Что значит 2 ядерный процессор. На что влияет количество ядер процессора? Многоядерный процессор

  • Tutorial

В этой статье я попытаюсь описать терминологию, используемую для описания систем, способных исполнять несколько программ параллельно, то есть многоядерных, многопроцессорных, многопоточных. Разные виды параллелизма в ЦПУ IA-32 появлялись в разное время и в несколько непоследовательном порядке. Во всём этом довольно легко запутаться, особенно учитывая, что операционные системы заботливо прячут детали от не слишком искушённых прикладных программ.

Цель статьи - показать, что при всём многообразии возможных конфигураций многопроцессорных, многоядерных и многопоточных систем для программ, исполняющихся на них, создаются возможности как для абстракции (игнорирования различий), так и для учёта специфики (возможность программно узнать конфигурацию).

Предупреждение о знаках ®, ™, в статье

Мой комментарий объясняет, почему сотрудники компаний должны в публичных коммуникациях использовать знаки авторского права. В этой статье их пришлось использовать довольно часто.

Процессор

Конечно же, самый древний, чаще всего используемый и неоднозначный термин - это «процессор».

В современном мире процессор - это то (package), что мы покупаем в красивой Retail коробке или не очень красивом OEM-пакетике. Неделимая сущность, вставляемая в разъём (socket) на материнской плате. Даже если никакого разъёма нет и снять его нельзя, то есть если он намертво припаян, это один чип.

Мобильные системы (телефоны, планшеты, ноутбуки) и большинство десктопов имеют один процессор. Рабочие станции и сервера иногда могут похвастаться двумя или больше процессорами на одной материнской плате.

Поддержка нескольких центральных процессоров в одной системе требует многочисленных изменений в её дизайне. Как минимум, необходимо обеспечить их физическое подключение (предусмотреть несколько сокетов на материнской плате), решить вопросы идентификации процессоров (см. далее в этой статье, а также мою предыдущую заметку), согласования доступов к памяти и доставки прерываний (контроллер прерываний должен уметь маршрутизировать прерывания на несколько процессоров) и, конечно же, поддержки со стороны операционной системы. Я, к сожалению, не смог найти документального упоминания момента создания первой многопроцессорной системы на процессорах Intel, однако Википедия утверждает , что Sequent Computer Systems поставляла их уже в 1987 году, используя процессоры Intel 80386. Широко распространённой поддержка же нескольких чипов в одной системе становится доступной, начиная с Intel® Pentium.

Если процессоров несколько, то каждый из них имеет собственный разъём на плате. У каждого из них при этом имеются полные независимые копии всех ресурсов, таких как регистры, исполняющие устройства, кэши. Делят они общую память - RAM. Память может подключаться к ним различными и довольно нетривиальными способами, но это отдельная история, выходящая за рамки этой статьи. Важно то, что при любом раскладе для исполняемых программ должна создаваться иллюзия однородной общей памяти, доступной со всех входящих в систему процессоров.


К взлёту готов! Intel® Desktop Board D5400XS

Ядро

Исторически многоядерность в Intel IA-32 появилась позже Intel® HyperThreading, однако в логической иерархии она идёт следующей.

Казалось бы, если в системе больше процессоров, то выше её производительность (на задачах, способных задействовать все ресурсы). Однако, если стоимость коммуникаций между ними слишком велика, то весь выигрыш от параллелизма убивается длительными задержками на передачу общих данных. Именно это наблюдается в многопроцессорных системах - как физически, так и логически они находятся очень далеко друг от друга. Для эффективной коммуникации в таких условиях приходится придумывать специализированные шины, такие как Intel® QuickPath Interconnect. Энергопотребление, размеры и цена конечного решения, конечно, от всего этого не понижаются. На помощь должна прийти высокая интеграция компонент - схемы, исполняющие части параллельной программы, надо подтащить поближе друг к другу, желательно на один кристалл. Другими словами, в одном процессоре следует организовать несколько ядер , во всём идентичных друг другу, но работающих независимо.

Первые многоядерные процессоры IA-32 от Intel были представлены в 2005 году. С тех пор среднее число ядер в серверных, десктопных, а ныне и мобильных платформах неуклонно растёт.

В отличие от двух одноядерных процессоров в одной системе, разделяющих только память, два ядра могут иметь также общие кэши и другие ресурсы, отвечающие за взаимодействие с памятью. Чаще всего кэши первого уровня остаются приватными (у каждого ядра свой), тогда как второй и третий уровень может быть как общим, так и раздельным. Такая организация системы позволяет сократить задержки доставки данных между соседними ядрами, особенно если они работают над общей задачей.


Микроснимок четырёхядерного процессора Intel с кодовым именем Nehalem. Выделены отдельные ядра, общий кэш третьего уровня, а также линки QPI к другим процессорам и общий контроллер памяти.

Гиперпоток

До примерно 2002 года единственный способ получить систему IA-32, способную параллельно исполнять две или более программы, состоял в использовании именно многопроцессорных систем. В Intel® Pentium® 4, а также линейке Xeon с кодовым именем Foster (Netburst) была представлена новая технология - гипертреды или гиперпотоки, - Intel® HyperThreading (далее HT).

Ничто не ново под луной. HT - это частный случай того, что в литературе именуется одновременной многопоточностью (simultaneous multithreading, SMT). В отличие от «настоящих» ядер, являющихся полными и независимыми копиями, в случае HT в одном процессоре дублируется лишь часть внутренних узлов, в первую очередь отвечающих за хранение архитектурного состояния - регистры. Исполнительные же узлы, ответственные за организацию и обработку данных, остаются в единственном числе, и в любой момент времени используются максимум одним из потоков. Как и ядра, гиперпотоки делят между собой кэши, однако начиная с какого уровня - это зависит от конкретной системы.

Я не буду пытаться объяснить все плюсы и минусы дизайнов с SMT вообще и с HT в частности. Интересующийся читатель может найти довольно подробное обсуждение технологии во многих источниках, и, конечно же, в Википедии . Однако отмечу следующий важный момент, объясняющий текущие ограничения на число гиперпотоков в реальной продукции.

Ограничения потоков
В каких случаях наличие «нечестной» многоядерности в виде HT оправдано? Если один поток приложения не в состоянии загрузить все исполняющие узлы внутри ядра, то их можно «одолжить» другому потоку. Это типично для приложений, имеющих «узкое место» не в вычислениях, а при доступе к данным, то есть часто генерирующих промахи кэша и вынужденных ожидать доставку данных из памяти. В это время ядро без HT будет вынуждено простаивать. Наличие же HT позволяет быстро переключить свободные исполняющие узлы к другому архитектурному состоянию (т.к. оно как раз дублируется) и исполнять его инструкции. Это - частный случай приёма под названием latency hiding, когда одна длительная операция, в течение которой полезные ресурсы простаивают, маскируется параллельным выполнением других задач. Если приложение уже имеет высокую степень утилизации ресурсов ядра, наличие гиперпотоков не позволит получить ускорение - здесь нужны «честные» ядра.

Типичные сценарии работы десктопных и серверных приложений, рассчитанных на машинные архитектуры общего назначения, имеют потенциал к параллелизму, реализуемому с помощью HT. Однако этот потенциал быстро «расходуется». Возможно, по этой причине почти на всех процессорах IA-32 число аппаратных гиперпотоков не превышает двух. На типичных сценариях выигрыш от использования трёх и более гиперпотоков был бы невелик, а вот проигрыш в размере кристалла, его энергопотреблении и стоимости значителен.

Другая ситуация наблюдается на типичных задачах, выполняемых на видеоускорителях. Поэтому для этих архитектур характерно использование техники SMT с бóльшим числом потоков. Так как сопроцессоры Intel® Xeon Phi (представленные в 2010 году) идеологически и генеалогически довольно близки к видеокартам, на них может быть четыре гиперпотока на каждом ядре - уникальная для IA-32 конфигурация.

Логический процессор

Из трёх описанных «уровней» параллелизма (процессоры, ядра, гиперпотоки) в конкретной системе могут отсутствовать некоторые или даже все. На это влияют настройки BIOS (многоядерность и многопоточность отключаются независимо), особенности микроархитектуры (например, HT отсутствовал в Intel® Core™ Duo, но был возвращён с выпуском Nehalem) и события при работе системы (многопроцессорные сервера могут выключать отказавшие процессоры в случае обнаружения неисправностей и продолжать «лететь» на оставшихся). Каким образом этот многоуровневый зоопарк параллелизма виден операционной системе и, в конечном счёте, прикладным приложениям?

Далее для удобства обозначим количества процессоров, ядер и потоков в некоторой системе тройкой (x , y , z ), где x - это число процессоров, y - число ядер в каждом процессоре, а z - число гиперпотоков в каждом ядре. Далее я буду называть эту тройку топологией - устоявшийся термин, мало что имеющий с разделом математики. Произведение p = xyz определяет число сущностей, именуемых логическими процессорами системы. Оно определяет полное число независимых контекстов прикладных процессов в системе с общей памятью, исполняющихся параллельно, которые операционная система вынуждена учитывать. Я говорю «вынуждена», потому что она не может управлять порядком исполнения двух процессов, находящихся на различных логических процессорах. Это относится в том числе к гиперпотокам: хотя они и работают «последовательно» на одном ядре, конкретный порядок диктуется аппаратурой и недоступен для наблюдения или управления программам.

Чаще всего операционная система прячет от конечных приложений особенности физической топологии системы, на которой она запущена. Например, три следующие топологии: (2, 1, 1), (1, 2, 1) и (1, 1, 2) - ОС будет представлять в виде двух логических процессоров, хотя первая из них имеет два процессора, вторая - два ядра, а третья - всего лишь два потока.


Windows Task Manager показывает 8 логических процессоров; но сколько это в процессорах, ядрах и гиперпотоках?


Linux top показывает 4 логических процессора.

Это довольно удобно для создателей прикладных приложений - им не приходится иметь дело с зачастую несущественными для них особенностями аппаратуры.

Программное определение топологии

Конечно, абстрагирование топологии в единственное число логических процессоров в ряде случаев создаёт достаточно оснований для путаницы и недоразумений (в жарких Интернет-спорах). Вычислительные приложения, желающие выжать из железа максимум производительности, требуют детального контроля над тем, где будут размещены их потоки: поближе друг к другу на соседних гиперпотоках или же наоборот, подальше на разных процессорах. Скорость коммуникаций между логическими процессорами в составе одного ядра или процессора значительно выше, чем скорость передачи данных между процессорами. Возможность неоднородности в организации оперативной памяти также усложняет картину.

Информация о топологии системы в целом, а также положении каждого логического процессора в IA-32 доступна с помощью инструкции CPUID. С момента появления первых многопроцессорных систем схема идентификации логических процессоров несколько раз расширялась. К настоящему моменту её части содержатся в листах 1, 4 и 11 CPUID. Какой из листов следует смотреть, можно определить из следующей блок-схемы, взятой из статьи :

Я не буду здесь утомлять всеми подробностями отдельных частей этого алгоритма. Если возникнет интерес, то этому можно посвятить следующую часть этой статьи. Отошлю интересующегося читателя к , в которой этот вопрос разбирается максимально подробно. Здесь же я сначала кратко опишу, что такое APIC и как он связан с топологией. Затем рассмотрим работу с листом 0xB (одиннадцать в десятичном счислении), который на настоящий момент является последним словом в «апикостроении».

APIC ID
Local APIC (advanced programmable interrupt controller) - это устройство (ныне входящее в состав процессора), отвечающее за работу с прерываниями, приходящими к конкретному логическому процессору. Свой собственный APIC есть у каждого логического процессора. И каждый из них в системе должен иметь уникальное значение APIC ID. Это число используется контроллерами прерываний для адресации при доставке сообщений, а всеми остальными (например, операционной системой) - для идентификации логических процессоров. Спецификация на этот контроллер прерываний эволюционировала, пройдя от микросхемы Intel 8259 PIC через Dual PIC, APIC и xAPIC к x2APIC .

В настоящий момент ширина числа, хранящегося в APIC ID, достигла полных 32 бит, хотя в прошлом оно было ограничено 16, а ещё раньше - только 8 битами. Нынче остатки старых дней раскиданы по всему CPUID, однако в CPUID.0xB.EDX возвращаются все 32 бита APIC ID. На каждом логическом процессоре, независимо исполняющем инструкцию CPUID, возвращаться будет своё значение.

Выяснение родственных связей
Значение APIC ID само по себе ничего не говорит о топологии. Чтобы узнать, какие два логических процессора находятся внутри одного физического (т.е. являются «братьями» гипертредами), какие два - внутри одного процессора, а какие оказались и вовсе в разных процессорах, надо сравнить их значения APIC ID. В зависимости от степени родства некоторые их биты будут совпадать. Эта информация содержится в подлистьях CPUID.0xB, которые кодируются с помощью операнда в ECX. Каждый из них описывает положение битового поля одного из уровней топологии в EAX (точнее, число бит, которые нужно сдвинуть в APIC ID вправо, чтобы убрать нижние уровни топологии), а также тип этого уровня - гиперпоток, ядро или процессор, - в ECX.

У логических процессоров, находящихся внутри одного ядра, будут совпадать все биты APIC ID, кроме принадлежащих полю SMT. Для логических процессоров, находящихся в одном процессоре, - все биты, кроме полей Core и SMT. Поскольку число подлистов у CPUID.0xB может расти, данная схема позволит поддержать описание топологий и с бóльшим числом уровней, если в будущем возникнет необходимость. Более того, можно будет ввести промежуточные уровни между уже существующими.

Важное следствие из организации данной схемы заключается в том, что в наборе всех APIC ID всех логических процессоров системы могут быть «дыры», т.е. они не будут идти последовательно. Например, во многоядерном процессоре с выключенным HT все APIC ID могут оказаться чётными, так как младший бит, отвечающий за кодирование номера гиперпотока, будет всегда нулевым.

Отмечу, что CPUID.0xB - не единственный источник информации о логических процессорах, доступный операционной системе. Список всех процессоров, доступный ей, вместе с их значениями APIC ID, кодируется в таблице MADT ACPI .

Операционные системы и топология

Операционные системы предоставляют информацию о топологии логических процессоров приложениям с помощью своих собственных интерфейсов.

В Linux информация о топологии содержится в псевдофайле /proc/cpuinfo , а также выводе команды dmidecode . В примере ниже я фильтрую содержимое cpuinfo на некоторой четырёхядерной системе без HT, оставляя только записи, относящиеся к топологии:

Скрытый текст

ggg@shadowbox:~$ cat /proc/cpuinfo |grep "processor\|physical\ id\|siblings\|core\|cores\|apicid" processor: 0 physical id: 0 siblings: 4 core id: 0 cpu cores: 2 apicid: 0 initial apicid: 0 processor: 1 physical id: 0 siblings: 4 core id: 0 cpu cores: 2 apicid: 1 initial apicid: 1 processor: 2 physical id: 0 siblings: 4 core id: 1 cpu cores: 2 apicid: 2 initial apicid: 2 processor: 3 physical id: 0 siblings: 4 core id: 1 cpu cores: 2 apicid: 3 initial apicid: 3

В FreeBSD топология сообщается через механизм sysctl в переменной kern.sched.topology_spec в виде XML:

Скрытый текст

user@host:~$ sysctl kern.sched.topology_spec kern.sched.topology_spec: 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 2, 3, 4, 5, 6, 7 0, 1 THREAD groupSMT group 2, 3 THREAD groupSMT group 4, 5 THREAD groupSMT group 6, 7 THREAD groupSMT group

В MS Windows 8 сведения о топологии можно увидеть в диспетчере задач Task Manager.

В наше время принято считать, что двухъядерный процессор – это удел бюджетных компьютеров. «Настоящий» CPU начинается с 4-х ядер. Долгое время этого действительно было достаточно, и многочисленное ПО с успехом использовало все предоставляемые ресурсы. Сейчас же вполне обычными стали 6-ядерные процессоры и далее более «ядреные». Насколько актуально увеличение многопоточности в играх? Ресурс uk.hardware.info провел тестирование с целью определить, сколько ядер нужно для игр, где предел разумности наращивания этих вычислительных блоков при выборе процессора и, соответственно, трат на отнюдь не дешевые «камни». Предлагаю вольный перевод этого тестирования.

Цель проверки и участники

Цель – определить, сколько денег готовить для покупки процессора, о котором можно будет не беспокоиться, что он станет узким местом в собираемой игровой системе. Естественно, это тестирование интересно для того, чей бюджет, выделенный для приобретения комплектующих, небезграничен, и хочется наиболее эффективно вложить каждый рубль в гигагерцы (гигабайты и т. п.).

Попутно попытаемся решить, во что инвестировать лучше всего, в дополнительные ядра процессора, или в более быстродействующую видеокарту, или же купить . Важно понять, насколько та или иная игра способна работать с несколькими ядрами и насколько увеличивается быстродействие (если увеличивается вообще) c ростом их количества.

Для тестирования был собран следующий стенд:

  • Процессор — Intel Core i9 7900X Skylake-X 10-core CPU @ 4.5 ГГц.
  • Материнская плата — ASUS Strix X299-XE Gaming.

Также проверки проводились с использованием процессора AMD, для чего был собран следующий стенд:

  • Процессор – AMD Ryzen 7 2700X на штатных частотах и с использованием всех доступных ядер.
  • Материнская плата — Asus Crosshair VII Hero WiFi.
  • Память — G.Skill Trident Z 32 ГБ DDR4-3200 CL14.
  • Видеокарта — NVidia GeForce GTX 1080 Ti.
  • Накопитель — 2x SSD Samsung 840 Evo 1ТБ.
  • ОС — Windows 10 64-bit (1803 Update).

Выбранный процессор Intel позволяет отключать ядра и потоки для имитации CPU с разной конфигурацией вычислительных блоков.

Тестирование осуществлялось в нескольких разрешениях экрана: FullHD, WQHD и Ultra HD при средних и ультра настройках графики. Забегая немного вперед, в высоких разрешениях «бутылочным» горлышком становилась видеокарта, что снижает ценность проверки процессоров, но все же кое-какую информацию к размышлению дает.

Результаты тестирования

Assassin’s Creed Origins (DX11)

Игра хорошо масштабируется, но только до определенного предела.

Двухъядерный процессор явно уже не годится, т. к. существенно снижает быстродействие, а оптимальным оказывается наличие 4-х ядер, причем в конфигурации с 8-ю потоками, либо же процессор с 6-ю ядрами без HyperThreading. Дальнейшее увеличение ядер если и приносит результат, то уже не столь существенный.

Call of Duty: WW2 (DX11)

Игра, мягко говоря, не очень в курсе с тем, что делать с увеличением количества ядер.

Разница, хотя и весьма небольшая, наблюдается разве что при разрешении FullHD при средних настройках. С увеличением качества картинки минимальный разброс результатов вполне можно списать на погрешности измерения.

Destiny 2 (DX11)

Этой игре нужен процессор с 4-мя ядрами, как минимум. Впрочем, большее их количество оказывается невостребованным. Справедливости ради надо сказать, что это верно для невысоких разрешений (не более FullHD) и для средне-высоких настроек графики.

С возрастанием нагрузки на видеокарту роль процессора в быстродействии снижается, и разницы между самым «хилым» двухъядерником и топовым CPU сводится к нулю.

F1 2017 (DX11)

Здесь похожее поведение, что и в прошлой игре.

Двухъядерник заметно снижает производительность, но, опять-таки, при не самых высоких разрешениях. Начиная с ультра настроек в 1440p разница между «камнями» минимальна. Впрочем, несколько выделяется 10-ядерник в некоторых режимах. Да и Ryzen очень хорошо себя чувствует именно при высокой нагрузке.

Far Cry 5 (DX11)

Еще одна игра, которая равнодушна к количеству ядер у процессора.

При высоких разрешениях чуть выделяются CPU в конфигурации 6C/12T и 10C/20T, но, право, увеличение FPS настолько незначительно, что это не оправдывает переплату за эти ядра.

Final Fantasy XV (DX11)

Можно сказать с уверенностью, что двухъядерный процессор — «тормоз» для этой игры в разрешениях FullHD и 1440p.

Впрочем, и к варианту с 4-мя ядрами и без HyperThreading могут быть претензии. Все что выше – показывает очень близкие результаты. AMD Ryzen хорош во всех режимах.

Fortnite (DX11)

Единственное заметное различие – при разрешении FullHD и средних настройках качества изображения. Отстали двухъядерный Intel и, как ни странно, у AMD результаты ниже примерно на 15%. Остальная группа «товарищей» держится очень сплоченно. При увеличении нагрузки на графический процессор разница между CPU нивелируется.

Ghost Recon: Wildlands (DX11)

Еще одно подтверждение, что два ядра по нашим временам уже мало.

В условиях, когда видеокарта еще не загружена «под завязку», недостаток вычислительных блоков проявляется заметно.

Можно заметить, что во всех режимах 6-ядерники уступают 4-ядерникам, причем наличие двух дополнительных «железных» ядер уступает четырем потокам HyperThreading. Справедливости ради, речь идет о разнице в 1-2 FPS, и этим вполне можно пренебречь.

Middle Earth: Shadow of War (DX11)

Опять привычная уже картина – при невысокой нагрузке на видеокарту, двухъядерник отстает.

Начиная с конфигурации 4С/4Т разницы между процессорами практически никакой.

Need for Speed: Payback (DX11)

Движок Frostbite, на котором построена эта игра, знает, как распоряжаться предоставляемыми ресурсами.

Правда, наиболее заметный прирост происходит при переходе с 2-х на 4 ядра, причем, желательно, чтобы был еще и HyperThreading. Либо 6 ядер в любой конфигурации.

PlayerUnknown’s Battlegrounds (DX11)

Хорошо чувствуют себя процессоры с 4-мя ядрами и выше.

Двухъядерник уступает в большинстве вариантов. Причем, наибольший эффект достигается при наличии 6-ти ядер.

Prey (DX11)

Игра плохо масштабируется по ядрам.

Разве что на максимальных настройках в FullHD процессоры выстраиваются в соответствии с иерархией. А в 4K двухъядерник позволяет получить то же количество FPS, что и десятиядерник. Причем, заметно явное благоволение к наличию HyperThreading, хотя эффект от его использования исчисляется несколькими FPS.

В низких разрешениях хуже всего проявляет себя AMD, уступая всем и заметно. Правда, чем выше разрешение и настройки графики, тем оправданнее использование именно этого «камня».

Total War: Warhammer (DX11)

Игра хорошо относится к наличию у процессора 6 ядер.

В большинстве случаев это оказывается оптимальным вариантом.

The Witcher 3 (DX11)

«Ведьмак» слабо реагирует на многоядерность.

Практически все преимущество дает переход с 2-х на 4 ядра. Да и то, проявляется это при FullHD и средних настройках графики.

Battlefield 1 (DX12)

Движок Frostbite хорошо масштабируется вплоть до 6 ядер и 12 потоков.

Дальнейшее увеличение «крутизны» процессора уже никак не сказывается. Оптимальным выбором оказываются именно шестиядерники, или, в крайнем случае, четырехъядерник, но обязательно с HyperThreading «на борту».

Неплохо выглядит AMD Ryzen, хотя и проигрывая в разрешении FullHD, но в 1440p показывает практически те же результаты, в то время как Intel «опускается» до уровня AMD.

Forza Motorsport 7 (DX12)

Игра также хорошо масштабируется, и наличие 8 потоков или 6 ядер – оптимальная конфигурация для Forza Motorsport 7. Все, что ниже – будет являться «узким местом» в системе.

The Division (DX12)

Двух ядер для этой игры мало.

Нужно хотя бы вдвое больше, и желательно с HyperThreading. Дальнейшее увеличение многоядерности прибавления FPS не приносит. И опять, наличие 8 потоков или 6 «железных» ядер – самый оптимальный вариант.

Wolfenstein 2: The New Colossus (Vulkan)

Игра, использующая собственный движок и собственное же APi, больше всего нагружает видеокарту, а какой используется процессор – это уже не столь важно. Небольшое увеличение FPS при наличии 6 ядер наблюдается, но разница укладывается в несколько процентов.

Заключение. Многоядерность – так сколько ядер нужно для игр?

Как показало тестирование, наиболее «ядерозависимыми» являются игры Forza Motorsport 7, Assassin’s Creed: Origins, Battlefield 1 и Need For Speed Payback. Естественно, речь идет, за редким исключением, о разрешениях FullHD и не самых высоких настройках графики.

Разница в производительности между двухъядерником и 10-ядерником может доходить до двукратной. Использование 4-х ядер снижает этот гандикап вдвое, доводя до 50%, а наличие HyperThreading сводит притягательность топовых «камней» почти на нет. В ряде случаев заметна разница при наличии удвоенного числа потоков по отношению к ядрам.

С ростом разрешения экрана в подавляющем большинстве случаев разницы между CPU нет, т. к. в данном случае основная нагрузка ложится на видеопроцессор.

Если говорить о привлекательности с точки зрения показываемой процессорами производительности, то ситуация во многом зависит от того, в каком разрешении запускаются игры.

  • 1080p (FullHD). При средних настройках графики оптимальным выбором являются процессоры начиная с 4C/8T до 6C/12T. Невысокая загрузка видеокарты, особенно топовой, выявляет недостаток производительности двухъядерного процессора. При переходе же на ультра настройки, разница между CPU сокращается. AMD Ryzen показывает результаты на уровне интеловского 4C/8T.
  • 1440p. Здесь больше сказывается производительность видеокарты, нежели процессора, что отражается в небольшой разнице между процессорами. Даже двухъядерник уступает от силы 7-8%, и то при средних настройках графики переход к «ультре» снижает процессорозависимость. Очень привлекательным становится AMD.
  • 2160p. Все зависит от возможностей видеокарты. Преимущества того или иного CPU исчисляются долями процента, максимум – 1-2%, чем вполне можно пренебречь. Преимуществ у мощного, и дорогого, 10-ядерного CPU перед более доступным 4-ядерным практически нет.

Если переходить к выбору CPU, то, строго говоря, даже такие бюджетные решения, как Intel Pentium G4560, Pentium G5400 и сходные с ними вполне справляются со своей задачей. И все же не стоит обольщаться. Более мощные процессоры позволят получить больше кадров в минуту, обеспечить отсутствие или сведение к минимуму «проседания» FPS за счет более высоких вычислительных возможностей. Время двухъядерников уходит.

Сложно представить ситуацию, когда к топовой видеокарте (а, скорее всего, и к не самой дешевой материнке, памяти и т. п.) в компанию приобретается бюджетный CPU. Раскрыть возможности видеокарты не удастся. Разве что на высоких разрешениях.

А вот вариант с 4C/12T или 6C/6T выглядит уже гораздо более привлекательным. Причем, вариант 6C/12T более-менее заметных преимуществ не дает. Наличие же 10 и более ядер для игр никакого значения не имеет.

При переходе к высоким разрешениям внимание должно переключаться не столько на процессор, сколько на возможности и класс видеокарты. Именно она становится ограничителем в достижении больших значений FPS и высоких настроек графики.

Что же касается многоядерности, то тут возникает несколько другая ситуация. Если все же FullHD для вас мало, то, учитывая невысокое масштабирование игр по ядрам, лучше отдать предпочтение более высокой частоте их работы, нежели количеству, но с меньшим количеством МГц. А если еще и будет возможность разогнать такой процессор, то тогда совсем все хорошо.

Если рассматривать вопрос, что лучше, процессор с HyperThreading или без, то, если судить по результатам тестирования, CPU c 4С/8Т практически соответствует 6С/6Т, хотя последний чуть лучше в низких разрешениях. Ну а если брать комбинацию 6С/12Т, то получаем практически идеальный вариант, который позволит получить максимальное количество FPS, и при этом можно не бояться появления каких-либо «провалов» при большой нагрузке.

Это все ситуация на сегодняшний день. А что будет завтра, с выходом новых игр или новых их версий? Было бы неплохо знать, насколько разработчики уделяют времени масштабированию игровых движков, но сие знание тайное, и как-то не особо афишируемое. На данный момент это явно не в главных приоритетах у создателей игр.

С одной стороны, использование 4-х ядер/потоков в подавляющем большинстве случаев гарантирует максимальную или близкую к таковой производительность в разрешениях не более FullHD. Посему и заниматься распараллеливанием вычислений надобности нет.

Что же касается перехода на 2К, 4К и выше, тут понадобятся уже более серьезные вычислительные мощности, но возникает другая проблема – существующие видеопроцессоры пока что с трудом «переваривают» такую нагрузку, а посему, и заниматься масштабированием на несколько ядер необходимости нет, т. к. 4-6 вполне справляются с тем, чтобы загрузить видеокарту «по ватерлинию».

Вот выйдет новое поколение графических чипов (ожидаемое в скором времени NVidia 11-го поколения), тогда и посмотрим.

И все это приводит к следующему. Даже для топовой, или предтоповой, игровой системы лучшим выбором является процессор минимум с 4-мя ядрами и 8-ю потоками, или же вариант с 6-ю ядрами. Идеальный вариант, если у них еще будет разгонный потенциал.

Это, кстати, оптимально и по цене, ибо такие «камни» вполне доступны. Например,6-ядерный Intel Core i5 8600K обойдется примерно в 18000 руб., вариант с HyperThreading в виде Intel Core i7 8700K уже тысяч на 6 дороже. Кстати, 4-ядерный 8-поточный i7 7700K идет примерно в ту же цену. Чуть дешевле, примерно на 1000 руб., AMD Ryzen 7 2700X.

Для примера, самый дешевый 10-ядерный Intel Core i9 7900X, который может дать дополнительные несколько FPS, обойдется минимум вдвое дороже, чем i7 8700K. Не забудем, что это уже совсем другой уровень, и материнская плата понадобится уже совсем другая, с сокетом 2066.

Так что, многоядерность – это неплохо, но и про мегагерцы забывать не стоит, игры их любят. Хороших и быстрых процессоров, высоких FPS и победы над врагами!

В первые годы нового тысячелетия, когда частоты CPU, наконец, прошли отметку 1 ГГц, некоторые компании (не будем показывать пальцем на Intel) предсказывали, что новая архитектура NetBurst сможет в будущем достичь частот порядка 10 ГГц. Энтузиасты ожидали наступление новой эры, когда тактовые частоты CPU будут расти подобно грибам после дождя. Нужно больше производительности? Просто перейдите на процессор с большей тактовой частотой.

Яблоко Ньютона громко упало на головы мечтателей, которые рассматривали мегагерцы как самый лёгкий способ продолжения роста производительности ПК. Физические ограничения не позволили экспоненциально увеличивать тактовую частоту без соответствующего роста тепловыделения, да и другие проблемы, связанные с технологиями производства, тоже стали возникать. Действительно, последние годы самые быстрые процессоры работают на частотах от 3 до 4 ГГц.

Конечно, прогресс не остановить, когда за него готовы платить деньги - есть довольно много пользователей, кто готов выложить немалую сумму за более мощный компьютер. Поэтому инженеры стали искать другие способы увеличения производительности, в частности, повышая эффективность выполнения команд, а не только надеясь на тактовую частоту. Параллелизм тоже оказался решением - если вы не можете сделать CPU быстрее, то почему не добавить второй такой же процессор, чтобы увеличить вычислительные ресурсы?

Pentium EE 840 - первый двуядерный CPU, появившийся в рознице.

Основная проблема с параллелизмом заключается в том, что программное обеспечение должно быть специально написано так, чтобы распределять нагрузку по нескольким потокам - то есть вы не получите немедленной отдачи от вложенных денег, в отличие от таковой частоты. В 2005 году, когда вышли первые двуядерные процессоры, они не обеспечивали серьёзного прироста производительности, поскольку на настольных ПК использовалось довольно мало программного обеспечения, которое бы их поддерживало. Фактически, большая часть двуядерных CPU была медленнее одноядерных процессоров в большинстве задач, поскольку одноядерные CPU работали на более высоких тактовых частотах.

Впрочем, прошло уже четыре года, и за них многое изменилось. Многие разработчики программного обеспечения оптимизировали свои продукты, чтобы получить преимущество от нескольких ядер. Одноядерные процессоры сегодня уже сложнее найти в продаже, и двух-, трёх- и четырёхъядерные CPU считаются вполне обыденными.

Но возникает вопрос: сколько ядер CPU нужно на самом деле? Достаточно ли для игр трёхъядерного процессора, или лучше доплатить и взять четырёхъядерный чип? Достаточно ли для обычного пользователя двуядерного процессора, или большее число ядер действительно даёт какую-либо разницу? Какие приложения оптимизированы под несколько ядер, а какие будут реагировать на изменение только таких спецификаций, как частота или размер кэша?

Мы посчитали, что настало хорошее время провести тесты приложений из обновлённого пакета (впрочем, обновление ещё не закончено) на одно-, двух-, трёх- и четырёхъядерных конфигурациях, чтобы понять, насколько ценными стали многоядерные процессоры в 2009 году.

Чтобы тесты были справедливыми, мы выбрали четырёхъядерный процессор - разогнанный до 2,7 ГГц Intel Core 2 Quad Q6600. После проведения тестов на нашей системе, мы затем отключили одно из ядер, перезагрузились, и повторили тесты. Мы последовательно отключали ядра и получили результаты для разного количества активных ядер (от одного до четырёх), при этом процессор и его частота не менялись.

Отключение ядер CPU под Windows выполнить очень легко. Если вы хотите узнать, как это сделать, то наберите "msconfig" в окне Windows Vista "Начать поиск/Start Search" и нажмите "Enter". Это откроет утилиту "Конфигурация системы".

В ней перейдите на закладку "Загрузка/Boot" и нажмите клавишу "Дополнительные параметры/Advanced options".

Это приведёт к появлению окна "Дополнительные параметры загрузки/BOOT Advanced Options". Выберите галочку "Число процессоров/Number of Processors" и укажите нужно число ядер процессора, которые будут активны в системе. Всё очень просто.

После подтверждения программа предложит перезагрузиться. После перезагрузки в "Диспетчере задач Windows" (Task Manager) можно увидеть число активных ядер. Вызов "Диспетчера задач" выполняется нажатием клавиш Crtl+Shift+Esc.

Выберите в "Диспетчере задач" вкладку "Быстродействие/Performance". В ней вы сможете увидеть графики нагрузки для каждого процессора/ядра (будь это отдельный процессор/ядро или виртуальный процессор, как мы получаем в случае Core i7 с активной поддержкой Hyper-Threading) в пункте "Хронология загрузки ЦП/CPU Usage History". Два графика означают два активных ядра, три - три активных ядра и т.д.

Теперь, когда вы ознакомились с методикой наших тестов, позвольте перейти к детальному рассмотрению конфигурации тестового компьютера и программ.

Тестовая конфигурация

Системное аппаратное обеспечение
Процессор Intel Core 2 Quad Q6600 (Kentsfield), 2,7 ГГц, FSB-1200, 8 Мбайт кэша L2
Платформа MSI P7N SLI Platinum, Nvidia nForce 750i, BIOS A2
Память A-Data EXTREME DDR2 800+, 2 x 2048 Мбайт, DDR2-800, CL 5-5-5-18 на 1,8 В
Жёсткий диск Western Digital Caviar WD50 00AAJS-00YFA, 500 Гбайт, 7200 об/мин, кэш 8 Мбайт, SATA 3,0 Гбит/с
Сеть Встроенный контроллер nForce 750i Gigabit Ethernet
Видеокарты Gigabyte GV-N250ZL-1GI 1 GB DDR3 PCIe
Блок питания Ultra HE1000X, ATX 2.2, 1000 Вт
Программное обеспечение и драйверы
Операционная система Microsoft Windows Vista Ultimate 64-bit 6.0.6001, SP1
Версия DirectX DirectX 10
Драйвер платформы nForce Driver Version 15.25
Графический драйвер Nvidia Forceware 182.50

Тесты и настройки

3D-игры
Crysis Quality settings set to lowest, Object Detail to High, Physics to Very High, version 1.2.1, 1024x768, Benchmark tool, 3-run average
Left 4 Dead Quality settings set to lowest, 1024x768, version 1.0.1.1, timed demo.
World in Conflict Quality settings set to lowest, 1024x768, Patch 1.009, Built-in benchmark.
iTunes Version: 8.1.0.52, Audio CD ("Terminator II" SE), 53 min., Default format AAC
Lame MP3 Version: 3.98 (64-bit), Audio CD ""Terminator II" SE, 53 min, wave to MP3, 160 Kb/s
TMPEG 4.6 Version: 4.6.3.268, Import File: "Terminator II" SE DVD (5 Minutes), Resolution: 720x576 (PAL) 16:9
DivX 6.8.5 Encoding mode: Insane Quality, Enhanced Multi-Threading, Enabled using SSE4, Quarter-pixel search
XviD 1.2.1 Display encoding status=off
MainConcept Reference 1.6.1 MPEG2 to MPEG2 (H.264), MainConcept H.264/AVC Codec, 28 sec HDTV 1920x1080 (MPEG2), Audio: MPEG2 (44.1 KHz, 2 Channel, 16-Bit, 224 Kb/s), Mode: PAL (25 FPS), Profile: Tom"s Hardware Settings for Qct-Core
Autodesk 3D Studio Max 2009 (64-bit) Version: 2009, Rendering Dragon Image at 1920x1080 (HDTV)
Adobe Photoshop CS3 Version: 10.0x20070321, Filtering from a 69 MB TIF-Photo, Benchmark: Tomshardware-Benchmark V1.0.0.4, Filters: Crosshatch, Glass, Sumi-e, Accented Edges, Angled Strokes, Sprayed Strokes
Grisoft AVG Antivirus 8 Version: 8.0.134, Virus base: 270.4.5/1533, Benchmark: Scan 334 MB Folder of ZIP/RAR compressed files
WinRAR 3.80 Version 3.80, Benchmark: THG-Workload (334 MB)
WinZip 12 Version 12, Compression=Best, Benchmark: THG-Workload (334 MB)
3DMark Vantage Version: 1.02, GPU and CPU scores
PCMark Vantage Version: 1.00, System, Memory, Hard Disk Drive benchmarks, Windows Media Player 10.00.00.3646
SiSoftware Sandra 2009 SP3 CPU Test=CPU Arithmetic/MultiMedia, Memory Test=Bandwidth Benchmark

Результаты тестов

Начнём с результатов синтетических тестов, чтобы потом оценить, насколько хорошо они соответствуют реальным тестам. Важно помнить, что синтетические тесты пишутся в расчёте на будущее, поэтому они должны сильнее реагировать на изменение в количестве ядер, чем реальные приложения.

Мы начнём с синтетического теста игровой производительности 3DMark Vantage. Мы выбрали прогон "Entry", который 3DMark выполняет на самом низком доступном разрешении, чтобы производительность CPU сильнее влияла на результат.

Почти линейный рост довольно интересен. Самый большой прирост наблюдается при переходе от одного ядра к двум, но и затем масштабируемость прослеживается довольно ощутимо. А теперь давайте перейдём к тесту PCMark Vantage, который призван отображать общую системную производительность.

Результаты PCMark заставляют предположить, что конечный пользователь выиграет от увеличения количества ядер CPU вплоть до трёх, а четвёртое ядро, наоборот, немного снизит производительность. Давайте посмотрим, с чем связан подобный результат.

В тесте подсистемы памяти мы вновь наблюдаем самый большой прирост производительности при переходе от одного ядра CPU к двум.

Тест продуктивности, как нам кажется, сильнее всего влияет на общий результат теста PCMark, поскольку в данном случае рост производительности заканчивается на трёх ядрах. Давайте посмотрим, будут ли аналогичны результаты другого синтетического теста SiSoft Sandra.

Мы начнём с арифметических и мультимедийных тестов SiSoft Sandra.


Синтетические тесты демонстрируют довольно линейный прирост производительности при переходе от одного ядра CPU к четырём. Данный тест написан специально, чтобы эффективно использовать четыре ядра, но мы сомневаемся, что в реальных приложениях будет такой же линейный прогресс.

Тест памяти Sandra тоже предполагает, что три ядра дадут больше пропускной способности памяти в целочисленных буферизованных операциях iSSE2.

После синтетических тестов настало время посмотреть, что мы получим в тестах приложений.

Кодирование аудио традиционно являлось сегментом, приложения в котором не очень сильно выигрывали от нескольких ядер, либо они не были оптимизированы разработчиками. Ниже приведены результаты Lame и iTunes.

Lame не демонстрирует особого преимущества при использовании нескольких ядер. Что интересно, мы наблюдаем небольшой прирост производительности с чётным количеством ядер, что довольно странно. Однако разница невелика, поэтому она просто может находиться в пределах погрешности.

Что касается iTunes, то мы видим небольшой прирост производительности после активации двух ядер, но большее число ядер ничего не дают.

Получается, ни Lame, ни iTunes не оптимизированы под несколько ядер CPU для кодирования аудио. С другой стороны, насколько мы знаем, программы кодирования видео часто очень сильно оптимизируют под несколько ядер из-за их изначально параллельной природы. Давайте посмотрим на результаты кодирования видео.

Мы начнём тесты кодирования видео с MainConcept Reference.

Обратите внимание, насколько сильно на результат влияет увеличение числа ядер: время кодирования уменьшается с девяти минут на одноядерном 2,7-ГГц процессоре Core 2 до всего двух минут и 30 секунд, когда активны все четыре ядра. Вполне понятно, что если вы часто перекодируете видео, то лучше брать процессор с четырьмя ядрами.

Получим ли мы схожие преимущества в тестах TMPGEnc?

Здесь можно видеть влияние на результат кодера. Если кодер DivX высоко оптимизирован под несколько ядер CPU, то Xvid не демонстрирует такого заметного преимущества. Впрочем, даже Xvid даёт снижение времени кодирования на 25% при переходе от одного ядра к двум.

Начнём графические тесты с Adobe Photoshop.

Как видим, версия CS3 не замечает добавление ядер. Странный результат для столь популярной программы, хотя мы признаём, что не использовали последнюю версию Photoshop CS4. Результаты CS3 всё равно не вдохновляют.

Давайте посмотрим на результаты 3D-рендеринга в Autodesk 3ds Max.

Вполне очевидно, что Autodesk 3ds Max "любит" дополнительные ядра. Данная особенность присутствовала в 3ds Max ещё во время работы этой программы в DOS-окружении, поскольку задача 3D-рендеринга выполнялась столь долго, что было необходимо распределять её по нескольким компьютерам в сети. Опять же, для подобных программ весьма желательно использовать четырёхъядерные процессоры.

Тест антивирусного сканирования очень близок к реальным жизненным условиям, поскольку почти все используют антивирусы.

Антивирус AVG демонстрирует чудесный прирост производительности при увеличении ядер CPU. Во время антивирусного сканирования производительность компьютера может очень сильно падать, и результаты наглядно показывают, что несколько ядер существенно сокращают время сканирования.


WinZip и WinRAR не дают заметного прироста на нескольких ядрах. WinRAR демонстрирует прирост производительности на двух ядрах, но не более того. Интересно будет посмотреть, как себя покажет только что вышедшая версия 3.90.

В 2005 году, когда стали появляться настольные компьютеры с двумя ядрами, просто не существовало игр, которые демонстрировали бы прирост производительности при переходе от одноядерных CPU на многоядерные процессоры. Но времена изменились. Как сказываются несколько ядер CPU на современных играх? Давайте запустим несколько популярных игр и посмотрим. Мы проводили игровые тесты в низком разрешении 1024x768 и с низким уровнем графических деталей, чтобы минимизировать влияние видеокарты и определить, насколько сильно данные игры упираются в производительность CPU.

Начнём с Crysis. Мы снизили до минимума все опции за исключением детализации объектов, которую мы выставили в "High", а также Physics, которую мы установили в "Very High". В итоге производительность игры должна сильнее зависеть от CPU.

Игра Crysis показала впечатляющую зависимость от количества ядер CPU, что весьма удивляет, поскольку мы считали, что она больше реагирует на производительность видеокарты. В любом случае, можно видеть, что в Crysis одноядерные CPU дают частоту кадров в два раза меньше, чем с четырьмя ядрами (впрочем, помните, что если игра будет больше зависеть от производительности видеокарты, то разброс результатов при разном числе ядер CPU будет меньше). Интересно также отметить, что игра Crysis может использовать только три ядра, поскольку добавление четвёртого не даёт заметной разницы.

Но мы знаем, что Crysis серьёзно использует расчёты физики, поэтому давайте посмотрим, каковая будет ситуация в игре не с такой продвинутой физикой. Например, в Left 4 Dead.

Что интересно, игра Left 4 Dead демонстрирует схожий результат, хотя львиная доля прироста производительности появляется после добавления второго ядра. Есть небольшой прирост при переходе на три ядра, но вот четвёртое ядро этой игре не требуется. Интересная тенденция. Посмотрим, насколько она будет характерна для стратегии реального времени World in Conflict.

Результаты вновь схожие, но мы видим удивительную особенность - три ядра CPU дают чуть лучшую производительность, чем четыре. Разница близка к пределу погрешности, но это вновь подтверждает, что четвёртое ядро в играх не используется.

Настало время делать выводы. Поскольку данных мы получили немало, давайте упростим ситуацию, рассчитав средний прирост производительности.

Сначала хотелось бы сказать о том, что результаты синтетических тестов слишком оптимистичны, если сравнивать использование нескольких ядер с реальными приложениями. Прирост производительности синтетических тестов при переходе от одного ядра к нескольким выглядит почти линейным, каждое новое ядро добавляет 50% производительности.

В приложениях мы наблюдаем более реалистичный прогресс - около 35% прироста от второго ядра CPU, 15% прирост от третьего и 32% прирост от четвёртого. Странно, что при добавлении третьего ядра мы получаем только половину преимущества, которое даёт четвёртое ядро.

В приложениях, впрочем, лучше смотреть на отдельные программы, а не на общий результат. Действительно, приложения кодирования аудио, например, вообще не выигрывают от увеличения числа ядер. С другой стороны, приложения кодирования видео дают серьёзные преимущества от большего числа ядер CPU, хотя всё довольно сильно зависит от используемого кодера. В случае программы 3D-рендеринга 3ds Max мы видим, что она серьёзно оптимизирована под многоядерные окружения, а приложения редактирования 2D-фотографий, подобные Photoshop, не реагируют на количество ядер. Антивирус AVG показал серьёзное увеличение производительности на нескольких ядрах, а на утилитах сжатия файлов выигрыш не такой большой.

Что же касается игр, то при переходе от одного ядра на два производительность увеличивается на 60%, а после добавления в систему третьего ядра мы получаем ещё 25% отрыв. Четвёртое ядро в выбранных нами играх не даёт преимуществ. Конечно, если бы мы взяли больше игр, то ситуация могла бы измениться, но, в любом случае, трёхъядерные процессоры Phenom II X3 кажутся весьма привлекательным и недорогим выбором для геймера. Важно отметить, что при переходе на более высокие разрешения и добавлении визуальных деталей, разница из-за количества ядер будет меньшей, поскольку видеокарта станет решающим фактором, влияющим на частоту кадров.


Четыре ядра.

С учётом всего сказанного и сделанного, можно подвести ряд итогов. В целом, вам не нужно быть каким-либо профессиональным пользователем, чтобы выиграть от установки многоядерного CPU. Ситуация существенно изменилась по сравнению с тем, что было четыре года назад. Конечно, разница кажется не такой существенной на первый взгляд, но довольно интересно отметить, насколько сильно приложения стали оптимизироваться под многопоточность в последние несколько лет, особенно те программы, которые от этой оптимизации могут дать существенный прирост производительности. Фактически, можно сказать, что сегодня уже нет смысла рекомендовать одноядерные CPU (если вы такие ещё найдёте), за исключением решений с низким энергопотреблением.

Кроме того, есть приложения, для которых пользователям рекомендуется покупать процессоры с как можно большим числом ядер. Среди них отметим программы кодирования видео, 3D-рендеринга и оптимизированные рабочие приложения, включая антивирусное ПО. Что касается геймеров, то прошли дни, когда одноядерного процессора с мощной видеокартой было достаточно.

Многоядерные процессоры представляют собой центральные процессоры, в которых содержится более двух вычислительных ядер. Такие ядра могут находиться как в одном корпусе, так и на одном процессорном кристалле.

Что такое многоядерный процессор?

Чаще всего под многоядерными процессорами понимают центральные процессоры, в которых несколько вычислительных ядер интегрированы в одну микросхему (то есть они расположены на одном кристалле кремния).

Обычно тактовая частота в многоядерных процессорах намеренно занижается. Это делают для того, чтобы сократить энергопотребление, сохранив при этом требуемую производительность процессора. Каждое ядро при этом представляет собой полноценный микропроцессор, для которого характерны черты всех современных процессоров - он использует многоуровневый кэш, поддерживает внеочередное исполнение кода и векторные команды.

Hyper-threading

Ядра в многоядерных процессорах могут поддерживать технологию SMT, позволяющую исполнять несколько потоков вычислений и создавать на основе каждого ядра несколько логических процессоров. На процессорах, которые выпускает компания Intel, такая технология называется «Hyper-threading». Благодаря ей можно удваивать число логических процессоров по сравнению с числом физических чипов. В микропроцессорах, поддерживающих эту технологию, каждый физический процессор способен сохранять состояние двух потоков одновременно. Для операционной системы это будет выглядеть, как наличие двух логических процессоров. Если в работе одного из них возникает пауза (например, он ждет получения данных из памяти), другой логический процессор приступает к выполнению собственного потока.

Виды многоядерных процессоров

Многоядерные процессоры подразделяются на несколько видов. Они могут поддерживать использование общей кэш-памяти, а могут не поддерживать. Связь между ядрами реализуется на принципах использования разделяемой шины, сети на каналах точка-точка, сети с коммутатором или использования общего кэша.

Принцип работы

Большинство современных многоядерных процессоров работает по следующей схеме. Если запущенное приложение поддерживает многопоточность, оно может заставлять процессор выполнять несколько заданий одновременно. Например, если в компьютере используется 4-ядерный процессор с тактовой частотой 1.8 ГГц, программа может «загрузить» работой сразу все четыре ядра, при этом суммарная частота процессора будет составлять 7.2 ГГц. Если запущено сразу несколько программ, каждая из них может использовать часть ядер процессора, что тоже приводит к росту производительности компьютера.

Многие операционные системы поддерживают многопоточность, поэтому использование многоядерных процессоров позволяет ускорить работу компьютера даже в случае приложений, которые многопоточность не поддерживают. Если рассматривать работу только одного приложения, то использование многоядерных процессоров будет оправданным лишь в том случае, если это приложение оптимизировано под многопоточность. В противном случае, скорость работы многоядерного процессора не будет отличаться от скорости работы обычного процессора, а иногда он будет работать даже медленнее.

Добрый день, уважаемые читатели нашего блога. Сегодня постараемся разобраться, что важнее частота или количество ядер процессора? На что влияет каждый из этих параметров в повседневном использовании, в играх и профессиональных приложениях? Играет ли свою роль , или ручной разгон приносит больше пользы? В общем, давайте вникать, как все это работает.

Процедура сравнения будет элементарна до безобразия:

  • преимущества высокой тактовой частоты;
  • преимущества большого числа ядер процессора;
  • необходимость того или иного в зависимости от выбранных задач;
  • итоги.

А теперь давайте приступать.

Высокие частоты — признак комфортного гейминга

Давайте сразу окунемся в игровую индустрию и по пальцам одной руки перечислим те игры, которым нужна многопоточность для комфортной работы. На ум приходят только последние продукты Ubisoft (Assassin"s Creed Origins, Watch Dogs 2), старичок GTA V, свежий Deus Ex и Metro Last Light Redux. Данные проекты с легкостью «съедят» все вакантные вычислительные мощности процессора, включая ядра и потоки.

Но это скорее исключение из правил, поскольку остальные игры более требовательны именно к частоте ЦП и ресурсам видеопамяти. Иными словами, если вы решите запустить старый добрый DOOM на AMD Ryzen Threadripper 1950X c его 16 вычислительными ядрами (дорогой, мощный), то будете крайне разочарованы ввиду следующих факторов:

  • FPS будет низким;
  • большинство ядер и потоков простаивает;
  • переплата крайне сомнительна.

А все потому, что этот чип ориентирован на профессиональные вычисления, рендеринг, обработку видео и иные задачи, в которых «решают» именно и потоки, а не частотный потенциал.
Меняем AMD на Intel Core i5 8600К и видим неожиданный результат — количество кадров увеличилось, стабильность картинки возросла, все ядра задействованы оптимально. А если разогнать камень, то картина получится и вовсе шикарная. Все потому, что гейминг до сих пор корректно воспринимает от 4 до 8 ядер (не считая вышеописанных исключений), и дальнейший рост физических и виртуальных потоков попросту неоправдан, приходится гнать .

В каких случаях нужна многопоточность

А теперь давайте сравним в профессиональных задачах два топовых решения от Intel и AMD: Core 7 8700K (6/12, L3 — 9 МБ) и Ryzen 7 2700x (8/16, L3 — 16 МБ). И здесь уже количество ядер и потоков играет главную и лучшую роль в следующих задачах:

  • архивация;
  • обработка данных;
  • рендеринг;
  • работа с графикой;
  • создание сложных 3D-объектов;
  • разработка приложений.

Стоит отметить, что если программа не рассчитана на мультипоточность, то Intel одерживает пальму первенства только за счет большей частоты, но в остальных случаях лидерство остается за «красными».

Подведем итоги

А теперь давайте рассуждать логично. И AMD и Intel за последние несколько лет неплохо так выровняли свои показатели в плане производительности. Оба чипа построены для новейших платформ Ryzen+ (AM4) и Coffee Lake (s1151v2) и имеют отличный разгонный потенциал, а также задел на будущее.

Если для вас первостепенной задачей является получение высокого FPS в современных игровых проектах, то «синяя» платформа здесь выглядит более оптимальным решением.

Однако стоит понимать, что высокий фреймрейт будет заметен только на мониторах с частотой от 120 Гц и выше. На 60-герцовых вы просто не заметите разницы в плавности картинки.

Вариант от AMD при прочих равных выглядит более «всеядным» и универсальным, да и ядер с у него больше, а значит открываются новые перспективы вроде того же стриминга, который так популярен на Youtube.

Надеемся, теперь вы понимаете, в чем разница между частотой и количеством вычислительных ядер, и в каких случаях переплата за потоки оправдана.

Я считаю, что в данной борьбе, победителя здесь быть не может, так как битва в сравнениях была в разных весовых категориях.

На этой ноте закончим, не забывайте подписываться на блога, пока пока.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то