Другие виды компьютерной графики. Трехмерная графика в современном мире Для чего нужны трехмерные изображения домов

Вы, наверное, читаете эту статью на экране монитора компьютера или мобильного устройства - дисплей, который имеет реальные размеры, высоту и ширину. Но когда вы смотрите, например, мультфильм История Игрушек или играете в игру Tomb Raider, вы лицезреете трёхмерный мир. Одной из самых удивительных вещей трехмерного мира является то, что мир, который вы видите, может быть миром, в котором мы живем, миром, в котором мы будем жить завтра, или миром, который живет только в умах создателей фильма или игры. И все эти миры могут появиться только на одном экране - это как минимум интересно.
Как компьютер делает так, что обманывает наши глаза и мы думаем, что смотря на плоский экран видим глубину представленной картины? Как разработчики игр делают так, что мы видим реальных персонажей, передвигающихся в реальном ландшафте? Сегодня я расскажу вам о визуальных трюках, используемых графическими дизайнерами, и о том, как всё это разрабатывается и кажется нам настолько простым. На самом деле всё не просто, и чтобы узнать, что из себя представляет 3D-графика, ступайте под кат - там вас ждёт увлекательная история, в которую, я уверен, вы погрузитесь с небывалым удовольствием.

Что делает изображение трехмерным?

Изображение, которое имеет или кажется, что имеет высоту, ширину и глубину является трехмерным (3D). Картинка, которая имеет высоту и ширину, но не глубину является двумерной (2D). Напомните-ка мне, где вы встречаете двумерные изображения? - Практически везде. Вспомните даже обычный символ на двери туалета, обозначающий кабинку для того или иного пола. Символы спроектированы таким образом, что вы можете распознать их и узнать с первого взгляда. Вот почему они используют только самые основные формы. Более детальная информация о каком-либо символе может рассказать вам, какую одежду носит этот маленький человечек, весящий на двери, или цвет волос, например, символики двери женского туалета. Это одно из основных отличий между тем, как используется трехмерная и двумерная графики: 2D-графика проста и запоминаема, а 3D-графика использует больше деталей и вмещает в казалось бы обычный объект значительно больше информации.

Например, треугольники имеют три линии и три угла - всё, что нужно, чтобы рассказать из чего состоит треугольник и вообще что представляет собой. Однако посмотрите на треугольник с другой стороны - пирамида - является трехмерной структурой с четырьмя треугольными сторонами. Обратите внимание, что в этом случае имеется уже шесть линий и четыре угла - из этого и состоит пирамида. Видите, как обычный объект может превратится в трехмерный и вместить в себя гораздо больше информации, необходимой, чтобы рассказать историю треугольника или пирамиды.

На протяжении сотен лет художники использовали некоторые визуальные трюки, которые могут сделать плоское 2D-изображение настоящим окном в реальный трехмерный мир. Вы можете увидеть подобный эффект на обычной фотографии, которые вы можете сканировать и просмотреть на мониторе компьютера: объекты на фотографии кажутся меньше, когда они дальше; объекты же, близкие к объективу камеры, находятся в фокусе, значит, соответственно, всё, что за объектами в фокусе - размыто. Цвета, как правило, менее яркие, если объект не так близок. Когда мы говорим о 3D-графике на компьютерах сегодня - мы говорим об изображениях, которые движутся.

Что такое 3D-графика?

Для многих из нас игры на персональном компьютере, мобильном устройстве или вообще продвинутая игровая система - самый яркий пример и распространенный способ, благодаря которому мы можем созерцать трехмерную графику. Все эти игры, крутые фильмы, созданные при помощи компьютера, должны пройти три основных шага по созданию и представлению реалистичных трехмерных сцен:

  1. Создание виртуального 3D-мира
  2. Определение того, какая часть мира будет показана на экране
  3. Определение того, как пиксель на экране будет выглядеть, чтобы полное изображение казалось максимально реалистичным
Создание виртуального 3D-мира
Виртуальный 3D-мир - это, понятное дело, не то же самое, что и реальный мир. Создание виртуального 3D-мира - комплексная работа по компьютерной визуализации мира, схожего с реальным, для создания которого используется большое количество инструментов и который подразумевает крайне высокую детализацию. Возьмите, к примеру, очень маленькую часть реального мира - свою руку и рабочий стол под ней. Ваша рука обладает особенными качествами, которые определяют, как она может двигаться и выглядеть внешне. Суставы пальцев сгибаются только в сторону ладони, а не противоположно от неё. Если вы ударите по столу, то с ним никаких действий не произойдёт - стол тверд. Соответственно, ваша рука не может пройти через ваш рабочий стол. Вы можете доказать, что это утверждение истинно, смотря на что-то естественное, а в виртуальном трехмерном мире дела обстоят совсем по-другому - в виртуальном мире нет природы, нет таких естественных вещей, как ваша рука, например. Предметы в виртуальном мире полностью синтетические - это единственные свойства, данные им с помощью программного обеспечения. Программисты используют специальные инструменты и разрабатывают виртуальные 3D-миры с особой тщательностью, чтобы всё в них всегда вело себя определённым образом.

Какая часть виртуального мира показывается на экране?
В любой момент экран показывает только крошечную часть виртуального трехмерного мира, созданного для компьютерной игры. То, что показывается на экране - определенные комбинации способов, которыми определяется мир, где вы принимаете решение куда пойти и что посмотреть. Независимо от того, куда вы идёте - вперёд или назад, вверх или вниз, влево или вправо - виртуальный трехмерный мир вокруг вас определяет то, что вы видите, находясь на определенной позиции. То, что вы видите, имеет смысл от одной сцены к другой. Если вы смотрите на объект с того же расстояния, вне зависимости от направления, он должен выглядеть высоко. Каждый объект должен выглядеть и двигаться таким образом, чтобы вы верили в то, что он имеет ту же массу, что и реальный объект, что он такой же твёрдый или мягкий, как и реальный объект, и так далее.


Программисты, которые пишут компьютерные игры, прикладывают огромные усилия к разработке виртуальных 3D-миров и делают их так, чтобы вы могли блуждать в них, не сталкиваясь ни с чем, что заставляло бы вас думать «Это не могло произойти в этом мире!». Последней вещью, которую вы хотите видеть - два твёрдых объекта, которые могут пройти прямо друг через друга. Это - резкое напоминание о том, что всё, что вы видите, является притворством. Третий шаг включает в себя ещё как минимум столько же вычислений, сколько и другие два шага и должны происходить так же в реальном времени.

Освещение и перспектива

Когда вы входите в комнату, вы включаете свет. Вы, наверное, не тратите много времени на раздумья, как же это на самом деле работает и как свет исходит от лампы, распространяясь по комнате. Но люди, работающие с трехмерной графикой, должны думать об этом, потому что все поверхности, окружающие каркасы и прочие подобные вещи должны быть освещены. Один из методов - трассировка лучей - предполагает участки пути, которые берут лучи света, покидая лампочку, отскакивая от зеркал, стен и других отражающих поверхностей и, наконец, приземляются на предметы с различной интенсивностью от различных углов. Это сложно, ведь от одной лампочки может быть один луч, но в большинстве помещений используется несколько источников света - несколько светильников, потолочные светильники (люстры), торшеры, окна, свечи и так далее.

Освещение играет ключевую роль в двух эффектах, которые придают внешний вид, вес и внешнюю прочность объектов: затемнение и тени. Первый эффект, затемнение, представляет собой место, где с одной стороны на объект падает больше света, чем с другой. Затемнение придает объекту множество натурализма. Эта штриховка - то, что делает сгибы в одеяле глубокими и мягкими, а высокие скулы кажутся поразительными. Эти различия в интенсивности света укрепляют общую иллюзию, что у объекта есть глубина, а также высота и ширина. Иллюзия массы происходит от второго эффекта - тени.

Твердые тела отбрасывают тени, когда свет падает на них. Вы можете увидеть это, когда вы наблюдаете тень, которую солнечные часы или дерево бросают на тротуар. Поэтому мы привыкли видеть реальные предметы и людей отбрасывающих тени. В трехмерном изображении тень, опять же, укрепляет иллюзию, создавая эффект присутствия в реальном мире, а не в экране математически произведенных форм.

Перспектива
Перспектива - одно слово, способное значить многое, но фактически описывающее простой эффект, который видели все. Если вы стоите на стороне длинной, прямой дороги и смотрите вдаль, кажется, как будто обе стороны дороги сходятся в одной точке на горизонте. Кроме того, если деревья стоят рядом с дорогой, деревья дальше будут выглядеть меньше, чем деревья близкие к вам. На самом деле будет похоже, что деревья сходятся в определённой точке горизонта, сформированной около дороги, но это не так. Когда все объекты на сцене будут выглядеть в конечном итоге сходящимися в одной точке на расстоянии - это перспектива. Есть множество вариаций этого эффекта, но большинство трехмерной графики использует единую точку зрения, которая только что была описана мною.

Глубина резкости


Другим оптическим эффектом, успешно использующимся для создания графических трехмерных объектов, является глубина резкости. Используя мой пример с деревьями, помимо вышеописанного происходит ещё одна интересная вещь. Если вы посмотрите на деревья, находящиеся близко по отношению к вам, деревья, расположенные дальше, как представляется, будут не в фокусе. Кинорежиссеры и компьютерные аниматоры используют данный эффект, глубину резкости, для двух целей. Первая заключается в укреплении иллюзии глубины в рассматриваемой пользователем сцене. Вторая цель - использование режиссерами глубины резкости сосредотачивает свое внимание на предметах или актерах, которые считаются наиболее важными. Чтобы обратить ваше внимание не героиню фильма, например, может использоваться «малая глубина резкости», где только актер находится в фокусе. Сцена, которая разработана таким образом, чтобы произвести на вас полное впечатление, наоборот будет использовать «глубокую глубину резкости», чтобы как можно больше объектов было в фокусе и таким образом заметно зрителю.

Сглаживание


Ещё один эффект, который также полагается на обман глаз - сглаживание. Цифровые графические системы очень хорошо подходят для создания четких линий. Но бывает и такое, что оказывают верх диагональные линии (они же довольно часто появляются в реальном мире, и тогда компьютер воспроизводит линии, которые больше напоминают лесенки (я думаю, что вы знаете, что такое лесенка при детальном рассмотрении объекта изображения)). Таким образом, чтобы обмануть свой глаз при виде гладкой кривой или линии, компьютер может добавить определённые оттенки цвета в строки пикселей, окружающих линию. Этим «серым цветом» пикселей компьютер как раз-таки и обманывает ваши глаза, а вы, тем временем, думаете, что зубчатых ступенек больше нет. Этот процесс добавления дополнительных цветных пикселей для обмана глаз называется сглаживанием, и он является одним из методов, которые создаются вручную компьютерной трехмерной графикой. Другой сложной задачей для компьютера является создание трехмерной анимации, пример которой будет представлен вам в следующем разделе.

Реальные примеры

Когда все трюки, описанные мною выше, используются вместе для создания потрясающе реальной сцены - итог соответствует трудам. Последние игры, фильмы, машинно-генерируемые объекты сочетаются с фотографическими фонами - это усиливает иллюзию. Вы можете увидеть удивительные результаты, когда вы сравните фотографии и компьютерную сцену.

На фотографии выше представлен обычный офис, для входа в который используется тротуар. В одной из следующих фотографий на тротуар был положен простой однотонный мяч, после чего эту сцену сфотографировали. Третья фотография представляет из себя уже использование компьютерной графической программы, которая и создала на самом деле несуществующий на этой фотографии мяч. Можете ли вы сказать, что есть какие-то существенные различия между двумя этими фотографиями? Думаю, что нет.

Создание анимации и видимости «живого действия»

До сих пор мы рассматривали инструменты, которые заставляют любое цифровое изображение казаться более реалистичным - является ли изображение стиллом или частью анимационной последовательности. Если это анимационная последовательность, то программисты и дизайнеры будут использовать ещё больше различных визуальных уловок, чтобы создать видимость «живого действия», а не изображений, созданных компьютером.

Сколько кадров в секунду?
Когда вы идете на шикарный блокбастер в местное кино, последовательность изображений, называемых кадрами работает в количестве 24 кадра в секунду. Так как наша сетчатка сохраняет изображение немного дольше, чем 1/24 секунды, глаза большинства людей будут смешивать кадры в один непрерывный образ движения и действия.

Если вы не понимаете, о чём я только что написал, то посмотрим на это с другой стороны: это означает, что каждый кадр кинофильма - фотография, сделанная на выдержке (экспозиции) 1/24 секунды. Таким образом, если вы посмотрите на один из многочисленных кадров фильма о гонках, вы увидите, что некоторые гоночные автомобили «размываются», потому что они проехали с большой скоростью в то время, пока у камеры открыт затвор. Данная размытость вещей, создающаяся за счёт быстрого движения - то, что мы привыкли видеть, и это часть того, что делает изображение реальным для нас, когда мы смотрим на него на экране.


Однако, цифровые трехмерные изображения - это ведь не фотографии как ни крути, поэтому никакого эффекта размывания не происходит, когда объект перемещается в кадре во время съёмки. Чтобы сделать изображения более реалистичными, размывание должно быть явно добавлено программистами. Некоторые дизайнеры считают, что для «преодоления» этого отсутствия естественного размытия требуется более 30 кадров в секунду, посему и подтолкнули игры выйти на новый уровень - 60 кадров в секунду. Хотя это и позволяет каждому отдельному изображению выглядеть в мельчайших подробностях и отображать движущиеся объекты в меньших приращениях, оно существенно увеличивает количество кадров для данной анимационной последовательности действий. Есть и другие определенные куски изображений, где точный рендеринг на компьютере должен быть принесен в жертву ради реализма. Это относится как к подвижным, так и неподвижным объектам, но это уже совсем другая история.

Подойдем к концу


Компьютерная графика продолжает удивлять весь мир, создавая и генерируя самые разнообразные действительно реалистично движущиеся и недвижущиеся объекты и сцены. С 80 колонок и 25 линий монохромного текста графика значительно продвинулась, и результат очевиден - миллионы людей играют в игры и проводят самые различные симуляции с сегодняшней технологией. Новые 3D-процессоры также дадут о себе знать - благодаря им мы сможем в буквальном смысле исследовать другие миры и испытывать то, чего мы никогда не осмеливались попробовать в реальной жизни. Напоследок вернемся к примеру с мячом: как создавалась эта сцена? Ответ прост: изображение имеет сгенерированный компьютером мяч. Нелегко сказать, который из двух является подлинным, не так ли? Наш мир удивителен и мы должны соответствовать ему. Надеюсь, вам было интересно и вы узнали для себя очередную порцию интересной информации.

3D-моделирование и визуализация необходимы при производстве продуктов или их упаковки, а также при создании прототипов изделий и создании объемной анимации.

Таким образом, услуги по 3D-моделированию и визуализации предоставляются тогда, когда:

  • нужна оценка физических и технических особенностей изделия еще до его создания в оригинальном размере, материале и комплектации;
  • необходимо создать 3D-модель будущего интерьера.

В таких случаях вам точно придется прибегнуть к услугам специалистов в области 3д-моделирования и визуализации.

3D-модели - неотъемлемая составляющая качественных презентаций и технической документации, а также - основа для создания прототипа изделия. Особенность нашей компании - в возможности проведения полного цикла работ по созданию реалистичного 3D-объекта: от моделирования и до прототипирования. Поскольку все работы можно провести в комплексе, это существенно сокращает время и затраты на поиск исполнителей и постановку новых технических заданий.

Если речь идет о продукте, мы поможем вам выпустить его пробную серию и наладить дальнейшее производство, мелкосерийное или же промышленных масштабов.

Определение понятий «3D-моделирование» и «визуализация»

Трехмерная графика или 3D-моделирование - компьютерная графика, сочетающая в себе приемы и инструменты, необходимые для создания объемных объектов в техмерном пространстве.

Под приемами стоит понимать способы формирования трехмерного графического объекта - расчет его параметров, черчение «скелета» или объемной не детализированной формы; выдавливание, наращивание и вырезание деталей и т.д.

А под инструментами - профессиональные программы для 3D-моделирования. В первую очередь - SolidWork, ProEngineering, 3DMAX, а также некоторые другие программы для объемной визуализации предметов и пространства.

Объемный рендеринг - это создание двухмерного растрового изображения на основе построенной 3d-модели. По своей сути, это максимально реалистичное изображение объемного графического объекта.

Области применения 3D-моделирования :

  • Реклама и маркетинг

Трехмерная графика незаменима для презентации будущего изделия. Для того, чтобы приступить к производству необходимо нарисовать, а затем создать 3D-модель объекта. А, уже на основе 3D-модели, с помощью технологий быстрого прототипирования (3D-печать, фрезеровка, литье силиконовых форм и т.д.), создается реалистичный прототип (образец) будущего изделия.

После рендеринга (3D-визуализации), полученное изображение можно использовать при разработке дизайна упаковки или при создании наружной рекламы , POS-материалов и дизайна выставочных стендов.

  • Городское планирование

С помощью трехмерной графики достигается максимально реалистичное моделирование городской архитектуры и ландшафтов - с минимальными затратами. Визуализация архитектуры зданий и ландшафтного оформления дает возможность инвесторам и архитекторам ощутить эффект присутствия в спроектированном пространстве. Что позволяет объективно оценить достоинства проекта и устранить недостатки.

  • Промышленность

Современное производство невозможно представить без допроизводственного моделирования продукции. С появлением 3D-теxнологий производители получили возможность значительной экономии материалов и уменьшения финансовых затрат на инженерное проектирование. С помощью 3D-моделирования дизайнеры-графики создают трехмерные изображения деталей и объектов, которые в дальнейшем можно использовать для создания пресс-форм и прототипов объекта.

  • Компьютерные игры

Технология 3D при создании компьютерных игр используется уже более десяти лет. В профессиональных программах опытные специалисты вручную прорисовывают трехмерные ландшафты, модели героев, анимируют созданные 3D-объекты и персонажи, а также создают концепт-арты (концепт-дизайны).

  • Кинематограф

Вся современная киноиндустрия ориентируется на кино в формате 3D. Для подобных съемок используются специальные камеры, способные снимать в 3D-формате. Кроме того, с помощью трехмерной графики для киноиндустрии создаются отдельные объекты и полноценные ландшафты.

  • Архитектура и дизайн интерьеров

Технология 3д-моделирования в архитектуре давно зарекомендовала себе с наилучшей стороны. Сегодня создание трехмерной модели здания является незаменимым атрибутом проектирования. На основании 3d модели можно создать прототип здания. Причем, как прототип, повторяющий лишь общие очертания здания, так и детализированную сборную модель будущего строения.+

Что же касается дизайна интерьеров, то, с помощью технологии 3d-моделирования, заказчик может увидеть, как будет выглядеть его жилище или офисное помещение после проведения ремонта.

  • Анимация

С помощью 3D-графики можно создать анимированного персонажа, «заставить» его двигаться, а также, путем проектирования сложных анимационных сцен, создать полноценный анимированный видеоролик.

Этапы разработки 3D-модели

Разработка 3D-модели осущеcтвляется в несколько этапов :

1. Моделирование или создание геометрии модели

Речь идет о создании трехмерной геометрической модели, без учета физических свойств объекта. В качестве приемов используется:

  • выдавливание;
  • модификаторы;
  • полигональное моделирование;
  • вращение.

2. Текстурирование объекта

Уровень реалистичности будущей модели напрямую зависит от выбора материалов при создании текстур. Профессиональные программы для работы с трехмерной графикой практически не ограничены в возможностях для создания реалистичной картинки.

3. Выставление света и точки наблюдения

Один из самых сложных этапов при создании 3D-модели. Ведь именно от выбора тона света, уровня яркости, резкости и глубины теней напрямую зависит реалистичное восприятие изображения. Кроме того, необходимо выбрать точку наблюдения за объектом. Это может быть вид с высоты птичьего полета или масштабирование пространства с достижением эффекта присутствия в нем - путем выбора вида на объект с высоты человеческого роста.+

4. 3D-визуализация или рендеринг

Завершающий этап 3D-моделирования. Он заключается в детализации настроек отображения 3D-модели. То есть добавление графических спецэффектов, таких, как блики, туман, сияние и т.д. В случае видео-рендеринга, определяются точные параметры 3D-анимации персонажей, деталей, ландшафтов и т.п. (время цветовых перепадов, свечения и др.).

На этом же этапе детализируются настройки визуализации: подбирается нужное количество кадров в секунду и расширение итогового видео (например, DivX, AVI, Cinepak, Indeo, MPEG-1, MPEG-4, MPEG-2, WMV и т.п.). В случае необходимости получить двухмерное растровое изображение, определяется формат и разрешение изображения, в основном - JPEG, TIFF или RAW.

5. Постпродакшн

Обработка отснятых изображений и видео с помощью медиа-редакторов - Adobe Photoshop, Adobe Premier Pro (или Final Cut Pro/ Sony Vegas), GarageBand, Imovie, Adobe After Effects Pro, Adobe Illustrator, Samplitude, SoundForge, Wavelab и др.

Постпродакшн заключается в придании медиа-файлам оригинальных визуальных эффектов, цель которых - взбудоражить сознание потенциального потребителя: впечатлить, вызвать интерес и запомниться на долго!

3D-моделирование в литейном производстве

В литейном производстве 3D-моделирование постепенно становится незаменимой технологической составляющей процесса создания изделия. Если речь идет о литье в металлические пресс формы, то 3D-модели таких пресс-форм создаются с помощью технологий 3D-моделирования, а также 3D-прототипирования.

Но не меньшую популярность сегодня набирает литье в силиконовые формы. В данном случае - 3D-моделирование и визуализация помогут вам создать прототип объекта, на основе которого будет сделана форма из силикона либо другого материала (дерево, полиуретан, алюминий и т.д.).

Методы 3D-визуализации (рендеринг)

1. Растеризация.

Один из самых простых методов рендеринга. При его использовании не учитываются дополнительные визуальные эффекты (например, цвет и тень объекта относительно точки наблюдения).

2. Рейкастинг.

3D-модель осматривается с определенной, заранее заданной точки - с высоты человеческого роста, высоты птичьего полета и т.д. Из точки наблюдения направляются лучи, которые определяют светотени объекта, когда происходит его рассмотрения в привычном формате 2D.

3. Трассировка лучей.

Данный метод рендеринга подразумевает то, что, при попадании на поверхность, луч разделяется на три компонента: отраженный, теневой и преломленный. Собственно это и формирует цвет пиксела. Помимо этого, от количества разделений напрямую зависит реалистичность изображения.

4. Трассировка пути.

Один из самых сложных методов 3D-визуализации. При использовании данного метода 3D-рендеринга распространение световых лучей максимально приближено к физическим законам распространения света. Именно это и обеспечивает высокую реалистичность конечного изображения. Стоит отметить, что данный метод отличается ресурсоемкостью.

Наша компания предоставит вам полный спектр услуг в области 3D-моделирования и визуализации. Мы располагаем всеми техническими возможностями для создания 3D-моделей различной сложности. А также имеем большой опыт работы в 3d-визуализации и моделировании, в чем можно лично убедиться, изучив наше портфолио, или другие наши работы, пока не представленные на сайте (по запросу).

Бренд-агентство KOLORO окажет вам услуги по выпуску пробной серии продукции или ее мелкосерийному производству . Для этого наши специалисты создадут максимально реалистичную 3D-модель нужного вам объекта (упаковки, логотипа, персонажа, 3D-образца любого изделия, формы для литья и мн. др.), на основе которого будет создан прототип изделия. Стоимость нашей работы напрямую зависит от сложности объекта 3D-моделирования и обсуждается в индивидуальном порядке.

Трехмерная графика сегодня прочно вошла в нашу жизнь, что порой мы даже не обращаем внимания на ее проявления.

Разглядывая рекламный щит с изображением интерьера комнаты или рекламный ролик о мороженном, наблюдая за кадрами остросюжетного фильма, мы и не догадываемся, что за всем этим стоит кропотливая работа мастера 3d графики.

Трехмерная графика это

3D графика (трехмерная графика) - это особый вид компьютерной графики - комплекс методов и инструментов, применяемых для создания изображений 3д-объектов (трехмерных объектов).

3д-изображение не сложно отличить от двумерного, так как оно включает создание геометрической проекции 3d-модели сцены на плоскость, при помощи специализированных программных продуктов. Получаемая модель может быть объектом из реальной действительности, например модель дома, автомобиля, кометы, или же быть абсолютно абстрактной. Процесс построения такой трехмерной модели получил название и направлен, прежде всего, на создание визуального объемного образа моделируемого объекта.

Сегодня на основе трехмерной графики можно создать высокоточную копию реального объекта, создать нечто новое, воплотить в жизнь самые нереальные дизайнерские задумки.

3d технологии графики и технологии 3d печати проникли во многие сферы человеческой деятельности, и приносят колоссальную прибыль.

Трехмерные изображения ежедневно бомбардируют нас на телевидении, в кино, при работе с компьютером и в 3D играх, с рекламных щитов, наглядно представляя всю силу и достижения 3д-графики.

Достижения современного 3д графики используются в следующих отраслях

  1. Кинематограф и мультипликация - создание трехмерных персонажей и реалистичных спецэффектов. Создание компьютерных игр - разработка 3d-персонажей, виртуальной реальности окружения, 3д-объектов для игр.
  2. Реклама - возможности 3d графики позволяют выгодно представить товар рынку, при помощи трехмерной графики можно создать иллюзию кристально-белоснежной рубашки или аппетитного фруктового мороженного с шоколадной стружкой и т.д. При этом в реального рекламируемый товар может иметь немало недостатков, которые легко скрываются за красивыми и качественными изображениями.
  3. Дизайн интерьеров - проектирование и разработка дизайна интерьера также не обходятся сегодня без трехмерной графики. 3d технологии дают возможность создать реалистичные 3д-макеты мебели (дивана, кресла, стула, комода и т.д.), точно повторяя геометрию объекта и создавая имитацию материала. При помощи трехмерной графики можно создать ролик, демонстрирующий все этажи проектируемого здания, который возможно еще даже не начал строиться.

Этапы создания трехмерного изображения


Для того чтобы получить 3д-изображение объекта необходимо выполнить следующие шаги

  1. Моделирование - построение математической 3д-модели общей сцены и ее объектов.
  2. Текстурирование включает наложение текстур на созданные модели, настройка материалов и придание моделям реалистичности.
  3. Настройка освещения .
  4. (движущихся объектов).
  5. Рендеринг - процесс создания изображения объекта по предварительно созданной модели.
  6. Композитинг или компоновка - постобработка полученного изображения.

Моделирование - создание виртуального пространства и объектов внутри него, включает создание различных геометрий, материалов, источников света, виртуальных камер, дополнительных спецэффектов.

Наиболее распространенными программными продуктами для 3d моделирования являются: Autodesk 3D max, Pixologic Zbrush, Blender.

Текстурирование представляет собой наложение на поверхность созданной трехмерной модели растрового или векторного изображения, позволяющего отобразить свойства и материал объекта.


Освещение
- создание, установка направления и настройка источников освещения в созданной сцене. Графические 3д-редакторы, как правило, используют следующие виды источников света: spot light (расходящиеся лучи), omni light (всенаправленный свет), directional light (параллельные лучи) и др. Некоторые редакторы дают возможность создания источника объемного свечения (Sphere light).

3D графика – это процесс создания объемной модели при помощи специальных компьютерных программ. Этот вид компьютерной графики вобрал в себя очень много из векторной, а так же и из растровой компьютерной графики. На основе чертежей, рисунков, подробных описаний или любой другой графический или текстовой информации, 3D дизайнер создает объемное изображение.

В специальной программе модель можно посмотреть со всех сторон (сверху, снизу, сбоку), встроить на любую плоскость и в любое окружение. Трёхмерная компьютерная графика, как и векторная, является объектно-ориентированной, что позволяет изменять как все элементы трёхмерной сцены, так и каждый объект в отдельности. Этот вид компьютерной графики обладает большими возможностями для поддержки технического черчения. С помощью графических редакторов трёхмерной компьютерной графики, можно выполнять наглядные изображения деталей и изделий машиностроения, а также выполнять макетирование зданий и архитектурных объектов, изучаемых в соответствующем разделе архитектурно-строительного черчения. Наряду с этим может быть осуществлена графическая поддержка таких разделов начертательной геометрии как, перспектива, аксонометрические и ортогональные проекции, т.к. принципы построения изображений в трёхмерной компьютерной графике частично заимствованы из них.

Трехмерная графика может быть любой сложности. Вы можете создать простую трехмерную модель, с низкой детализацией и упрощенной формы. Или же это может быть более сложная модель, в которой присутствует проработка самых мелких деталей, фактуры, использованы профессиональные приемы (тени, отражения, преломление света и так далее). Конечно, это всерьез влияет на стоимость готовой трехмерной модели, однако позволяет расширить применение трехмерной модели.

Где применяется трехмерная графика

Трехмерное моделирование (3d графика) сегодня применяется в очень многих сферах. Конечно, в первую очередь, это строительство. Это может быть модель будущего дома, как частного, так и многоквартирного или же офисного здания, да и вообще любого промышленного объекта. Кроме того, визуализация активно применяется в дизайн-проектах интерьеров.

3D модели очень популярны в сайтостроительстве. Для создания особенного эффекта некоторые создатели сайтов добавляют в дизайн не просто графические элементы, а трехмерные модели, иногда даже и анимированные. Программы и технологии трехмерного моделирования широко применяются и в производстве, например, в производстве корпусной мебели, и в строительстве, например, для создания фотореалистичного дизайн-проекта будущего помещения. Многие конструкторы уже давно перешли от использования линейки и карандаша к современным трехмерным компьютерным программам. Постепенно новые технологии осваивают и другие компании, прежде всего, производственные и торговые.

Конечно, в основном трехмерные модели используются в демонстрационных целях. Они незаменимы для презентаций, выставок, а также используются в работе с клиентами, когда необходимо наглядно показать, каким будет итоговый результат. Кроме того, методы трехмерного моделирования нужны там, где нужно показать в объеме уже готовые объекты или те объекты, которые существовали когда-то давно. Трехмерное моделирование это не только будущее, но и прошлое и настоящее.

Преимущества трехмерного моделирования

Преимуществ у трехмерного моделирования перед другими способами визуализации довольно много. Трехмерное моделирование дает очень точную модель, максимально приближенную к реальности. Современные программы помогают достичь высокой детализации. При этом значительно увеличивается наглядность проекта. Выразить трехмерный объект в двухмерной плоскости не просто, тогда как 3D визуализации дает возможность тщательно проработать и что самое главное, просмотреть все детали. Это более естественный способ визуализации.

В трехмерную модель очень легко вносить практически любые изменения. Вы можете изменять проект, убирать одни детали и добавлять новые. Ваша фантазия практически ни чем не ограничена, и вы сможете быстро выбрать именно тот вариант, который подойдет вам наилучшим образом.

Однако трехмерное моделирование удобно не только для клиента. Профессиональные программы дают множество преимуществ и изготовителю. Из трехмерной модели легко можно выделить чертеж каких-либо компонентов или конструкции целиком. Несмотря на то, что создание трехмерной модели довольно трудозатратный процесс, работать с ним в дальнейшем гораздо проще и удобнее чем с традиционными чертежами. В результате значительно сокращаются временные затраты на проектирование, снижаются издержки.

Специальные программы дают возможность интеграции с любым другим профессиональным программным обеспечением, например, с приложениями для инженерных расчетов, программами для станков или бухгалтерскими программами. Внедрение подобных решений на производстве дает существенную экономию ресурсов, значительно расширяет возможности предприятия, упрощает работу и повышает ее качество.

Программы для трехмерного моделирования

Существует довольно большое количество самых разных программ для 3D моделирования. Так, одной из популярных программ, которые специально разработаны для создания трехмерной графики и дизайна интерьеров, является программа 3D Studio MAX. Она позволяет реалистично визуализировать объекты самой разной сложности. Кроме того, «3D Studio MAX» дает возможность компоновать их, задавать траектории перемещений и в конечном итоге даже создавать полноценное видео с участием трехмерных моделей. Хотя такая работа, конечно же, требует у специалиста серьезных навыков, а также больших компьютерных ресурсов, в первую очередь объемов памяти и быстродействие процессора.

Редактор Maya назван в честь санскритского слова, которое означает иллюзия. Maya была разработана Alias Systems. В октябре 2005 года компания Alias влилась в Autodesk. Maya чаще используется для создания анимации и трехмерных эффектов в фильмах.

Как говорилось выше, по способам описания изображений компьютерную графику можно разделить на три основные категории: растровая, векторная и трехмерная графика. Среди двумерной графики особым образом выделяются пиксельная и фрактальная графика. Отдельного рассмотрения требуют также трехмерная, CGI- и инфографика.

Пиксельная графика

Термин "пиксельная графика" (от англ. pixel ) означает форму цифрового изображения, созданного на компьютере с помощью растрового графического редактора, где изображение редактируется на уровне пикселей (точек), а разрешение изображения настолько мало, что отдельные пиксели четко видны.

Распространено заблуждение, что любой рисунок, сделанный с использованием растровых редакторов, – пиксельная графика. Это неверно, пиксельное изображение отличается от обычного растрового технологией – ручным редактированием рисунка пиксель за пикселем. Поэтому пиксельный рисунок отличается небольшими размерами, ограниченной цветовой палитрой и (как правило) отсутствием сглаживания.

Пиксельная графика использует лишь простейшие инструменты растровых графических редакторов, такие как Карандаш, Прямая (линия) или Заливка (заполнение цветом). Пиксельная графика напоминает мозаику и вышивку крестиком или бисером – так как рисунок складывается из небольших цветных элементов, аналогичных пикселям современных мониторов.

Фрактальная графика

Фрактал – объект, формирующийся из нерегулярных отдельных частей, которые подобны целому объекту. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего лишь несколькими математическими уравнениями.

Рис. 8.5.

Фрактальная графика незаменима при создании искусственных гор, облаков, морских волн. Благодаря фракталам легко изображаются сложные объекты, образы которых похожи на природные. Фракталы позволяют описывать целые классы изображений, для детального описания которых требуется относительно мало памяти (рис. 8.5). С другой стороны, фракталы слабо применимы к изображениям вне этих классов.

Трехмерная графика

Трехмерная графика (3D – от англ. 3 Dimensions – три измерения) – три измерения изображения) – раздел компьютерной графики, совокупность приемов и инструментов (как программных, так и аппаратных), предназначенных для изображения объемных объектов (рис. 8.6).

Рис. 8.6.

Трехмерное изображение на плоскости отличается от двумерного тем, что включает построение геометрической проекции трехмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ (однако с созданием и внедрением 3D -дисплеев и 3D -принтеров трехмерная графика не обязательно включает в себя проецирование на плоскость). При этом модель может как соответствовать объектам из реального мира (автомобили, здания, ураган, астероид), так и быть полностью абстрактной (проекция четырехмерного фрактала).

3D-моделирование – это процесс создания трехмерной модели объекта. Задача 3D -моделирования – разработать объемный образ желаемого объекта. С помощью трехмерной графики можно и создать точную копию конкретного предмета, и разработать новое, даже нереальное представление никогда не существовавшего объекта.

Трехмерная графика оперирует с объектами в трехмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трехмерная компьютерная графика широко используется на телевидении, в кинематографе, в компьютерных играх и оформлении полиграфической продукции.

Трехмерная графика активно применяется для создания изображений на плоскости экрана или печатаемого листа в науке и промышленности (например, в системах автоматизации проектных работ (САПР)); для создания твердотельных элементов: зданий, деталей машин, механизмов), архитектурной визуализации (сюда относится и так называемая "виртуальная археология"), в современных системах медицинской визуализации.

Трехмерная графика обычно имеет дело с виртуальным, воображаемым трехмерным пространством, которое отображается на плоской, двумерной поверхности дисплея или листа бумаги. Любое изображение на мониторе в силу плоскости последнего, становится растровым, так как монитор – это матрица, он состоит из столбцов и строк. Трехмерная графика существует лишь в нашем воображении – то, что мы видим на мониторе – это проекция трехмерной фигуры, а уже создаем пространство мы сами. Таким образом, визуализация графики бывает только растровая и векторная, а способ визуализации – это только растр (набор пикселей), от количества этих пикселей зависит способ задания изображения.

В настоящее время известно несколько способов отображения трехмерной информации в объемном виде, хотя большинство из них представляет объемные характеристики весьма условно, поскольку работают со стереоизображением. Из этой области можно отметить стереоочки, виртуальные шлемы, 3D -дисплеи, способные демонстрировать трехмерное изображение.

-графика

Термином "CGI-графика" (англ. computergenerated imagery обозначают изображения, сгенерированные компьютером) обозначают неподвижные и движущиеся изображения, сгенерированные при помощи трехмерной компьютерной графики и использующиеся в изобразительном искусстве, печати, кинематографических спецэффектах, на телевидении и в симуляторах. В компьютерных играх обычно используется компьютерная графика в реальном времени, но периодически добавляются и внутриигровые видео, основанные на CGI.

Созданием движущихся изображений занимается компьютерная анимация, представляющая собой более узкую область графики CGI, применимую в том числе в кинематографе, где позволяет создавать эффекты, которые невозможно получить при помощи традиционного грима и аниматроники . Компьютерная анимация может заменить работу каскадеров и статистов, а также декорации.

Инфографика

Термином "инфографика" (от лат. informatio – осведомление, разъяснение, изложение; и др.-греч. graphike – письменный, от grapho – пишу) обозначают графический способ подачи информации, данных и знаний.

Спектр применения инфографики огромен – география, журналистика, образование, статистика, технические тексты. Она помогает не только организовать большие объемы информации, но и более наглядно показать соотношение предметов и фактов во времени и пространстве, а также продемонстрировать тенденции.

Инфографикой можно назвать любое сочетание текста и графики, созданное с намерением изложить ту или иную историю, донести тот или иной факт. Инфографика работает там, где нужно показать устройство и алгоритм работы чего-либо, соотношение предметов и фактов во времени и пространстве, продемонстрировать тенденцию, показать, как что выглядит, организовать большие объемы информации.

Инфографика – это визуальное представление информации. Используется там, где сложную информацию нужно представить быстро и четко.

  • Аниматроника – методика, применяемая в кинематографии, мультипликации, компьютерном моделировании для создания спецэффектов подвижных искусственных частей тела человека, животного или других объектов.
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то