Что входит во внешнюю память компьютера. Внешняя память компьютера. Внешняя оперативная память компьютера

Носители информа­ции (гибкие и жесткие диски, CD-ROM-диски).

Основное назначение внешней памяти компьюте­ра - долговременное хранение большого количества различных файлов (программ, данных и т. д.). Уст­ройство, которое обеспечивает запись/считывание информации, называется накопителем, а хранится информация на носителях. Наиболее распростра­ненными являются накопители следующих типов:

Накопители на гибких магнитных дисках (НГМД диски диаметром 3,5" (емкость 1,44 Мб);

Накопители на жестких магнитных дисках (НЖМД) информационной емкостью до 200 Гб;

Накопители CD-ROM для CD-ROM-дисков ем­костью 700-800 Мб.

Для пользователя имеют существенное значение некоторые технико-экономические показатели: ин­формационная емкость, скорость обмена информа­цией, надежность ее хранения и, наконец, стоимость накопителя и носителей к нему

В основу записи, хранения и считывания инфор­мации положены два физических принципа, маг­нитный и оптический. В НГМД и НЖМД использу­ется магнитный принцип. При магнитном способе запись информации производится на магнитный носитель (диск, покрытый ферромагнитным лаком) с помощью магнитных головок.

Носители информации имеют форму диска и по­мещаются в конверт пластмассовый корпус (3,5"). В центре диска име­ется отверстие (или приспособление для захвата) для обеспечения вращения диска в дисководе, кото­рое производится с постоянной угловой скоростью 300 об/с.

В защитном конверте (корпусе) имеется продол­говатое отверстие, через которое производится за­пись/считывание информации. В дискетах 3,5" защиту от записи обеспечивает предохранительная защелка в левом нижнем углу пластмассового корпуса.

Диск должен быть форматирован, т. е. должна быть создана физическая и логическая структура диска. В процессе форматирования на диске образу­ются концентрические дорожки, которые делятся на сектора, для этого головка дисковода расставля­ет в определенных местах диска метки дорожек и секторов.

Жесткие магнитные диски состоят из нескольких дисков, размещенных на одной оси и вращающих­ся с большой угловой скоростью (несколько тысяч оборотов в минуту), заключенных в металлический корпус. Большая информационная емкость жест­ких дисков достигается за счет увеличения коли­чества дорожек на каждом диске до нескольких ты­сяч, а количества секторов на дорожке - до неско­льких десятков.

CD-ROM-накопители используют оптический принцип чтения информации. Информация на CD-ROM-диске записана на одну спиралевидную до­рожку (как на грампластинке), содержащую чере­дующиеся участки с различной отражающей спо­собностью. Лазерный луч падает на поверхность вращающегося CD-ROM-диска, интенсивность от­раженного луча соответствует значениям 0 или 1. С помощью фотопреобразователя они преобразуют­ся в последовательности электрических импульсов,

Скорость считывания информации в CD-ROM-накопителе зависит от скорости вращения диска.

Производятся CD-ROM-дис­ки либо путем штамповки (диски белого цвета), ли­бо записываются (диски желтого цвета) на специ­альных устройствах, которые называются CD-re­corder.

Барнаул 2005

Введение 3

1. Внешняя память 5

2. жесткие диски 8

3. Дисковые массивы RAID 11

4. Компакт-диски 13

5. Практическая часть 17

Заключение 26

Список литературы 27

Введение

Под внешней памятью компьютера подразумевают обычно как носители информации (то есть устройства, где она непосредственно хранится), так и устройства для чтения/записи информации, которые чаще всего называют накопителями.

Как правило, для каждого носителя информации существует свой накопитель.

Первые носители информации для ЭВМ были бумажными (перфокарты, перфоленты). Для работы с ними существовало 2 отдельных устройства: перфоратор – для записи информации, счетчик – для считывания информации и передачи ее в оперативную память. Позднее появились магнитные носители информации (магнитные ленты, магнитные барабаны, магнитные диски), накопители которых совмещали в себе и устройство считывания, и устройство записи. А такое устройство, как винчестер, совмещает в себе и носитель, и накопитель. Для оптических носителей информации (компакт-дисков, цифровых дисков) накопители могут как совмещать функции чтения/записи, так и быть специализированными, например, только для чтения.

Накопители на жестких магнитных дисках (НЖМД или винчестеры) представляют собой внешние ЗУ, в которых носителем информации являются жесткие несменные магнитные диски, объединенные в пакет.

НЖМД предназначены для долговременного хранения информации, постоянно используемой при работе с ПК: программ операционной системы, часто используемых пакетов программ, редакторов документов, трансляторов с языков программирования, документов и программ, подготовленных пользователем и т. д.

В настоящее время ПК без НЖМД практически не выпускаются. Если компьютер включен в локальную компьютерную сеть, то он может работать без собственного жесткого диска, но тогда он использует жесткий диск центрального сервера.

Винчестер устанавливается внутри системного блока и внешне представляет собой герметичную металлическую коробку, внутри которой расположены несколько дисков, объединенных в один пакет, магнитные головки чтения/записи, механизм вращения диска и перемещения головок.

Основными характеристиками винчестера являются:

Емкость, то есть максимальный объем данных, который можно записать на носитель;

Быстродействие, определяемое временем доступа к нужной информации, временем ее считывания/записи и скоростью передачи данных;

Время безотказной работы, характеризующее надежность устройства.

Емкость НЖМД зависит от модели ПК. Первый винчестер (начало 80-х годов) имел «колоссальную емкость» 10 Мбайт. Считается, что объем современного винчестера должен быть не менее 2 – 3 Гбайт. Последние модели ПК имеют винчестеры емкостью свыше 120 Гбайт, ожидается появление винчестеров емкостью до 320 Гбайт.

Чаще всего винчестер имеет имя С:. Однако емкость винчестера обычно очень велика, поэтому для удобства работы винчестер разбивают на участки. Каждый такой участок воспринимается операционной системой как отдельный диск и называется «логическим диском». Имена таких дисков – C:, D:, Е: и т. д. по алфавиту.

ВНЕШНЯЯ ПАМЯТЬ

Устройства внешней памяти или, иначе, внешние запоминающие устройства весьма разнообразны. Их можно классифицировать по целому ряду признаков: по виду носителя, типу конструкции, по принципу записи и считывания информации, методу доступа и т.д.

Носитель - материальный объект, способный хранить информацию.

В зависимости от типа носителя все ВЗУ можно подразделить на накопители на магнитной ленте и дисковые накопители.

Накопители на магнитной ленте, в свою очередь, бывают двух видов: накопители на бобинной магнитной ленте (НБМЛ) и накопители на кассетной магнитной ленте (НКМ- стриммеры). В ПК используются только стриммеры.

Диски относятся к машинным носителям информации с прямым доступом. Понятие прямой доступ означает, что ПК может "обратиться" к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/чтения накопителя.

Накопители на дисках более разнообразны

накопители на гибких магнитных дисках (НГМД), иначе, на флоппи-дисках или на дискетах; накопители на жестких магнитных дисках (НЖМД) типа "винчестер"; накопители на сменных жестких магнитных дисках, использующие эффект Бернулли; накопители на флоптических дисках, иначе, floptical-накопители; накопители сверхвысокой плотности записи, иначе, VHD-накопители; накопители на оптических компакт-дисках CD-ROM (Compact Disk ROM); накопители на оптических дисках типа СС WORM (Continuous Composite Write Once Read Many - однократная запись - многократное чтение);накопители на магнитооптических дисках (НМОД) и др.

Тип накопления

Емкость, Мбайт

Время доступа, мс

Трансфер, Кбайт/с

Вид доступа

Чтение/запись

Винчестер

Чтение/запись

Бернулли

Чтение/запись

Чтение/запись

Чтение/запись

Только чтение

Чтение/ однократная запись

Чтение/запись

Примечание Время доступа - средний временной интервал, в течение которого накопитель находит требуемые данные - представляет собой сумму времени для позиционирования головок чтения/записи на нужную дорожку и ожидания нужного сектора. Трансфер - скорость передачи данных при последовательном чтении.

Магнитные диски (МД) относятся к магнитным машинным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0 и 1. Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК. Устройство для чтения и записи информации на магнитном диске называется дисководом.

Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе, форм-фактором. Наибольшее распространение получили диски с форм-факторами 3,5" (89 мм) и 5,25" (133 мм). Диски с форм-фактором 3,5" при меньших габаритах имеют большую емкость, меньшее время доступа и более высокую скорость чтения данных подряд (трансфер), более высокие надежность и долговечность.

Информация на МД записывается и считывается магнитными головками вдоль концентрическихокружностей - дорожек (треков). Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия.

Каждая дорожка МД разбита на сектора. В одном секторе дорожки может быть помещено 128, 256, 512 или 1024 байт, но обычно 512 байт данных. Обмен данными между НМД и ОП осуществляется последовательно целым числом секторов. Кластер - это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.

2. Жесткие диски

В качестве накопителей на жестких магнитных дисках (НЖМД) широкое распространение в ПК получили накопители типа "винчестер".

Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром "30/30" известного охотничьего ружья "Винчестер".

В этих накопителях один или несколько жестких дисков, изготовленных из сплавов алюминия или из керамики и покрытых ферролаком, вместе с блоком магнитных головок считывания/записи помещены в герметически закрытый корпус. Емкость этих накопителей благодаря чрезвычайно плотной записи, получаемой в таких несъемных конструкциях, достигает нескольких тысяч мегабайт; быстродействие их также значительно более высокое, нежели у НГМД.

Максимальные значения на 1995 г.:

емкость 5000 Мбайт (стандарт емкости на 1995 г.-850 Мбайт); скорость вращения 7200 об./мин; время доступа - 6 мс; трансфер - 11 Мбайт/с. НЖМД весьма разнообразны. Диаметр дисков чаще всего 3,5" (89 мм), но есть и другие, в частности 5,25" (133 мм) и 1,8" (45 мм). Наиболее распространенная высота корпуса дисковода 25 мм у настольных ПК, 41 мм - у машин-серверов, 12 мм - у портативных ПК и др.

В современных винчестерах стал использоваться метод зонной записи. В этом случае все пространство диска делится на несколько зон, причем во внешних зонах секторов размещается больше данных, чем во внутренних. Это, в частности, позволило увеличить емкость жестких дисков примерно на 30%.

Для того чтобы получить на магнитном носителе структуру диска, включающую в себя дорожки и сектора, над ним должна быть выполнена процедура, называемая физическим, или низкоуровневым, форматированием (physical, или low-level formatting). В ходе выполнения этой процедуры контроллер записывает на носитель служебную информацию, которая определяет разметку цилиндров диска на сектора и нумерует их. Форматирование низкого уровня предусматривает и маркировку дефектных секторов для исключения обращения к ним в процессе эксплуатации диска.

Максимальная емкость и скорость передачи данных существенно зависят от интерфейса, используемого накопителем.

Распространенный сейчас интерфейс AT Attachment (ATA), широкоизвестный и под именем Integrated Device Electronics (IDE), предложенный в 1988 г. пользователям ПК IBM PC/AT, ограничивает емкость одного накопителя 504 Мбайтами (эта емкость ограничена адресным пространством традиционной адресации "головка - цилиндр - сектор": 16 головок * 1024 цилиндра * 63 сектора * 512 байт в секторе = 504 Кбайта = 528 482 304 байта) и обеспечивает скорость передачи данных 5-10 Мбайт/с.

Интерфейс Fast ATA-2 или Enhanced IDE (EIDE), использующий как традиционную (но расширенную) адресацию по номерам головки, цилиндра и сектора, так и адресацию логических блоков (Logic Block Address LBA), поддерживает емкость диска до 2500 Мбайт и скорость обмена до 16 Мбайт/с. С помощью EIDE к материнской плате может подключаться до четырех накопителей, в том числе и CD-ROM, и НКМЛ. Для старых версий BIOS для поддержки EIDE нужен специальный драйвер.

Наряду с ATA и ATA-2 широко используются и две версии более сложных дисковых интерфейсов Small Computer System Interface (интерфейс малых компьютерных систем): SCSI и SCSI-2. Их достоинства: высокая скорость передачи данных (интерфейс Fast Wide SCSI-2 и ожидаемый в ближайшее время интерфейс SCSI-3 поддерживают скорость до 40 Мбайт/с), большое количество (до 7 шт.) и максимальная емкость подключаемых накопителей. Их недостатки: высокая стоимость (примерно в 5 -10 раз дороже ATA), сложность установки и настройки. Интерфейсы SCSI-2 и SCSI-3 рассчитаны на использование в мощных машинах-серверах и рабочих станциях.

Для повышения скорости обмена данными процессора с дисками НЖМД следует кэшировать. КЭШ-память для дисков имеет то же функциональное назначение, что и КЭШ для основной памяти, т.е. служит быстродействующим буфером памяти для кратковременного хранения информации, считываемой или записываемой на диск. КЭШ-память может быть встроенной в дисковод, а может создаваться программным путем (например, драйвером Microsoft Smartdrive) в оперативной памяти. Скорость обмена данными процессора с КЭШ-памятью диска может достигать 100 Мбайт/с.

В ПК имеется обычно один, реже несколько накопителей на жестких магнитных дисках. Однако в MS DOS (MicroSoft Disk Operation System - дисковая операционная система фирмы Microsoft) программными средствами один физический диск может быть разделен на несколько "логических" дисков; тем самым имитируется несколько НМД на одном накопителе.

3. Дисковые массивы RAID

В машинах-серверах баз данных и в суперЭВМ часто применяются дисковые массивы RAID (Redundant Array of Independent Disks - матрица с резервируемыми независимыми дисками), в которых несколько накопителей на жестких дисках объединены в один большой логический диск, при этом используются основанные на введении информационной избыточности методы обеспечения достоверности информации, существенно повышающие надежность работы системы (при обнаружении искаженной информации она автоматически корректируется, а неисправный накопитель в режиме Plug and Play (вставляй и работай) замещается исправным).

Существует несколько уровней базовой компоновки массивов RAID:

1-й уровень включает два диска, второй из которых является точной копией первого;

2-й уровень использует несколько дисков специально для хранения контрольных сумм и обеспечивает самый сложный функционально и самый эффективный метод исправления ошибок;

3-й уровень включает четыре диска: три информационных, а четвертый хранит контрольные суммы, обеспечивающие исправление ошибок в первых трех;

4-й и 5-й уровни используют диски, на каждом из которых хранятся свои собственные контрольные суммы.

Дисковые массивы второго поколения - RAID6 и RAID7. Последние могут объединять до 48 физических дисков любой емкости, формирующих до 120 логических дисков; имеют внутреннюю КЭШ-память до 256 Мбайт и разъемы для подключения внешних интерфейсов типа SCSI. Внутренняя шина X-bus имеет пропускную способность 80 Мбайт/с (для сравнения: трансфер SCSI-3 до 40 Мбайт/с, а скорость считывания с физического диска до 5 Мбайт/с).

Среднее время наработки на отказ в дисковых массивах RAID - сотни тысяч часов, а при 2-м уровне компоновки - до миллиона часов. В обычных НМД эта величина не превышает тысячи часов. Информационная емкость дисковых массивов RAID - от 3 до 700 Гбайт (максимальная достигнутая в 1995 г. емкость дисковых накопителей 5,5 Тбайта=5500 Гбайт).

Применяются и НЖМД со сменными пакетам и дисков (накопители Бернулли), использующие пакеты из дисков диаметром 133 мм, они имеют емкость от 20 до 230 Мбайт и меньшее быстродействие, но более дорогие, чем винчестеры. Основное их достоинство: возможность накопления и хранения пакетов вне ПК.

Основные направления улучшения характеристик НМД:

использование высокоэффективных дисковых интерфейсов (E1DE, SCSI); использование более совершенных магнитных головок, позволяющих увеличить плотность записи и, следовательно, емкость диска и трансфер (без увеличения скорости вращения диска).

4. Компакт-диски .

Общии сведения о компакт-дисках

В 1982 году фирмы Sony и Philips завершили работу над форматом CD-аудио (Compact Disk), открыв тем самым эру цифровых носителей на компакт-дисках. Принцип работы этих дисков – оптический. Чтение и запись осуществляется лазером. В компакт-диске данные кодируются и записываются в виде последовательности отражающих и не отражающих участков. Отражение интерпретируется как единица, «впадина» - как ноль.

Приведу некоторые технические параметры компакт-дисков. Рабочая длина волны лазера - 780 нм. Диаметр компакт-диска 120 мм. Толщина диска 1,2 мм. Объем диска 700 Мб (74 мин аудио). Вес 14-33 г. Цепочка углублений (pits) расположена по спирали как в грампластинке, но в направлении от центра (фактически CD является устройством последовательного доступа с ускоренной перемоткой). Интервал между витками - 1.6 мкм, ширина пита - 0.5 мкм, глубина - 0.125 мкм (1/4 длины волны луча лазера в поликарбонате), минимальная длина - 0.83 мкм (рис. 1).

Рис. 1. Поверхность компакт-диска.

Существуют модификации в 80 минут (700 МБ), 90 минут (791 МБ) и 99 минут (870 MB). Номинальная (1x) скорость передачи данных - 150 КБ/сек (176400 байт/сек аудио или "сырых" данных, 4.3 Мбит/сек "физических" данных). В то время как все магнитные диски вращаются с постоянным числом оборотов в минуту, то есть с неизменной угловой скоростью (CAV, Constant Angular Velocity), компакт-диск вращается обычно с переменной угловой скоростью, чтобы обеспечить постоянную линейную скорость при чтении (CLV, Constant Linear Velocity). Таким образом, чтение внутренних сторон осуществляется с увеличенным, а наружных - с уменьшенным числом оборотов. Именно этим обуславливается достаточно низкая скорость доступа к данным для компакт-дисков по сравнению, например, с винчестерами.

Классификация компакт-дисков

Существует множество стандартов и форматов компакт-дисков – в зависимости от назначения и производителей. Приведу для примера далеко не все существующие: Audio CD (CD-DA), CD-ROM (ISO 9660, mode 1 & mode 2), Mixed-mode CD, CD-ROM XA (CD-ROM eXtended Architecture, mode 2, form 1 & form 2), Video CD, CD-I (CD-Interactive), СD-I-Ready, CD-Bridge, Photo CD (single & multi-session), Karaoke CD, CD-G, CD-Extra, I-Trax, Enhanced CD (CD Plus), Multi-session CD, CD-Text, CD-WO (Write-Once). Полное описание их займет слишком много места, и это не является целью написания данной работы.

В зависимости же от количества возможных операций записи компакт-диски разделяются на: CD-ROM (read only memory), CD-R (recordable), они же CD-WORM (write once read many), CD-RW (rewritable). Соответственно, СD-ROM изготавливается на заводе, и дальнейшая запись на него невозможна; CD-R предназначен для однократной записи в домашних условиях; CD-RW допускает множество операций записи. Диски CD-ROM представляют собой поликарбонат, покрытый с одной стороны отражающим слоем (алюминий или - для ответственных применений - золото) и защитным лаком с другой. Смена отражающей способности осуществляется за счет штамповки углублений в металлическом слое. На заводе их просто штампуют с матрицы.

Формат компакт-дисков

Поверхность диска разделена на области:

· PCA (Power Calibration Area). Используется для настройки мощности лазера записывающим устройством. 100 элементов.

· PMA (Program Memory Area). Сюда временно записываются координаты начала и конца каждого трека при извлечении диска из записывающего устройства без закрытия сессии. 100 элементов.

· Вводная область (Lead-in Area) - кольцо шириной 4 мм (диаметр 46-50 мм) ближе к центру диска (до 4500 секторов, 1 минута, 9 MB). Состоит из 1 дорожки (Lead-in Track). Содержит TOC (абсолютные временные адреса дорожек и начала выводной области, точность - 1 секунда).

· Область данных (program area, user data area).

· Выводная область (Lead-out) - кольцо 116-117 мм (6750 секторов, 1.5 минуты, 13.5 MB). Состоит из 1 дорожки (Lead-out Track).

Каждый байт данных (8 бит) кодируется 14-битным символом на носителе (кодировка EFM). Символы отделяются 3-битными промежутками, выбираемыми так, чтобы на носителе не было более 10 нулей подряд.

Из 24 байтов данных (192 бита) формируется кадр (F1-frame), 588 битов носителя, не считая промежутков:

· синхронизация (24 бита носителя)

· символ субкода (биты субканалов P, Q, R, S, T, U, V, W)

· 12 символов данных

· 4 символа контрольного кода

· 12 символов данных

· 4 символа контрольного кода

При декодировании могут использоваться различные стратегии обнаружения и исправления групповых ошибок (вероятность обнаружения против надежности коррекции).

Последовательность из 98 кадров образует сектор (2352 информационных байта). Кадры в секторе перемешаны, чтобы уменьшить влияние дефектов носителя. Адресация сектора произошла от аудиодисков и записывается в формате A-Time - mm:ss:ff (минуты:секунды:доли, доля в секунде от 0 до 74). Отсчет начинается с начала программной области, т.е. адреса секторов вводной области отрицательные. Биты субканалов собираются в 98-битные слова для каждого субканала (из них 2 бита - синхронизация). Используются субканалы:

· P - маркировка окончания дорожки (min 150 секторов) и начала следующей (min 150 секторов).

· Q - дополнительная информация о содержимом дорожки:

o число каналов

o данные или звук

o можно ли копировать

o признак частотных предыскажений (pre-emphasis): искусственный подъем высоких частот на 20 дБ

o режим использования подканала

Q-Mode 1: во вводной области здесь хранится TOC, в программной области - номера дорожки, адреса, индексы и паузы

Q-Mode 2: каталоговый номер диска (тот же, что на штрих-коде) - 13 цифр в формате BCD (MCN, ENA/UPC EAN)

Q-Mode 3: ISRC (International Standard Recording Code) - код страны, владельца, год и серийный номер записи

Последовательность секторов одного формата объединяется в дорожку (трек) от 300 секторов (4 секунды, см. субканал P) до всего диска. На диске может быть до 99 дорожек (номера от 1 до 99). Трек может содержать служебные области:

· пауза - только информация субканалов, нет пользовательских данных

· pre-gap - начало трека, не содержит пользовательских данных и состоит из двух интервалов: первый длиной не менее 1 секунды (75 секторов) позволяет "отстроиться" от предыдущего трека, второй длиной не менее 2 секунд задает формат секторов трека

· post-gap - конец трека, не содержит пользовательских данных, длиной не менее 2 секунд

Вводная цифровая область должна завершаться постзазором. Первый цифровой трек должен начинаться со второй части предзазора. Последний цифровой трек должен завершаться постзазором. Выводная цифровая область не содержит предзазора.

Практическая часть

Вариант 14

Используя ППП на ПК, необходимо определить расходы на содержание одного учащегося в группе продленного дня в городской школе в год по имеющимся данным.

Вычислите:

· Сумму расходов на питание учащегося в текущем и проектируемом году;

· Сумму расходов на содержание учащегося в текущем и проектируемом году;

· Абсолютное и относительное изменение исчисленных показателей проектируемого года к показателям текущего в виде таблицы.

Введите текущее значение даты между таблицей и ее названием.

По данным таблицы постройте гистограмму с заголовком, названием осей координат и легендой.

1. Выбор ППП.

В данной задаче наиболее целесообразно применить и использовать табличный процессор MS Excel. Так как в нем можно наиболее полно отразить алгоритм работы, проектирование и графическое представление форм данных по нашей задаче.

2.Описание алгоритма решения задачи.

ТС - общая сумма затрат на содержание одного учащегося, Z – заработная плата, D – начисления на заработную плате, C – затраты на мягкий инвентарь, N – норма на питание в день, K – количество дней функционирования групп.

Сумма расходов на питание N*K

Сумма расходов на содержание учащегося Z+(Z*D/100)+C

Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего: ABS проект – ABS текущ

Относительное изменение исчисленных показателей проектируемого года к показателям текущего: (ABS проект – ABS текущ)*100/(N*K) тек

Проектирование форм выходных документов и графическое представление данных по выбранной задаче.

3 Структура шаблонов таблиц

Таблица.1 «Расходы на содержание одного учащегося»

Таблица 2 Расходы на содержание одного учащегося в группе продленного дня в городской школе в год

4 Расположение таблиц на рабочих листах MS Excel.

Таблица 3 Расходы на содержание одного учащегося

Таблица 4. Итоговая таблица расходы на содержание учащегося в группе продленного дня в городской школе.

5 Шаблоны таблиц с исходными данными

Таблица 6 Расходы на содержание одного учащегося

Таблица 6 Расходы на содержание одного учащегося в группе продленного дня в городской школе в год.

Показатель

в текущем году

проектируемом году

Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего (руб)

Относительное изменение исчисленных показателей проектируемого года к показателям текущего (%)

Сумма расходов на питание учащегося, руб

Сумма расходов на содержание учащегося, руб

C10+(C11*C10/100)+C12

D10+(D11*D10/100)+D12

Итого (руб):

СУММ(C24:C25)

СУММ(D24:D25)

СУММ(E24:E25)

СУММ(F24:F25)

6 Инструкция пользователя.

Последовательность действий пользователя при решении задачи:

Для запуска программы MS Excel из главного меню Windows нажимаем кнопку Пуск и выбираем MS Excel в меню Программы.

Вводим исходные данные в электронную таблицу формы кассового ордера

1. После того как ввели исходные данные, выделяем необходимые ячейки, выбираем формат ячейки и отмечаем необходимый тип данных (числовой, Дата, текстовый, денежный), в денежном формате выбираем число десятичных знаков

2. Выделяем всю таблицу и копируем ее на новый лист.

3. На новом листе выделяем всю таблицу выбираем в панели инструментов Данные →Фильтр→ Автофильтр . С помощью автофильтра мы можем отфильтровать данные по получателям и по видам оплат.

4. По полю сумма подводим итог и что бы итог отображался при фильтровании данных используем Вставка функции →математические→ ПРОМЕЖУТОЧНЫЕ.ИТОГИ далее выбираем область данных суммы.

7 Технология построения диаграмм

· Нажимаем кнопку Мастер диаграмм на панели инструментов Стандартная.

· Осуществляем построение нужной диаграммы:

Шаг 1. Выбираем Тип (Гистограмма) и Вид (Обычная ) диаграммы, нажимаем кнопку Далее.

Шаг 2. Нажимаем закладку Ряд, в окне Ряд удаляем если есть лишние Ряды , Нажимаем добавить ряд, далее выделяем нужный диапазон в нашем случае(предельные издержки и предельная выручка) в окне подписи по оси Х нажимаем флажок:

В окне Источник данных диаграмм указываем диапазон

наименование товара путем выделения соответствующей зоны в

таблице, нажимаем флажок, нажимаем кнопку Далее.

Шаг 3. Выбираем необходимые заголовки и нажимаем кнопку

Шаг 4. Выполняем указания Мастера диаграмм и нажимаем

кнопку Готово.

Устанавливаем курсор в свободное место диаграммы, щелкаем

кнопкой мыши и удерживая кнопку перетаскиваем диаграмму на

необходимое поле Листа.

Щелкаем кнопкой мыши в любой из точек на рамке Области диаграммы и растягиваем рамку диаграммы до нужного размера.



Заключение

В данной курсовой мы рассмотрели тему «Внешняя память компьютера». А также выполнили практическую часть использовав табличный процессор MS Excel. Так как в нем можно наиболее полно отразить алгоритм работы, проектирование и графическое представление форм данных по нашей задаче.

В теоретической части рассмотрели виды внешней памяти:

· Магнитные диски (МД)

· Жесткие диски

· Дисковые массивы RAID

· Компакт-диски

А так же дали определение внешней памяти компьютера. Под ней подразумевают обычно как носители информации (то есть устройства, где она непосредственно хранится), так и устройства для чтения/записи информации, которые чаще всего называют накопителями.

Список литературы

1. Гейн А.Г., Сенокосов А.И., Шолохович В.Ф. Информатика: 7-9 кл. Учеб. для общеобразоват. учеб. заведений - М.: Дрофа, 2002.

2. Каймин В.А., Щеголев А.Г., Ерохина Е.А., Федюшин Д.П. Основы информатики и вычислительной техники: Проб. учеб. для 10-11 классов средн. школы. - М.: Просвещение, 2001.

3. Кушниренко А.Г., Лебедев Г.В., Сворень Р.А. Основы информатики и вычислительной техники: Учеб. для средн. учеб. заведений. - М.: Просвещение, 2003.

4. Семакин И., Залогова Л., Русаков С., Шестакова Л. Информатика: уч. по базовому курсу. - М.: Лаборатория Базовых Знаний, 1999.

5. Угринович Н. Информатика и информационные технологии. Учебное пособие для общеобразовательных учреждений. - М.: БИНОМ, 2003. - 464 с. (§ 2.14. Хранение информации, с. 91-98).

Компьютер служит для увеличения эффективности работы человека. Но какую бы он имел ценность, если бы не мог хранить данные? В этом ему помогает основная и внешняя (долговременная) И хотя главной темой статьи является вторая, для полноты картины один раздел в рамках статьи будет уделён и первой.

Что относится к основной памяти?

Она включает в себя:

  1. Оперативное запоминающее устройство. Является энергозависимым, и при выключении компьютера вся информация, которая на нем хранилась, пропадает.
  2. Является энергонезависимым. В нём находится информация, которая не должна меняться. Прежде всего, к ней относится конфигурация ПК и программное обеспечение, что проводит тестирование компонентных устройств, прежде чем загрузить операционную систему. Также здесь хранится одна из самых важных составляющих - базовая система ввода/вывода, известная как BIOS. Следует отметить, что ПЗУ и компьютера имеют много общего. Но из-за разницы в важности хранимой информации их разделяют.

Внешняя память

Так называют место, где на длительном хранении находятся разнообразные данные, которые на данный момент не используются оперативной составляющей компьютера. К ним относят различные программы, результаты расчетов, тексты и прочее.

Внешняя память является энергонезависимой. Также её удобно транспортировать в случаях, когда компьютеры не являются объединёнными в локальную или глобальную сеть. Чтобы работать с внешней памятью, необходимо обзавестись накопителем. Это специальное устройство(а), что обеспечивает запись и считывание информации. Также необходимыми являются механизмы хранения - носители.

Значительным отличием долговременной памяти от оперативной является то, что у неё нет прямой связи с процессором. Это доставляет определённые неудобства в виде необходимости усложнять строение ПК. Поэтому оперативная и долговременная память компьютера работают вместе: из второй данные передаются в первую, а потом через кэш или напрямую в процессор.

Что входит во внешнюю память?

Чтобы понимать, с чем мы имеем дело, необходимо представить себе данные устройства внешней памяти. Итак, к ней относятся:

  1. Накопители на жестких магнитных дисках. Размер используется как показатель объема информации, что может храниться на компьютере.
  2. Накопители на Устарели. Использовались, чтобы переносить программы и документы между компьютерами.
  3. Накопители на компакт-дисках. Используются, чтобы хранить значительные объемы данных.
  4. Флеш-накопители. Применяются для хранения значительных объемов данных в малых объектах.
  5. К внешней памяти относятся все другие накопители, которые могут быть без проблем перемещены к другим компьютерам. Как правило, устарели и вышли из обращения.

Классифицируем

Запоминающие устройства делят на виды и категории. В качестве краеугольного камня принимают принципы их функционирования, эксплуатационно-технические, программные, физические и другие характеристики. Каждое устройство имеет свою технологию записи/хранения/воспроизведения цифровой информации. Основные характеристики, которые имеют важность для пользователей (по ним же можно провести классификацию):

  1. Скорость обмена данными.
  2. Информационная емкость.
  3. Надежность хранения данных.
  4. Стоимость.

Вот по таким параметрам и отличаются запоминающие устройства. Конечно, есть ещё много различных характеристик, но они будут интересны исключительно профессионалам.

Магнитные устройства

Принцип работы данных приборов базируется на хранении информации, при котором используются магнитные свойства материалов. В самих устройствах, как правило, имеются составляющие, отвечающие за чтение/запись и магнитный носитель, на котором всё хранится. Последний делят на виды в зависимости от их физико-технических характеристик и особенностей исполнения. Чаще всего выделяют ленточные и дисковые устройства. Они имеют общую технологию: так, с помощью намагничивания переменным магнитным полем наносится и считывается информация. Данные процессы обычно выполняют вдоль концентрических полей. Это специальные дорожки, что находятся по всей плоскости вращающегося носителя. Записывание осуществляется в цифровом коде.

Намагничивание совершается благодаря использованию головок чтения/записи. Они представляют собой как минимум два управляемых магнитных контура с сердечниками. На их обмотки подаётся переменное напряжение. Если его величина меняется, то это же относится и к направлению линий магнитного поля. Когда происходит этот процесс, значение бита информации меняется с 0 на 1 или с 1 на 0. Вот так устроено это устройство долговременной памяти компьютера.

Несмотря на кажущуюся сложность и медленность работы такой схемы, смеем вас заверить, что данные предположения являются неоправданными. Так, компьютер из современных жестких магнитных дисков может за отдельные моменты времени извлекать огромнейшие массивы информации. Если выводить коэффициент эффективности, то выпущенные в последние несколько лет, будут иметь его в сотни и тысячи раз больший, чем те, что были созданы два десятилетия назад.

Организация

Данные для операционной системы систематизируются и объединяются в секторы и дорожки. Последние в количестве сорока или восьмидесяти штук являются узкими концентрическими кольцами на диске. Каждая дорожка делится на отдельные части, которые называют секторами. Когда осуществляется чтения или запись, то всегда считывается их целое число. И это не зависит от объема информации, что запрашивается. Размер одного сектора равен 512 байтам.

Также следует ознакомиться с таким термином, как цилиндр. Так называют общее количество дорожек, с которого можно считать информацию без перемещения головок. Ячейкой размещения данных (или кластером) называют самую малую область диска, что используется операционной системой для записи файлов. Обычно под ними понимают один или несколько секторов.

О накопителях. Жесткие диски

Наибольшую важность для работы с современными компьютерами в качестве хранилищ информации для нас имеют жесткие диски. В них в одном корпусе часто объединяют непосредственно носитель, устройство чтения/записи и интерфейсную часть (часто называемую также контроллером). Вот такие приборы объединяются в специальные камеры, где они находятся на одной оси и работают с блоком головок и общим приводящим механизмом. Жесткие диски на данный момент являются наиболее вместимыми широко используемыми устройствами - сейчас мало кого сможет удивить хранилище информации на 1 или даже 10 Терабайт. Но это всё же сказывается на скорости выполнения операции. Так, когда только начинается работа, процесс считывания данных может занять не один десяток секунд. Хотя, если сравнивать с более старыми моделями, прогресс быстродействия налицо.

О накопителях: переносные устройства

Жесткие диски, как уже неоднократно подчеркивалось, могут хранить в себе значительные объемы данных, однако их перестановка с одного компьютера на другой не является легким делом. И тут на помощь приходят переносные устройства.

Это специальные механизмы, посредством которых можно без значительных проблем перебрасывать данные между разными компьютерами. Объем внешней памяти у них не такой большой, как у жестких дисков, но благодаря лёгкости транспортировки и подсоединению (а затем считыванию информации) они нашли свою нишу. Сейчас наиболее популярными являются два типа подобных устройств: флеш-накопители и Каждый из них имеет свои преимущества и недостатки, но в мире уже давно наметилась тенденция на его постепенный захват первым типом приборов.

Заключение

Как видите, к долговременной памяти компьютера относится довольно много различных устройств. Все они обеспечивают хранение данных на протяжении значительного периода времени, а также возможность их извлечения.

Подытожив, можно сказать, что долговременная память компьютера полностью выполняет возложенный на неё функционал.

Носители информации (гибкие диски, жесткие диски, диски CD-ROM, магнитооптические диски и пр.) и их основные характеристики.

Внешняя (долговременная) память - это место длительного хранения данных (программ, результатов расчётов, текстов и т.д.), не используемых в данный момент в оперативной памяти компьютера. Внешняя память, в отличие от оперативной, является энергонезависимой. Носители внешней памяти, кроме того, обеспечивают транспортировку данных в тех случаях, когда компьютеры не объединены в сети (локальные или глобальные).

Для работы с внешней памятью необходимо наличие накопителя (устройства, обеспечивающего запись и (или) считывание информации) и устройства хранения - носителя.

Основные виды накопителей:

накопители на гибких магнитных дисках (НГМД);

накопители на жестких магнитных дисках (НЖМД);

накопители на магнитной ленте (НМЛ);

накопители CD-ROM, CD-RW, DVD.

Им соответствуют основные виды носителей:

гибкие магнитные диски (Floppy Disk) (диаметром 3,5’’ и ёмкостью 1,44 Мб; диаметром 5,25’’ и ёмкостью 1,2 Мб (в настоящее время устарели и практически не используются, выпуск накопителей, предназначенных для дисков диаметром 5,25’’, тоже прекращён)), диски для сменных носителей;

жёсткие магнитные диски (Hard Disk);

кассеты для стримеров и других НМЛ;

диски CD-ROM, CD-R, CD-RW, DVD.

Запоминающие устройства принято делить на виды и категории в связи с их принципами функционирования, эксплуатационно-техническими, физическими, программными и др. характеристиками. Так, например, по принципам функционирования различают следующие виды устройств: электронные, магнитные, оптические и смешанные – магнитооптические. Каждый тип устройств организован на основе соответствующей технологии хранения/воспроизведения/записи цифровой информации. Поэтому, в связи с видом и техническим исполнением носителя информации, различают: электронные, дисковые и ленточные устройства.

Основные характеристики накопителей и носителей:

информационная ёмкость;

скорость обмена информацией;

надёжность хранения информации;

стоимость.

Остановимся подробнее на рассмотрении вышеперечисленных накопителей и носителей.

Принцип работы магнитных запоминающих устройств основан на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственно устройств чтения/записи информации и магнитного носителя, на который, непосредственно осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей – дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись производится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение величины напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1.

Дисковые устройства делят на гибкие (Floppy Disk) и жесткие (Hard Disk) накопители и носители. Основным свойством дисковых магнитных устройств является запись информации на носитель на концентрические замкнутые дорожки с использованием физического и логического цифрового кодирования информации. Плоский дисковый носитель вращается в процессе чтения/записи, чем и обеспечивается обслуживание всей концентрической дорожки, чтение и запись осуществляется при помощи магнитных головок чтения/записи, которые позиционируют по радиусу носителя с одной дорожки на другую.

Для операционной системы данные на дисках организованы в дорожки и секторы. Дорожки (40 или 80) представляют собой узкие концентрические кольца на диске. Каждая дорожка разделена на части, называемые секторами. При чтении или записи устройство всегда считывает или записывает целое число секторов независимо от объёма запрашиваемой информации. Размер сектора на дискете равен 512 байт. Цилиндр - это общее количество дорожек, с которых можно считать информацию, не перемещая головок. Поскольку гибкий диск имеет только две стороны, а дисковод для гибких дисков - только две головки, в гибком диске на один цилиндр приходится две дорожки. В жестком диске может быть много дисковых пластин, каждая из которых имеет две (или больше) головки, поэтому одному цилиндру соответствует множество дорожек. Кластер (или ячейка размещения данных) - наименьшая область диска, которую операционная система использует при записи файла. Обычно кластер - один или несколько секторов.

Перед использованием дискета должна быть форматирована, т.е. должна быть создана её логическая и физическая структура.

Дискеты требуют аккуратного обращения. Они могут быть повреждены, если

дотрагиваться до записывающей поверхности;

писать на этикетке дискеты карандашом или шариковой ручкой;

сгибать дискету;

перегревать дискету (оставлять на солнце или около батареи отопления);

подвергать дискету воздействию магнитных полей.

Накопители на жестких дисках объединяют в одном корпусе носитель (носители) и устройство чтения/записи, а также, нередко, и интерфейсную часть, называемую контроллером жесткого диска. Типичной конструкцией жесткого диска является исполнение в виде одного устройства - камеры, внутри которой находится один или более дисковых носителей, помещённых на один ось, и блок головок чтения/записи с их общим приводящим механизмом. Обычно, рядом с камерой носителей и головок располагаются схемы управления головками, дисками и, часто, интерфейсная часть и (или) контроллер. На интерфейсной карте устройства располагается собственно интерфейс дискового устройства, а контроллер с его интерфейсом располагается на самом устройстве. С интерфейсным адаптером схемы накопителя соединяются при помощи комплекта шлейфов.

Принцип функционирования жёстких дисков аналогичен этому принципу для ГМД.

Основные физические и логические параметры ЖД.

Диаметр дисков. Наиболее распространены накопители с диаметром дисков 2.2, 2.3, 3.14 и 5.25 дюймов.

Число поверхностей - определяет количество физических дисков, нанизанных на ось.

Число цилиндров - определяет, сколько дорожек будет располагаться на одной поверхности.

Число секторов - общее число секторов на всех дорожках всех поверхностей накопителя.

Число секторов на дорожке - общее число секторов на одной дорожке. Для современных накопителей показатель условный, т.к. они имеют неравное число секторов на внешних и внутренних дорожках, скрытое от системы и пользователя интерфейсом устройства.

Время перехода от одной дорожки к другой обычно составляет от 3.5 до 5 миллисекунд, а у самых быстрых моделей может быть от 0.6 до 1 миллисекунды. Этот показатель является одним из определяющих быстродействие накопителя, т.к. именно переход с дорожки на дорожку является самым длительным процессом в серии процессов произвольного чтения/записи на дисковом устройстве.

Время установки или время поиска - время, затрачиваемое устройством на перемещение головок чтения/записи к нужному цилиндру из произвольного положения.

Скорость передачи данных, называемая также пропускной способностью, определяет скорость, с которой данные считываются или записываются на диск после того, как головки займут необходимое положение. Измеряется в мегабайтах в секунду (MBps) или мегабитах в секунду (Mbps) и является характеристикой контроллера и интерфейса.

В настоящее время используются в основном жёсткие диски ёмкостью от 10 Гб до 80 Гб. Наиболее популярными являются диски ёмкостью 20, 30, 40 Гб.

Кроме НГМД и НГМД довольно часто используют сменные носители. Довольно популярным накопителем является Zip. Он выпускается в виде встроенных или автономных блоков, подключаемых к параллельному порту. Эти накопители могут хранить 100 и 250 Мб данных на картриджах, напоминающих дискету формата 3,5’’, обеспечивают время доступа, равное 29 мс, и скорость передачи данных до 1 Мб/с. Если устройство подключается к системе через параллельный порт, то скорость передачи данных ограничена скорость параллельного порта.

К типу накопителей на сменных жёстких дисках относится накопитель Jaz. Ёмкость используемого картриджа - 1 или 2 Гб. Недостаток - высокая стоимость картриджа. Основное применение - резервное копирование данных.

В накопителях на магнитных лентах (чаще всего в качестве таких устройств выступают стримеры) запись производится на мини-кассеты. Ёмкость таких кассет - от 40 Мб до 13 Гб, скорость передачи данных - от 2 до 9 Мб в минуту, длина ленты - от 63,5 до 230 м, количество дорожек - от 20 до 144.

CD-ROM - это оптический носитель информации, предназначенный только для чтения, на котором может храниться до 650 Мб данных. Доступ к данным на CD-ROM осуществляется быстрее, чем к данным на дискетах, но медленнее, чем на жёстких дисках.

Компакт-диск диаметром 120 мм (около 4,75’’) изготовлен из полимера и покрыт металлической плёнкой. Информация считывается именно с этой металлической плёнки, которая покрывается полимером, защищающим данные от повреждения. CD-ROM является односторонним носителем информации.

Считывание информации с диска происходит за счёт регистрации изменений интенсивности отражённого от алюминиевого слоя излучения маломощного лазера. Приёмник или фотодатчик определяет, отразился ли луч от гладкой поверхности, был рассеян или поглощён. Рассеивание или поглощение луча происходит в местах, где в процессе записи были нанесены углубления. Фотодатчик воспринимает рассеянный луч, и эта информация в виде электрических сигналов поступает на микропроцессор, который преобразует эти сигналы в двоичные данные или звук.

Скорость считывания информации с CD-ROM сравнивают со скоростью считывания информации с музыкального диска (150 Кб/с), которую принимают за единицу. На сегодняшний день наиболее распространенными являются 52х-скоростные накопители CD-ROM (скорость считывания 7500 Кб/с).

Накопители CD-R (CD-Recordable) позволяют записывать собственные компакт-диски.

Более популярными являются накопители CD-RW, которые позволяют записывать и перезаписывать диски CD-RW, записывать диски CD-R, читать диски CD-ROM, т.е. являются в определённом смысле универсальными.

Аббревиатура DVD расшифровывается как Digital Versatile Disk, т.е. универсальный цифровой диск. Имея те же габариты, что обычный компакт-диск, и весьма похожий принцип работы, он вмещает чрезвычайно много информации - от 4,7 до 17 Гбайт. Воз-можно, именно из-за большой емкости он и называется универсальным. Правда, на сего-дня реально применяется DVD-диск лишь в двух областях: для хранения видеофильмов (DVD-Video или просто DVD) и сверхбольших баз данных (DVD-ROM, DVD-R).

Разброс ёмкостей возникает так: в отличие от CD-ROM, диски DVD записываются с обеих сторон. Более того, с каждой стороны могут быть нанесены один или два слоя информации. Таким образом, односторонние однослойные диски имеют объем 4,7 Гбайт (их часто называют DVD-5, т.е. диски емкостью около 5 Гбайт), двусторонние однослойные - 9,4 Гбайт (DVD-10), односторонние двухслойные - 8,5 Гбайт (DVD-9), а двусторонние двухслойные - 17 Гбайт (DVD-18). В зависимости от объема требующих хранения данных и выбирается тип DVD-диска. Если речь идет о фильмах, то на двусторонних дисках часто хранят две версии одной картины - одна широкоэкранная, вторая в классическом телевизионном формате.

Таким образом, здесь приведён обзор основных устройств внешней памяти с указанием их характеристик.


... ; End; Для определения высоты строки используйте следующий оператор: height:=E.ActiveWorkbook.Sheets.Item.Rows.RowHeight; Задание №5 «Табличный процессор EXCEL» Работа с функциями в EXEL. Работа с файлами. Работа с функциями Подготовьте таблицу для расчета ваших еженедельных трат на поездки в городском транспорте: Создайте таблицу, пользуясь образцом. Для этого: В...

Exe). Он входит в комплект поставки MS-DOS, а также поставляется практически со всеми приводами CD-ROM. Устройство и принцип работы Как известно, большинство накопителей бывают внешними и встраиваемыми. Приводы компакт-дисков в этом смысле не являются исключением. Большинство предлагаемых в настоящее время накопителей CD-ROM относятся к встраиваемым. Внешний накопитель, как правило, ...

Для хранения двоичных чисел в компьютере служит устройство, которое принято называть ячейкой памяти. Ячейки образуются из нескольких битов, так же как двоичные числа образуется из двоичных разрядов. А всю память компьютера можно представить как автоматическую камеру хранения, состоящую из большого количества отдельных ячеек, в каждую из которых можно положить, записать некоторое двоичное число. ...

При этом под информацией понимается различные сведения о тех или иных явлениях природы, событиях общественной жизни или процессах, протекающих в технических устройствах. 1. ЧТО ТАКОЕ КОМПЬЮТЕР? Что же такое персональный компьютер? Если описывать его внешне, то это «небольшой ящик, лежащий (desktop) или стоящий (mini-tower) на столе, реже - ящик высотой около метра (...

Любые электронные вычислительные машины включают в себя накопители памяти. Без них оператор не смог бы сохранить результат своей работы или скопировать на другой носитель.

Перфокарты

На заре появления для применяли перфокарты - обычные картонные карточки с нанесенной цифровой разметкой.

На одной перфокарте помещалось 80 столбцов, в каждом столбце можно было сохранить 1 бит информации. Отверстия в этих столбцах соответствовали единице. Считывание данных происходило последовательно. Повторно что-либо записать на перфокарту было невозможно, поэтому их требовалось огромное количество. Для хранения массива данных объемом 1 ГБ потребовалось бы 22 тонны бумаги.

Похожий принцип использовался и в перфолентах. Они наматывались на бобину, занимали меньше места, но часто рвались и не позволяли добавлять и редактировать данные.

Дискеты

Появление дискет стало настоящим прорывом в информационных технологиях. Компактные, емкие, они позволяли хранить от 300 Кб на самых ранних образцах до 1,44 Мб на последних версиях. Чтение и запись осуществлялись на магнитный диск, заключеный в пластиковый футляр.

Главным недостатком дискет была недолговечность хранимой на них информации. Они были уязвимы от действия и могли размагнититься даже в общественном транспорте - троллейбусе или трамвае, поэтому для долговременного хранения данных их старались не использовать. Считывание дискет происходило в дисководах. Вначале были 5-дюймовые дискеты, потом их заменили более удобные 3-дюймовые.

Главным конкурентом дискет стали флеш-накопители. Их единственным недостатком была цена, но по мере развития микроэлектроники стоимость флэшек сильно упала и дискеты ушли в историю. Окончательно их выпуск прекратился в 2011 году.

Стримеры

Для хранения архивных данных раньше применялись стримеры. Они были похожи на видеокассеты внешне и по принципу действия. Магнитная лента и две бобины позволяли последовательно считывать и записывать информацию. Емкость этих устройств составляла до 100 Мб. Массового распространения такие накопители не получили. Рядовые пользователи предпочитали хранить свои данные на жестких дисках, а музыку, фильмы, программы было удобнее держать на CD-, а позднее DVD-дисках.

CD и DVD

Эти накопители информации используются до сих пор. На пластмассовую подложку наносится активный, отражающий и защитный слой. Информация с диска считывается лучом лазера. Стандартный диск имеет объем 700 МБ. Этого хватает например на запись 2-часового фильма в среднем качестве. Существуют также двусторонние диски, когда активный слой напыляется на обе стороны диска. Для сохранения небольшого объема информации используются мини-CD. Драйвера, инструкции к компьютерным изделиям теперь пишутся именно на них.

DVD-диски пришли на смену CD в 1996 году. Они позволяли хранить информацию уже объемом 4,7 Гб. Достоинство их также было в том, что DVD-привод мог считывать как CD-, так и DVD-диски. На данный момент это самый массовый накопитель памяти.

Флеш-накопители

Рассмотренные выше накопители CD и DVD обладают целым рядом преимуществ - дешевизна, надежность, возможность хранить большие массивы информации, но они предназначены для однократной записи. На записанный диск нельзя внести изменения, добавить или удалить лишнее. И тут на помощь нам приходит принципиально другой накопитель - флеш-память.

Некоторое время он конкурировал с дискетами, но быстро победил в этой гонке. Главным сдерживающим фактором оставалась цена, но теперь ее удалось снизить до приемлемого уровня. Современные компьютеры уже не комплектуются дисководами, поэтому флешка стала незаменимым спутником для всех имеющих дело с компьютерной техникой. Максимальный объем информации, умещающийся на флешку, достигает 1 Tb.

Карты памяти

Телефоны, фотоаппараты, электронные книги, фоторамки и много чего еще требуют для работы накопители памяти. Из-за своих относительно больших размеров для этой цели не годятся USB-накопители. Карты памяти специально созданы для таких случаев. По сути, это та же флешка, но адаптированная под малогабаритные изделия. Большую часть времени карта памяти находится в электронном устройстве и вынимается только для переноса накопившихся данных на постоянный носитель.

Существует множество стандартов карт памяти, самые миниатюрные из них имеют размер 14 на 12 мм. На современных компьютерах вместо дисковода обычно ставится картридер, который позволяет считывать большинство типов карт памяти.

Жесткие диски (HDD)

Накопители памяти для компьютера представляют собой Внутри него находятся металлические пластины, с двух сторон покрытые магнитным составом. Двигатель вращает их со скоростью 5400 для старых моделей или 7200 об/мин - для современных устройств. Магнитная головка движется от центра диска к его краю и позволяет считывать и записывать информацию. Объем винчестера зависит от количества дисков в нем. Современные модели позволяют хранить до 8 Tb информации.

Недостатков у этого вида накопителей памяти практически нет - это очень надежные и долговечные изделия. Стоимость единицы памяти в жестких дисках самая дешевая среди всех типов накопителей.

Твердотельные накопители (SSD)

Как бы ни были хороши жесткие диски, но они уже почти достигли своего потолка. Быстродействие их зависит от скорости вращения дисков, а дальнейшее ее увеличение приводит к физической деформации. Флеш-технология, которая применяется при изготовлении твердотельных накопителей памяти, лишена этих недостатков. Они не содержат движущиеся части, поэтому не подвержены физическому износу, не боятся ударных воздействий и не шумят.

Но пока есть и серьезные недостатки. В первую очередь - цена. Стоимость твердотельного диска в 5 раз выше жесткого диска аналогичного объема. Другой существенный недостаток - небольшой срок эксплуатации. Твердотельные накопители обычно выбирают для установки операционной системы, а для хранения данных используется жесткий диск. Стоимость твердотельных дисков неуклонно снижается, есть подвижки и в увеличении их ресурса. В недалеком будущем они должны вытеснить традиционные винчестеры, как в свое время флешки вытеснили дискеты.

Внешние накопители

Внутренний накопитель и внутренняя память всем хороши, но часто требуется перенести информацию с одного компьютера на другой. Еще в 1995 году был разработан интерфейс USB, позволяющий подключать к ПК самые разнообразные устройства, не стали исключением и накопители памяти. Вначале это были флеш-накопители, позднее появились DVD-проигрыватели c USB-разъемом и, наконец, диски HDD и SSD.

Привлекательность USB-интерфейса в его простоте - достаточно воткнуть флешку или другой накопитель и можно работать, не требуется ни установки драйвера, ни других дополнительных действий. Развитие интерфейса и появление вначале USB 2.0, а затем и USB 3.0 резко повысило скорость обмена данными по этому каналу. Быстродействие теперь мало отличается от внутреннего, а их размеры не могут не радовать. Внешний накопитель памяти легко помещается на ладони, при этом он позволяет хранить сотни гигабайт информации.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то