Автомобильное зарядное устройство на микроконтроллере. Универсальное микроконтроллерное зарядное устройство. Цветомузыка на микроконтроллере Attiny45 в авто

Краткое описание:

  • Точная калибровка тока и напряжения
  • Использование зарядного устройства без ПК
  • 12 профилей (данные хранятся в зарядном устройстве)
  • 17 различных параметров на каждую батарею, 5 редактируемых в приборе, 12 на программное обеспечение для ПК
  • Параметры редактируемые в приборе

    • Тип аккумулятора
    • Ёмкость аккумулятора
    • Количество ячеек
    • Зарядный ток
    • Разрядный ток

    Параметры редактируемые автономно (с помощью ПК)

    • Напряжение окончания заряда (все типы)
    • Дельта пик напряжение (NiCd и NiMh)
    • Максимальное напряжение заряда (LiPo и SLA)
    • Зарядный конечный ток (LiPo и SLA)
    • Максимальная ёмкость заряда

    Общие параметры зарядного устройства (с помощью программного обеспечения)

    • Выбор аккумулятора - профиля
    • Максимальный ток заряда
    • Максимальный ток разряда
    • Напряжение и ток калибровки
    • Настраиваемые поля приветствия (две стрки)

    Возможность заряжать:

    1. Никель-кадмиевый
    2. Никель-металл
    3. Литий-полимерная
    4. Герметичные свинцово-кислотные

    Работа с программным обеспечением


    Запускаем программу Universal_manager.exe , справа выбираем COM порт (1-16), подсвечиваются только действующие порты.

    Backup and Restore

    Позволяет сделать резервное копирование с зарядки в файл и восстановить данные путем записи с файла в зарядку. Внизу страницы отображается процесс установки.

    Charger Parameters

    Actual Profile - (0-11) профили настройки, все настройки отображенные ниже можно сохранить в профиль, далее выбирая профиль в зарядке можно выбрать те или иные настройки сохраненные ранее.

    MAX charge current - (0-255) максимальный ток заряда в Амперах, заряд будет ограничен этим значением тока.

    MAX discharge current - (0-255) максимальный ток разряда в Амперах, разряд будет ограничен этим значением тока.

    Buzzer frequency - (50-10000) частота динамика в Гц. С какой частотой будет звучать buzzer .

    R6

    R5 - (0-65536) корректировка сопротивления резистора в Ом.

    Current pick-up sens - (0-65535) чувствительность датчика тока

    Для датчика тока LTS-25NP: 25000

    Для датчика тока ACS750-50: 40000

    Suspended action - (0-2) при запуске программы выполняет действие, только при условии что кнопки не нажаты, почему-то работает только один раз, при следующем запуске записывается как "0", абсолютно непонятная функция.

    0-ничего не делать

    First hello line -(16 символов) строка приветствия. Когда зарядка включается отображается надпись на первой строчке.

    Second hello line -(16 символов) строка приветствия. Когда зарядка включается отображается надпись на второй строчке.

    Profiles Parameters

    Cell chemistry -(0-3) выбор типа аккумулятора :

    0:NiCd, 1:NiMh, 2:LiPo, 3:SLA

    Cell capacity -(100-25500) ёмкость аккум. в мА.

    Number of cells -(1-19) количество банок аккум.

    Charge current -(0.1-25.5) коэффициент тока заряда, как правило 1.0 коэфф. При токе в 1000мА и коэфф. 1.0 зарядный ток равняется 1А.

    Discharge current -(0.1-25.5) коэффициент тока разряда, как правило 4.0-6.0 коэфф. При токе в 1000мА и коэфф. 4.0 разрядный ток равняется 4А.

    Charge peak inhibit -(0-255) дельта-пиковый контроль, типичное значение 5-10 минут. Если аккум. долгое время не использовался то время следует увеличить.

    Cutoff NiCd -(0-2550) минимальное напряжение NiCd акум. процесса разряда в мВ, типичное значение 700-900мВ.

    Cutoff NiMh -(0-2550) минимальное напряжение NiMh акум. процесса разряда в мВ, типичное значение 900-1100мВ.

    Cutoff LiPo -(2500-3500) минимальное напряжение LiPo акум. процесса разряда в мВ, типичное значение 3000мВ.

    Cutoff SLA -(1500-2500) минимальное напряжение SLA акум. процесса разряда в мВ, типичное значение 2000мВ.

    Delta peak NiCd -(0-255) дельта-пик, используется когда зарядка завершена, типичное значение 5-10мВ.

    Delta peak NiMh -(0-255) дельта-пик, используется когда зарядка завершена, типичное значение 3-7мВ.

    Max. voltage LiPo -(3500-4500) максимальное напряжение в мВ прекращения заряда, после достижения этого порога, зарядка переходит из режима постоянного тока в постоянное напряжение, типичное значение 4200мВ.

    Max. voltage SLA -(2000-3000) максимальное напряжение в мВ прекращения заряда, после достижения этого порога, зарядка переходит из режима постоянного тока в постоянное напряжение, типичное значение 2500мВ.

    Final curr. LiPo

    Final curr. SLA -(0-255) финальный ток заряда в % от ёмкости акум., типичное значение 3-20%.

    Maximum charge -(0-255) максимальное значение заряда в % от ёмкости акум., типичное значение 120 или 70-80. Зарядка будет прекращена, когда данная ёмкость будет передана акум.

    Запускаем программу Universal_display.exe в колонке справа выбераем порт подключения из активных (которые есть в ПК). Внимание программа Universal_display.exe не может работать одновременно с программой Universal_manager.exe т.к. при выборе порта программа занимает порт для обменна данными.

    В файле Universal_Charger.ini находятся настройки для корректного отображения данных на ПК. После каллибровки по току и напряжению считываем значения R5, R6, Current scaleс помощью программы Universal_manager.exe, потом вносим данные в файл Universal_Charger.ini только после этого данные будут правильно отображатся на экранне Universal_display.exe.

    Current scale=25000

    R 5 R 6 исчесляются в единицах Ом, значение тока 25000 типичное для датчика тока LTS-25NP

    Вкладка Display - для отображения процесса заряд/разряд. Отображается три графика - напряжение, ток и ёмкость.

    PWM drive - ШИМ транзисторных ключей при заряде или разрядке АКБ. Максимальное значение 1023 для 10-бит ШИМ.

    В правой части экрана есть кнопка “RECORD on FILE” для записи данных в файл Monitor_hhmmss_DDMMYY.txt

    В имени файла отображается время, день, месяц и год.

    Запись данных обновляется с частотой 80мс одна строка.

    При запуске заряда/разряда нажимаем кнопку “RECORD on FILE” только начиная с этого момента данные начинают записыватся в файл, при отжатии кнопки данные прекращают запись.

    Описание работы в меню прибора


    Вся информация отображается на дисплее, 16 символов на 2 строки. Для управления используется четыре кнопки:

    [+] вверх, следующее

    [- ] вниз, предыдущее

    ввод

    сброс, отмена, используется при аварийном режиме или для перезагрузки МК

    Принцип управления зарядным устройством основан на выборе профиля. Всего 12 профилей. В каждом профиле можно настроить какой тип АКБ будет заряжаться, количество и прочие электрические характеристики. Профили можно редактировать с помощью простого интерфейса программы на ПК, с последующей загрузкой в зарядное устройство. При включении прибора подождите процесс инициализации, не выключайте прибор и не предпринимайте никаких действий, просто подождите когда закончится процесс инициализации . После включения прибора необходимо пройти калибровку тока и напряжения, калибровка делается только после первого включения в дальнейшем калибровать не нужно.

    Выбор профиля

    Процесс заряда заключается в выборе профиле по которому и будем заряжать АКБ.

    Распишем, что отображено на экране:

    Pack# 1 (1-12) - номер профиля

    LiPo (NiCd, NiMh, LiPo, SLA) - тип АКБ

    x 2 (1-19) - количество АКБ соединенных последовательно, к примеру АКБ из двух LiPo каждая по 3,7В, значение будет - 2

    K 2000 (100-25500) - ёмкость АКБ в мА

    C 1.0 (0,1-25,5) - ток заряда, к примеру 1,0, АКБ ёмкостью 2000мА, будет заряжаться током 2000мА

    D 4.0 (0,1-25,5) - ток разряда, к примеру 4,0, АКБ ёмкостью 2000мА, будет разряжаться током 8000мА

    Процесс заряда

    В процессе заряда на дисплее отображаются реальные данные, а не уставки.

    Chrg LiPo - тип заряжаемого АКБ

    5.49A - текущий ток заряда АКБ

    12.345V - текущее напряжение заряда на АКБ

    2690mAh - на какую ёмкость уже заряжен АКБ

    По окончанию заряда прозвучит три коротких звуковых сигнала и на дисплее будет следующая информация:

    На дисплее отображается статус заряда, напряжение до которого заряжен АКБ и ёмкость. Вентилятор еще продолжает работать охлаждая радиатор. Нажатием кнопки ОК вентилятор отключается и осуществляется переход в основное меню.

    Статусы окончания заряда могут быть следующие:

    Standard:

    1)Для NiMh и NiCd - заряжается данные АКБ постоянным значением тока. После начального заряда 5мин устройство сравнивает напряжение АКБ с пиковым значением напряжения заряда. Дельта пик по умолчанию 5мВ для NiMh и 10мВ для NiCd.

    2)Для LiPo и SLA - на начальном этапе заряжается фиксированным током по достижению 4,2В для LiPo и 2,5В для SLA после этого переходит на заряд фиксированным напряжением. Когда значение тока станет ниже 5% по умолчанию, заряд окончен.

    Timeout - отключение АКБ по истечении времени заряда ёмкость на 120% от номинальной, этот параметр настраивается через ПК.

    Error - два варианта:

    1)обрыв цепи АКБ или батарея удалена,

    2)слишком большой ток

    User break - если вручную остановить процесс заряда нажатием на кнопку ОК.

    Состояния заряда фиксируется в памяти МК, если процесс прервался потерей питания то при включении прибора, отобразится окно приветствия, процесс зарядки продолжится с того момента на котором был окончен. Если необходимо прервать процесс нажмите кнопку “break” (сброс).

    Процесс разряда

    На экране отображаются реальные данные полученные в процессе разрядки АКБ.

    5,49А текущий ток

    12,345V текущее напряжение

    2690mAh ёмкость на которую уже разряжен акумм.

    После окончания разряда вентилятор еще работает, для останова вентилятора и возврата в меню воспользуйтесь кнопкой ОК.

    Статусы окончания разряда:

    Standard - стандартный процесс, разрядка заканчивается при разряде АКБ до напряжения:

    Error - ошибка, если ток разряда слишком большой

    User break - если пользователь нажал кнопку ОК (останов разряда)

    Состояния разряда фиксируется в памяти МК, если процесс прервался потерей питания то при включении прибора, отобразится окно приветствия, процесс разрядки продолжится с того момента на котором был окончен. Если необходимо прервать процесс нажмите кнопку “break” (сброс).

    Профильный настройки

    Выбирает кнопками вверх/вниз значение, для перехода в следующий пункт жмем ОК.

    Battery type : выбор типа АКБ:

    0 - NiCd: Nickel Cadmium

    1 - NiMh: Nickel Metal hydride

    2 - LiPo: Lithium Polymer

    3 - SLA: Sealed Lead Acid

    После выбор АКБ переходим к следующему шагу.

    Battery pack capacity : ёмкость АКБ

    Значение ёмкости используется для отключения процесса заряда, при заряде на 120% от номинальной ёмкости. После выбора переходим в следующий пункт.

    Number of cells : количество банок АКБ

    К примеру 12В свинцовый аккумулятор, чтоб зарядить выбираем SLA 6шт.

    Типичные значения напряжения:

    NiCd and NiMh: 1.2 V/банку

    LiPo: 3.7 V/банку

    SLA: 2 V/банку

    Переходим в следующий пункт.

    Charge current : выбор тока заряда (0,1-25,5)

    Выбираем коэффициент, к примеру выберем 1, это значит, что при ёмкости АКБ в 2000мА ток заряда будет 2000мА.

    Выбор тока разряда (0,1-25,5)

    Выбираем коэффициент, к примеру выберем 4, это значит, что при ёмкости АКБ в 2000мА ток разряда будет 8000мА.

    PC management , подключение к ПК

    Эта функция нужна только для редактирование данных через ПК, для редактирования дополнительных параметров “advanced parameters” . Только выбрав этот режим можно соединится с ПК, в любом другом режиме невозможно соединится с программой Universal_manager.exe. Любое нажатие на кнопку возвращает в главное меню.

    Volt calibration - калибровка напряжения

    Эта функция нужна для корректировки показаний напряжения. Подключаем параллельно АКБ вольтметр эталонный. Подключаем батарею или любой источник напряжения. Кнопками вверх/вниз установите значение на приборе равное значению эталонного вольметра, по окончанию калибровки нажмите ОК.

    При настройке пользуйтесь функцией автоповтора, нажатием на кнопку более 1сек. Если с помощью прибора не удается настроить можете настроить с помощью ПК. Запустите программу Universal_manager и в Charger parameters настройте значение R5 и R6.

    Ampere calibration - калибровка тока

    Желательно с помощью ПК настроить и зашить в МК значение чувствительности датчика тока. Запускаем программу Universal_manager и в Charger parameters выставляем значение тока. К примеру 25000 мВ/Ампер для датчика тока LTS-25NP. Подключаем эталонный амперметр к выводам прибора т.е. закорачиваем амперметром вывода прибора. Кнопками верх и вниз корректируем показания и жмем ОК. Блок питания должен выдать 2А, ток будет задан 2А автоматически.

    Дополнение:

    К примеру покажу как выставить ток чувстительности который задан в описании к датчику тока.

    При выборе датчика тока необходимо учитывать (и эксперементов с шунтом), что при токе 0 Ампер на выходе будет 2,5В (половину питающего напряжения).

    Внимание! Нет защиты от переполюсовки, при переполюсовке сгорает датчик тока.

    Вы не можете скачивать файлы с нашего сервера прошивку, исходник, програмное обеспечение, документацию.

    Схемы на микроконтроллере, статьи и описания с прошивками и фотографиями для автомобиля.

    Простой тахометр на микроконтроллере ATmega8

    Тахометр применяется в автомобилях для измерения частоты вращения всяких деталей которые способны вращаться. Есть много вариантов таких устройств, я предложу вариант на AVR микроконтроллере ATmega8. Для моего варианта, вам также…

    Читать полностью

    Цветомузыка на микроконтроллере Attiny45 в авто

    Эта цветомузыка, имея малый размер и питание 12В, как вариант может использоваться в авто при каких-либо мероприятиях. Первоисточник этой схемы Радио №5, 2013г А. ЛАПТЕВ, г. Зыряновск, Казахстан. Схема…

    Читать полностью

    Контроллер обогрева зеркал и заднего стекла

    Позволяет управлять одной кнопкой раздельно обогревом заднего стекла и зеркал, плюс настраиваемый таймер отключения до полутора часов для каждого канала. Схема построена на микроконтроллере ATtiny13A. Описание работы:

    Читать полностью

    Диммер для плафона автомобиля

    Почти во всех автомобилях есть управление салонным светом, которое осуществляется с помощью бортового компьютера или отдельной бортовой системой. Свет включается плавно, и гаснет также с некой задержкой (для…

    Читать полностью

    GSM сигнализация с оповещением на мобильник

    Представляю очень популярную схему автомобильной сигнализации на базе микроконтроллера ATmega8. Такая сигнализация дает оповещение на мобильник админа в виде звонков или смс. Устройства интегрируется с мобильником с помощью…

    Читать полностью

    Моргающий стопак на микроконтроллере

    Сделал новую версию моргающего стопака. Отличается алгоритм работы и схема управления, размер и подключение такое же. Возможно регулировать частоту моргания, длительность до перехода в постоянное свечение и скважность…

    Читать полностью

    ДХО плюс стробоскопы

    Эта поделка позволяет стробоскопить светодиодными ДХО. Поделка имеет малый размер, управление всего одной кнопкой, широкие возможности настройки. Размер платы 30 на 19 миллиметров. С обратной стороны расположен клемник…

    Читать полностью

    Делаем и подключаем доводчик к сигнализации

    Количества автомобилей с автоматическим стеклоподъемниками постоянно растет, и даже если в машине нет такого, многие делают его своими руками. Моей целю было собрать такое устройства и подключить его к…

    Читать полностью

    Светодиоды включаются от скорости

    Получился «побочный продукт»: нужно было оттестить режим работы датчика скорости для проекта отображения передач на матрице 5х7, для этого собрал небольшую схемку. Схемка умеет включать светодиоды в зависимости…

    Читать полностью

    Цифровой тахометр на AVR микроконтроллере (ATtiny2313)

    Тахометр измеряет частоту вращения деталей, механизмов и других агрегатах автомобиля. Тахометр состоит из 2-х основных частей — из датчика, который измеряет скорость вращения и из дисплея, где будет…

    Читать полностью

    Простой цифровой спидометр на микроконтроллере ATmega8

    Спидометр это измерительное устройства, для определения скорости автомобиля. По способу измерения, есть несколько видов спидометра центробежные, хронометрические, вибрационные, индукционные, электромагнитные, электронные и напоследок спидометры по системе GPS.

    Читать полностью

    Плавный розжиг приборки на микроконтроллере

    Эта версия немного отличается схемой: добавлена вторая кнопка настройки и убран потенциометр скорости розжига. Возможности: Два отдельных независимых канала. Для каждого канала три группы настраиваемых параметра: время задержки до начала…

    В этой статье я расскажу, как из компьютерного блока питания формата АТ/АТХ и самодельного блока управления изготовить довольно-таки «умное» зарядное устройство для свинцово-кислотных аккумуляторных батарей. К ним относятся т.н. «УПС-овые», автомобильные и другие АКБ широкого применения.

    Описание
    Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A. Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
    Достоинства данного ЗУ - его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей.
    ]1. Режим зарядки - меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
    - первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
    - второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
    - третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С - ёмкость батареи в Ач.
    - четвёртый этап - «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
    Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это- четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.
    2. Режим тренировки (десульфатации) - меню «Тренировка». Здесь осуществляется тренировочный цикл:
    10 секунд - разряд током 0,01С, 5 секунд - заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее - обычный заряд.
    3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.
    4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С - 0.05С (ток 10-ти или 20-ти часового разряда).
    Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.
    Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля - П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
    Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.
    Значения настроек:
    1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики на рис.1 и рис.2.
    2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
    3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
    4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию - 16В.
    5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
    6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
    7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.


    Выбор и переделка блока питания.

    В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это - практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.
    Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4). Можно также применить и БП формата AT, только придется изготовить еще маломощный блок дежурного питания (дежурку) на напряжение 12В и ток 150-200мА. Разница между AT и ATX – в схеме начального запуска. АТ запускается самостоятельно, питание микросхемы ШИМ–контроллера берётся с 12-вольтовой обмотки трансформатора. В ATX для начального питания микросхемы служит отдельный источник 5В, называемый «источник дежурного питания» или «дежурка». Более подробно о блоках питания можно прочитать, например, а переделка БП в зарядное устройство неплохо описана
    Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть. Блок питания АТ запускается сразу, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме - значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.
    Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3.


    На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В,-5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом - чуть позже. Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.

    Схема и принцип работы.

    Схема блока управления показана на рис.4.


    Она довольно проста, так как все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4,C9,R7,C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера - встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине. Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения - на элементах VD1,EP1 ,R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

    Детали и конструкция.

    Микроконтроллер. В продаже обычно встречаются в корпусе DIP-40 или TQFP-44 и маркируются так: ATMega16А-PU или ATMega16A-AU. Буква после дефиса обозначает тип корпуса: «P»- корпус DIP, «A»- корпус TQFP. Встречаются также и снятые с производства микроконтроллеры ATMega16-16PU, ATMega16-16AU или ATMega16L-8AU. В них цифра после дефиса обозначает максимальную тактовую частоту контроллера. Фирма- производитель ATMEL рекомендует использовать контроллеры ATMega16A (именно с буквой «А») и в корпусе TQFP, то есть, вот такие: ATMega16A-AU, хотя в нашем устройстве будут работать все вышеперечисленные экземпляры, что и подтвердила практика. Типы корпусов отличаются также и количеством выводов (40 или 44) и их назначением. На рис.4 изображена принципиальная схема блока управления для МК в корпусе DIP.
    Резистор R8 –керамический или проволочный, мощностью не менее 10 Вт, R12- 7-10Вт. Все остальные- 0.125Вт. Резисторы R5,R6,R10 и R11 нужно применять с допустимым отклонением 0.1-0.5% . Это очень важно! От этого будет зависеть точность измерений и, следовательно, правильная работа всего устройства.
    Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В.
    Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2, Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Буззер EP1- со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.
    Жидкокристаллический индикатор – WH1602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр
    Программа
    Управляющая программа содержится в папке «Программа» Конфигурационные биты (фузы) устанавливаются следующие:
    Запрограммированы (установлены в 0):
    CKSEL0
    CKSEL1
    CKSEL3
    SPIEN
    SUT0
    BODEN
    BODLEVEL
    BOOTSZ0
    BOOTSZ1
    все остальные - незапрограммированы (установлены в 1).
    Наладка
    Итак, блок питания переделан и выдает напряжение около 10В. При подключении к нему исправного блока управления с прошитым МК, напряжение должно упасть до 0.8..15В. Резистором R1 устанавливается контрастность индикатора. Наладка устройства заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5,R6,R10,R11,R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично - калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 сек. устройство перейдет в главное меню.
    Калибровка окончена. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком - либо КУ сильно отличаются от нуля, нужно применить (подобрать) другие резисторы делителя R5,R6,R10,R11,R8, иначе в работе устройства возможны сбои. При точных резисторах (с допуском 0,1-0,5%) поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.
    Весь материал одним архивом можно скачать


    Аккумуляторы сегодня очень распространены, но зарядные устройства для них, имеющиеся в продаже, как правило, не универсальны и слишком дороги. Предлагаемое устройство предназначено для зарядки аккумуляторных батарей и отдельных аккумуляторов (в дальнейшем используется термин "батарея") с номинальным напряжением 1,2...12,6 В и током от 50 до 950 мА. Входное напряжение устройства - 7...15 В. Ток потребления без нагрузки - 20 мА. Точность поддержания тока зарядки - ±10 мА. Устройство имеет ЖКИ и удобный интерфейс для установки режима зарядки и наблюдения за её ходом.

    Реализован комбинированный метод зарядки, состоящий из двух этапов. На первом этапе батарею заряжают неизменным током. По мере зарядки напряжение на ней растёт. Как только оно достигнет заданного значения, наступит второй этап - зарядка неизменным напряжением. На этом этапе зарядный ток постепенно снижается, а на батарее поддерживается заданное напряжение. Если напряжение по какой-либо причине упадёт ниже заданного, автоматически вновь начнётся зарядка неизменным током.

    Схема зарядного устройства изображена на рис. 1.

    Рис. 1. Схема зарядного устройства

    Его основа - микроконтроллер DD1. Он тактирован от внутреннего RC-генератора частотой 8 МГц. Использованы два канала АЦП микроконтроллера. Канал ADC0 измеряет напряжение на выходе зарядного устройства, а канал ADC1 - зарядный ток.

    Оба канала работают в восьмиразрядном режиме, точности которого для описываемого устройства достаточно. Максимальное измеряемое напряжение - 19,9 В, максимальный ток - 995 мА. При превышении этих значений на экране ЖКИ HG1 появляется надпись "Hi".

    АЦП работает с образцовым напряжением 2,56 В от внутреннего источника микроконтроллера. Чтобы иметь возможность измерять большее напряжение, резистивный делитель напряжения R9R10 уменьшает его перед подачей на вход ADC0 микроконтроллера.

    Датчиком зарядного тока служит резистор R11. Падающее на нём при протекании этого тока напряжение поступает на вход ОУ DA2.1, который усиливает его приблизительно в 30 раз. Коэффициент усиления зависит от соотношения сопротивлений резисторов R8 и R6. С выхода ОУ напряжение, пропорциональное зарядному току, через повторитель на ОУ DA2.2 поступает на вход ADC1 микроконтроллера.

    На транзисторах VT1-VT4 собран электронный ключ, работающий под управлением микроконтроллера, формирующего на выходе ОС2 импульсы, следующие с частотой 32 кГц. Коэффициент заполнения этих импульсов зависит от требуемых выходного напряжения и зарядного тока. Диод VD1, дроссель L1 и конденсаторы С7, С8 преобразуют импульсное напряжение в постоянное, пропорциональное его коэффициенту заполнения.

    Светодиоды HL1 и HL2 - индикаторы состояния зарядного устройства. Включённый светодиод HL1 означает, что наступило ограничение выходного напряжения. Светодиод HL2 включён, когда идёт нарастание зарядного тока, и выключен, когда ток не изменяется или падает. В ходе зарядки исправной разряженной батареи сначала будет включён светодиод HL2. Затем светодиоды станут поочерёдно мигать. О завершении зарядки можно судить по свечению только светодиода HL1.

    Подборкой резистора R7 устанавливают оптимальную контрастность изображения на табло ЖКИ.

    Датчик тока R11 можно сделать из отрезка высокоомного провода от спирали нагревателя или от мощного проволочного резистора. Автор использовал отрезок провода диаметром 0,5 мм длиной около 20 мм от реостата.

    Микроконтроллер ATmega8L-8PU можно заменить любым из серии ATmega8 с тактовой частотой 8 МГц и выше. Полевой транзистор BUZ172 следует установить на теплоотвод с площадью охлаждающей поверхности не менее 4 см 2 . Этот транзистор можно заменить другим p-канальным с допустимым током стока более 1 А и малым сопротивлением открытого канала.

    Вместо транзисторов КТ3102Б и КТ3107Д подойдёт и другая комплементарная пара транзисторов с коэффициентом передачи тока не менее 200. При правильной работе транзисторов VT1-VT3 сигнал на затворе транзистора должен быть аналогичен показанному на рис. 2.

    Рис. 2. График сигнала на затворе

    Дроссель L1 извлечён из компьютерного блока питания (он намотан проводом диаметром 0,6 мм).

    Конфигурация микроконтроллера должна быть запрограммирована в соответствии с рис. 3. Коды из файла V_A_256_16.hex следует занести в память программ микроконтроллера. В EEPROM микроконтроллера должны быть записаны следующие коды: по адресу 00H - 2СН, по адресу 01H - 03H, по адресу 02H - 0BEH, по адресу 03H -64H.

    Рис. 3. Программирование микроконтроллера

    Налаживание зарядного устройства можно начинать без ЖКИ и микроконтроллера. Отключите транзистор VT4, а точки подключения его стока и истока соедините перемычкой. Подайте на устройство напряжение питания 16 В. Подберите резистор R10 таким, чтобы напряжение на нём находилось в пределах 1,9...2 В. Можно составить этот резистор из двух, соединённых последовательно. Если источника напряжения 16 В не нашлось, подайте 12 В или 8 В. В этих случаях напряжение на резисторе R10 должно быть соответственно около 1,5 В или 1 В.

    Вместо батареи подключите к устройству последовательно амперметр и мощный резистор или автомобильную лампу. Изменяя напряжение питания (но не ниже 7 В) или подбирая нагрузку, установите ток через неё равным 1 А. Подберите резистор R6 таким, чтобы на выходе ОУ DA2.2 было напряжение 1,9...2 В. Как и резистор R10, резистор R6 удобно составить из двух.

    Отключите питание, подключите ЖКИ и установите микроконтроллер. К выходу устройства присоедините резистор или лампу накаливания 12 В на ток около 0,5 А. При включении устройства на ЖКИ будут выведены напряжение на его выходе U и ток зарядки I, а также напряжение ограничения Uz и максимальный ток зарядки Iz. Сравните значения тока и напряжения на ЖКИ с показаниями образцовых амперметра и вольтметра. Вероятно, они будут различаться.

    Выключите питание, установите перемычку S1 и вновь включите питание. Для калибровки амперметра нажмите и удерживайте кнопку SB4, а кнопками SB1 и SB2 установите на ЖКИ значение, ближайшее к показываемому образцовым амперметром. Для калибровки вольтметра нажмите и удерживайте кнопку SB3, а кнопками SB1 и SB2 установите на ЖКИ значение, равное показываемому образцовым вольтметром. Не выключая питания, снимите перемычку S1. Калибровочные коэффициенты будут записаны в EEPROM микроконтроллера для напряжения по адресу 02H, а для тока - по адресу 03H.

    Выключите питание зарядного устройства, установите на место транзистор VT4, а к выходу устройства подключите автомобильную лампу на 12 В. Включите устройство и установите Uz=12 В. При изменении Iz должна плавно меняться яркость свечения лампы. Устройство готово к работе.

    Требуемый зарядный ток и максимальное напряжение на батарее устанавливают кнопками SB1 "▲", SB2 "▼", SB3 "U", SB4 "I". Интервал изменения зарядного тока - 50...950 мА с шагом 50 мА. Интервал изменения напряжения - 0,1...16 В с шагом 0,1 В.

    Для изменения Uz или Iz нажмите и удерживайте соответственно кнопку SB3 или SB4, ас помощью кнопок SB1 и SB2 установите требуемое значение. Через 5 с после отпускания всех кнопок установленное значение будет записано в EEPROM микроконтроллера (Uz - по адресу 00H, Iz - по адресу 01H). Следует иметь в виду, что удержание кнопки SB1 или SB2, нажатой более 4 с, увеличивает скорость изменения параметра приблизительно в десять раз.

    Программу микроконтроллера можно скачать .


    Дата публикации: 25.09.2016

    Мнения читателей
    • Олег / 19.05.2018 - 21:49
      Очень прошу, скиньте файл для прошивки eeprom на эл.почту [email protected] Больше месяца тужусь, не выходит цветок!!!
    • саша / 19.01.2018 - 19:10
      Народ,кто нибудь собирал данный девайс!
    • Юрий / 19.01.2018 - 18:35
      Вопро к автору.Вывод 1 микропроцессора висит в воздухе.Это не опечатка.

    Описание


    Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A. Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
    Достоинства данного ЗУ - его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей.

    Рассмотрим основные режимы работы устройства для заложенных в программу предустановок (профилей).

    1. Режим зарядки - меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
    - первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
    - второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
    - третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С - ёмкость батареи в Ач.
    - четвёртый этап - «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
    Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это- четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.

    2. Режим тренировки (десульфатации) - меню «Тренировка». Здесь осуществляется тренировочный цикл:
    10 секунд - разряд током 0,01С, 5 секунд - заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее - обычный заряд.

    3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.

    4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С - 0.05С (ток 10-ти или 20-ти часового разряда). Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.

    Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля - П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
    Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.

    Значения настроек:


    1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики ниже.
    2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
    3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
    4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию - 16В.
    5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
    6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
    7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.

    Алгоритм заряда - IUoU



    Алгоритм заряда - IUIoU



    Выбор и переделка блока питания

    В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это - практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.

    Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4).

    Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме - значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.

    Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3. На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В,-5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом - чуть позже. Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.

    Схема и принцип работы


    Все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4,C9,R7,C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера - встроенным АЦП и управляемым дифференциальным усилителем.

    Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине. Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения - на элементах VD1,EP1 ,R13.

    При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

    СХЕМЫ:


    первую часть схемы - (Переделка БП)
    вторую часть схемы - (Микроконтроллерная часть)

    Ниже в архиве имеется проект в протеусе, точнее его микроконтроллерная часть.


    Режимы работы (скрины):

    Тут приведена только часть скринов, поиграться можете сами, скачав проект протеуса.


    Детали и конструкция


    Микроконтроллер. В продаже обычно встречаются в корпусе DIP-40 или TQFP-44 и маркируются так: ATMega16А-PU или ATMega16A-AU. Буква после дефиса обозначает тип корпуса: «P»- корпус DIP, «A»- корпус TQFP. Встречаются также и снятые с производства микроконтроллеры ATMega16-16PU, ATMega16-16AU или ATMega16L-8AU. В них цифра после дефиса обозначает максимальную тактовую частоту контроллера. Фирма- производитель ATMEL рекомендует использовать контроллеры ATMega16A (именно с буквой «А») и в корпусе TQFP, то есть, вот такие: ATMega16A-AU, хотя в нашем устройстве будут работать все вышеперечисленные экземпляры, что и подтвердила практика. Типы корпусов отличаются также и количеством выводов (40 или 44) и их назначением. На рис.4 изображена принципиальная схема блока управления для МК в корпусе DIP.

    Резистор R8 –керамический или проволочный, мощностью не менее 10 Вт, R12- 7-10Вт. Все остальные- 0.125Вт. Резисторы R5,R6,R10 и R11 нужно применять с допустимым отклонением 0.1-0.5%. От этого будет зависеть точность измерений и, следовательно, правильная работа всего устройства.

    Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В.

    Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2,Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Буззер EP1- со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.
    Жидкокристаллический индикатор – WH1602 или аналогичный, на контроллере HD44780 , KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр

    Печатная плата

    Файлы печатных плат лежат ниже в архиве, есть два варианта ПП: для DIP элементов и вариант в SMD.



    Программа


    Конфигурационные биты (фузы) устанавливаются следующие:

    Запрограммированы (установлены в 0):

    CKSEL0
    CKSEL1
    CKSEL3
    SPIEN
    SUT0
    BODEN
    BODLEVEL
    BOOTSZ0
    BOOTSZ1

    Все остальные - незапрограммированы (установлены в 1).

    Наладка


    Итак, блок питания переделан и выдает напряжение около 10В. При подключении к нему исправного блока управления с прошитым МК, напряжение должно упасть до 0.8..15В. Резистором R1 устанавливается контрастность индикатора. Наладка устройства заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5,R6,R10,R11,R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично - калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 сек. устройство перейдет в главное меню.

    Калибровка окончена. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком - либо КУ сильно отличаются от нуля, нужно применить (подобрать) другие резисторы делителя R5,R6,R10,R11,R8, иначе в работе устройства возможны сбои. При точных резисторах (с допуском 0,1-0,5%) поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. И в заключение. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

    Файлы проекта (прошивки и проект в протеусе).
    файлы печатных плат и схемы.

    По материалам сайта

    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то