Автоматический регулятор частоты вращения вентилятора компьютера схема. Простые терморегуляторы в блоках питания - Все для "кулера" (Вентилятора) - Компьютер и электроника к нему!!! Способы управления скоростью вращения вентилятора


Это мой первый пост, в последующих я расскажу о том как сделать видео наблюдение, систему жидкостного охлаждения, автоматизированное(программируемое) освещение и еще много чего вкусного, будем паять, сверлить и прошивать чипы, а пока начнем с самого простого, но тем не менее, весьма эффективного приема: монтаж переменного резистора.

Шум от кулера зависит от количества оборотов, формы лопастей, типа подшипников и прочего. Чем больше количество оборотов, тем эффективнее охлаждение, и тем больше шума. Не всегда и не везде нужны 1600 об. и если мы их понизим, то температура поднимется на несколько градусов, что не критично, а шум может исчезнуть вовсе!

На современных материнских платах интегрировано управление оборотами кулеров, которые питаются от нее. В БИОСе можно выставить «разумный» режем, который будет менять скорость кулеров в зависимости от температуры охлаждаемого чипсета. Но на старых и бюджетных платах такой опции нет и как быть с другими кулерами, например, кулером БП или корпусным? Для этого можно монтировать переменный резистор в цепь питания кулера, такие системы продают, но они стоят невероятных денег, если учесть, что себестоимость такой системы около 1,5 - 2 долларов! Такая система продается за $40:

Вы же можете сделать ее сами, используя в качестве панельки - заглушку от вашего системного блока(заглушка в корзину, где DVD/CD приводы вставляются), а о прочем Вы узнаете из этого поста.

Т.к. я отломал 1 лопасть от кулера на БП, я купил новый на шарикоподшипниках, он значительно тише обычных:

Теперь нужно найти провод с питанием, в разрыв которого монтируем резистор. У этого кулера 3 провода: черный(GND), красный(+12V) и желтый(тахометрический контакт).

Режем красный, зачищаем и лудим.

Теперь нам понадобится переменный резистор с сопротивлением в 100 - 300 Ом и мощностью в 2-5 Вт . Мой кулер рассчитан на 0.18 А и 1,7 Вт. Если резистор будет рассчитан на меньшую мощность, чем мощность в цепи, то он будет греться и в конце концов - сгорит. Как подсказывает, exdeniz , для наших целей отлично подойдет ППБ-3А 3Вт 220 Ом . У такого как у меня переменного резистора, 3 контакта. Не буду вдаваться в подробности, просто припаяйте 1 провод к среднему контакту и одному крайнему, а второй к оставшемуся крайнему(Подробности можете узнать при помощи мультиметра\омметра. Спасибо guessss_who за комментарий).

Теперь монтируем вентилятор в корпус и находим подходящее местечко для крепления резистора.

Я решил его вставить вот так:

У резистора есть гаечка для крепления к плоскости. Обратите внимание, что корпус металлический и может замкнуть контакты резистора и он не будет работать, так что вырежьте из пластика или картона прокладку-изолятор. У меня контакты не замыкаются, к счастью, так что на фото нет прокладок.

Теперь самое главное - полевое испытание.

Я включил систему, вскрыл корпус БП и пирометром нашел самый горячий участок(это элемент, похоже транзистор, который охлаждается радиатором). Затем закрыл, выкрутил резистор на максимальные обороты и подождал 20-30 минут… Элемент нагрелся до 26.3 °C.

Затем выставил резистор на половину, шума уже не слышно, снова подождал 30 минут… Элемент нагрелся до 26,7 °C.

Опять понижаю обороты до минимума(~100 Ом), жду 30 минут, не слышу вообще никакого шума от кулера… Элемент нагрелся до 28,1 °C.

Я не знаю, что это за элемент и какая у него рабочая температура, но думаю, что он выдержит еще градусов 5-10. Но если учитывать, что на «половине» резистора шума уже не было, то больше нам ничего и не нужно! =)

Теперь Вы можете сделать такую панель, как я привел в начале статьи и это Вам обойдется в копейки.

Спасибо.

UPD: Спасибо господам из комментариев, за напоминание о ваттах.
UPD: Если Вас заинтересовала тема и Вы знаете, что такое паяльник, то Вы можете запросто собрать аналоговый реобас. Как подсказывает нам fleshy , в статье Аналоговый реобас , описывается это чудное устройство. Даже если Вы никогда не паяли платы, Вы можете собрать реобас. В статье много текста, который и я не понимаю, но главное: Состав, Схема, Мотаж(в этом параграфе есть ссылки на все необходимые статьи по пайке ).

Данный регулятор может применяться везде, где необходима автоматическая регулировка скорости вращения вентилятора, а именно, усилители, компьютеры, блоки питания, и прочие устройства.

Схема устройства

Напряжение создаваемое делителем напряжения R1 и R2 задаёт начальную скорость вращения вентилятора (когда терморезистор холодный). При нагреве резистора его сопротивление падает и напряжение подводимое к базе транзистора Vt1 увеличивается, а в след за ним увеличивается напряжение на эммитере транзистора Vt2, следовательно увеличивается напряжение питающее вентилятора и его скорость вращения.

Налаживание устройства

Некоторые вентиляторы могут нестабильно запускаться, или не запускаться вовсе при пониженном напряжении питания, то нужно подобрать сопротивления резисторов R1 и R2. Обычно новые вентиляторы запускаются без проблем. Для улучшения запуска, можно включить цепочку из последовательно соединённых резистора на 1 кОм и электролитического конденсатора между + питания и базой Vt1, параллельно терморезистору. В таком случае во время заряда конденсатора вентилятор будет работать на максимальных оборотах, а когда конденсатор зарядится обороты вентилятора снизяться до величины установленной делителем R1 и R2. Это особенно пригодится при использовании старых вентиляторов. Ёмкость конденсатора и сопротивление указана примерные, возможно их придётся подобрать при настройке.

Внесение изменений в схему

Внешний вид устройства

Вид со стороны монтажа

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
VT2 Биполярный транзистор

КТ819А

1 В блокнот
R1 Терморезистор ММТ-4 10 кОм 1 Подбирать при настройке В блокнот
R2 Резистор

12 кОм

1 SMD 1206 В блокнот
R3 Резистор

Доброго времени суток, дорогие друзья, читатели, посетители и прочие личности. Сегодня поговорим про программу SpeedFan , что понятно из заголовка.

Думаю, что все Вы помните статью " ", которая рассказывала Вам много всякой полезной информации о нагреве содержимого Вашего железного друга и несколько слов о том как с этим нагревом бороться, а именно, например, путем или .

Но что делать, если с температурами все более чем нормально, а компьютер гудит как проклятый? Ответ прост: нужно как-то регулировать скорость вращения вентиляторов, ведь именно они являются причиной шума в большинстве случаев. Как раз о том как это сделать и пойдет речь в данной статье.

Вводная про скорость кулера компьютера

Начнем с того как вообще происходит регулировка, если она есть вообще.

Изначально скорость вращения определяется и устанавливается й на основе показателей о температуре и настроек, указанных в .

Мат.плата в свою очередь делает это путём изменения напряжения/сопротивления и прочих нюансов, умно контролируя число оборотов (RPM ), опираясь на заданные Вами настройки, а так же температуру компонентов компьютера как таковую и внутри корпуса вообще.

Однако, далеко не всегда, не смотря на всякие технологии умной регулировки (Q-Fan и иже с ними), оная внятно делает свою работу, а посему крутилки на , либо вкалывают излишне сильно (часто именно так и бывает), что создает не иллюзорный шум, либо слишком слабо (редко), что повышает температуры.

Как быть? Варианта, как минимум, три :

  • Попытаться настроить всё в BIOS ;
  • Воспользоваться специализированными программами;
  • Либо физически ковырять что-то с питанием (или купив всякие там реобасы и другие физические устройства).

Вариант с BIOS , далеко не всегда оправдан, ибо, во-первых, подобная технология не везде есть, во-вторых, она далеко не так интеллектуальна как кажется, а, в-третьих, бывает необходимо менять всё вручную и на лету.

Дополнительная информация по скорости

Т.е Q-Fan в положении Enable включает автоматическое управление на основе заданных параметров в BIOS , а Disable отключает этот параметр. В зависимости от типа BIOS , как видите на скриншотах выше, этот параметр может находится на разных вкладках и выглядеть по разному. Возможно так же, что требуется переключить CPU Fan Profile с Auto на Manual или наоборот.

К сожалению, невозможно рассмотреть все вариации, но так или иначе, эта вкладка обязательно присутствует в любом компьютере (за исключением, разве что, ноутбуков) и Вы можете её там найти. В частности, не всегда это называется Q-Fan , это может быть что-то вроде CPU Fan Contol , Fan Monitor и аналогичным образом.

В двух словах как-то так. Давайте переходить к послесловию.

Послесловие

Как-то так. Про всякие глубокие настройки и другие вкладки, в рамках этой статьи, я рассказывать не буду, благо они не особенно нужны. Остальные вкладки отвечают за разгон, информацию и другие полезные данные (об этом позже).

В рамках следующей статьи из этого цикла я рассказал подробно как отрегулировать скорость , ибо оные имеют свой собственный BIOS и вентилятор, запитанные не от мат.платы или БП, а от самой карточки, а посему контролировать их через SpeedFan или мат.плату не получится.

Как и всегда, если есть какие-то вопросы, мысли, дополнения, комментарии и всё такое прочее, то добро пожаловать в комментарии к этой записи.


Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.

Схема

Схема крайне проста, содержит всего два транзистора, пару резисторов и термистор, но, тем не менее, замечательно работает. М1 на схеме – вентилятор, обороты которого будут регулироваться. Схема предназначена на использование стандартных кулеров на напряжение 12 вольт. VT1 – маломощный n-p-n транзистор, например, КТ3102Б, BC547B, КТ315Б. Здесь желательно использовать транзисторы с коэффициентом усиления 300 и больше. VT2 – мощный n-p-n транзистор, именно он коммутирует вентилятор. Можно применить недорогие отечественные КТ819, КТ829, опять же желательно выбрать транзистор с большим коэффициентом усиления. R1 – терморезистор (также его называют термистором), ключевое звено схемы. Он меняет своё сопротивление в зависимости от температуры. Сюда подойдёт любой NTС-терморезистор сопротивлением 10-200 кОм, например, отечественный ММТ-4. Номинал подстроечного резистора R2 зависит от выбора термистора, он должен быть в 1,5 – 2 раза больше. Этим резистором задаётся порог срабатывания включения вентилятора.

Изготовление регулятора

Схему можно без труда собрать навесным монтажом, а можно изготовить печатную плату, как я и сделал. Для подключения проводов питания и самого вентилятора на плате предусмотрены клеммники, а терморезистор выводится на паре проводков и крепится к радиатору. Для большей теплопроводности прикрепить его нужно, используя термопасту. Плата выполняется методом ЛУТ, ниже представлены несколько фотографий процесса.






Скачать плату:

(cкачиваний: 653)


После изготовления платы в неё, как обычно запаиваются детали, сначала мелкие, затем крупные. Стоит обратить внимание на цоколёвку транзисторов, чтобы впаять их правильно. После завершения сборки плату нужно отмыть от остатков флюса, прозвонить дорожки, убедиться в правильности монтажа.




Настройка

Теперь можно подключать к плате вентилятор и осторожно подавать питание, установив подстроечный резистор в минимальное положение (база VT1 подтянута к земле). Вентилятор при этом вращаться не должен. Затем, плавно поворачивая R2, нужно найти такой момент, когда вентилятор начнёт слегка вращаться на минимальных оборотах и повернуть подстроечник совсем чуть-чуть обратно, чтобы он перестал вращаться. Теперь можно проверять работу регулятора – достаточно приложить палец к терморезистору и вентилятор уже снова начнёт вращаться. Таким образом, когда температура радиатора равно комнатной, вентилятор не крутится, но стоит ей подняться хоть чуть-чуть, он сразу же начнёт охлаждать.


Шум, издаваемый вентиляторами в современных компьютерах довольно сильный, и это является достаточно распространенной проблемой среди пользователей. Помочь в снижении шума, издаваемого компьютерными вентиляторами системного блока, может регулятор частоты вращения вентилятора или кулера. В продаже имеются различные регуляторы, имеющие разнообразные дополнительные функции и возможности (контроль температуры, автоматическую регулировку скорости и т.д.).

Схема регулятора оборотов вентилятора.



Схема достаточно простая, и содержит всего три электронных компонента: транзистор, резистор, и переменный резистор.

В схему специально введён постоянный резистор R2, назначение которого ограничить минимальные обороты вентилятора, для того, что бы даже при самых низких оборотах обеспечить его надёжный запуск. Иначе пользователь может поставить слишком низкое напряжение на вентиляторе, при котором он будет продолжать крутиться, но которого будет недостаточно для его запуска при включении.

Детали.


  • В схеме применен довольно распространенный транзистор КТ815, его несложно приобрести на радио рынке, или даже выпаять из старой советской аппаратуры. Подойдет любой транзистор из серии КТ815, КТ817 или КТ819, с любой буквой в конце.
  • Переменный резистор, применяемый в схеме, может быть совершенно любым, подходящим по габаритам, главное, он должен иметь сопротивление 1кОм.
  • Постоянный резистор может быть любого типа с сопротивлением 1 или 1.2 кОм.
Дополнительно стоит отметить, что если у Вас возникнут трудности с приобретением переменного резистора необходимого сопротивления, то в схеме можно применить переменный резистор R1 сопротивлением от 470 Ом до 4,7 кОм, но при этом придётся изменить и сопротивление резистора R2, оно должно быть таким же, как и у R1.

Монтаж и подключение регулятора скорости.
Монтаж всей схемы осуществляется прямо на ножках переменного резистора, и проводится очень просто:



Подключается наш

регулятор оборотов

в разрыв цепи +12В, как показано на рисунке.
Внимание! Если у вашего вентилятора имеется 4 вывода, и их расцветка: черный, желтый, зелёный и синий (у таких плюс питания подаётся по желтому проводу), то регулятор включается в разрыв желтого провода.

Готовый, собранный регулятор оборотов вентилятора устанавливается в любом удобном месте системного блока, например, спереди в заглушке, пятидюймового отсека, или сзади в заглушке плат расширения. Для этого сверлится отверстие, необходимого диаметра для применяемого Вами переменного резистора, далее он вставляется в него и затягивается специальной, идущей с ним в комплекте гайкой. На ось переменного резистора, можно надеть подходящую ручку, например от старой советской аппаратуры.

Стоит заметить, что если транзистор в Вашем регуляторе будет сильно нагреваться (например, при большой потребляемой мощности вентилятором кулера или если через него подключено сразу несколько вентиляторов), то его следует установить на небольшой радиатор. Радиатором может служить кусочек алюминиевой или медной пластины толщиной 2 - 3 мм, длиной 3 см и шириной 2 см. Но как показала практика, если к регулятору подключен обычный компьютерный вентилятор с потребляемым током 0.1 - 0.2 А, то в радиаторе нет необходимости, так как транзистор нагревается совсем незначительно.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то