рассмотрение выходит за рамки данной статьи.

PS: хочу еще раз отметить, что цель статей не заменить учебник, а рассказать «на пальцах» об основах радио.
Рассмотрены лишь основные виды модуляций для создания у читателя представления о теме.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то