Электронный переключатель на 3 положения схема. Простой электронный переключатель. Схема, описание. Электронный выключатель схема - заменяет механический выключатель

Мощные электронные MOSFET переключатели являются одним из основных узлов в бытовой и специальной электронике и могут быть полезны для осуществление контроля больших нагрузок постоянного тока, без использования сильноточных выключателей, у которых со временем подгорают и изнашиваются контакты. Как известно, полевые MOSFET транзисторы способны работать с очень большими напряжениями и токами. Что сильно востребованно для соединения нагрузок в различной силовой цепи.

Схема электронного переключателя

Эта схема позволяет легко переключать низкими импульсами напряжения (5 В) для управления большой нагрузкой постоянного тока. Мощность указанного по схеме MOSFET транзистора подходит для того, чтоб выдерживать напряжения и токи до 100 В, 75 А (для NTP6411). Этот электронный переключатель может использоваться вместо реле в модулях вашего автомобиля.

Обычный выключатель или импульсный вход может быть использован для активации транзистора. Выбрать метод ввода можно установив перемычку на соответствующей стороне. Импульсный вход, вероятно, будет наиболее полезен. Схема была спроектирована для использования с 24 В, но она может быть адаптирована для работы с другими напряжениями (испытания прошли нормально и при 12V). Переключатель должен также работать с другими N-канальными МОП-транзисторами. Защитный диод D1 включен для предотвращения скачков напряжения от индуктивных нагрузок. Светодиоды обеспечивают визуальную индикацию состояния транзистора. Винтовые клеммы позволяют подключать устройство в разные модули.

Выключатель после сборки был протестирован в течении суток совместно с электромагнитным клапаном (24 В / 0,5 А) и транзистор был прохладным на ощупь даже без радиатора. В общем эту схему можно рекомендовать для самых широких областей применения - как светодиодным освещением, так и в автоэлектронике, на замену обычным электромагнитным реле.

Коридорный выключатель очень хорошо знаком электрикам старшего поколения. Сейчас подобное устройство несколько забыто, поэтому придется вкратце рассказать об алгоритме его действия.

Представьте, что Вы выходите из комнаты в коридор, в котором нет окон. Около двери щелкаете выключателем, и в коридоре загорается свет. Этот выключатель условно назовем первым.

Дойдя до противоположного конца коридора, перед выходом на улицу Вы гасите свет вторым выключателем, расположенным около выходной двери. Если в комнате еще кто-то остался, то он также может при выходе включить свет первым выключателем, и с помощью второго выключить. При заходе в коридор с улицы свет включается вторым выключателем, а уже в комнате выключается первым.

Хотя все устройство в целом называется выключателем, для его изготовления потребуются два переключателя с перекидным контактом. Обычные выключатели здесь не подойдут. Схема такого коридорного выключателя показана на рисунке 1.

Рисунок 1. Коридорный выключатель с двумя переключателями.

Как видно из рисунка схема достаточно проста. Лампочка будет светить в том случае, если оба переключателя S1 и S2 замкнуты на один и тот же провод, или верхний, или нижний, как показано на схеме. В противном случае лампа погашена.

Для управления одним источником света из трех мест, не обязательно одной лампочкой, это может быть несколько светильников под потолком, схема уже другая. Она показана на рисунке 2.

Рисунок 2. Коридорный выключатель с тремя переключателями.

По сравнению с первой схемой, эта схема несколько сложнее. В ней появился новый элемент - переключатель S3, который содержит две группы переключающих контактов. В положении контактов, указанном на схеме, лампа включена, хотя обычно указывается положение, при котором потребитель выключен. Но при таком начертании, легче проследить путь тока через выключатели. Если теперь любой из них перевести в положение противоположное указанному на схеме, то лампа выключится.

Чтобы проследить путь тока при других вариантах положения переключателей, достаточно просто поводить по схеме пальцем и мысленно перевести их во все возможные положения.

Обычно такой способ позволяет разобраться и с более сложными схемами. Поэтому длинного и скучного описания работы схемы здесь не приводится.

Такая схема позволяет управлять освещением из трех мест. Она может найти применение в коридоре, в который выходят две двери. Конечно, можно возразить, что в этом случае проще поставить современный датчик движения, который даже следит за тем, день сейчас или ночь. Поэтому днем освещение включаться не будет. Но в некоторых случаях такая автоматика просто не поможет.

Представьте себе, что такой тройной выключатель установлен в комнате. Одна клавиша расположена у входной двери, другая над письменным столом, а третья около кровати. Ведь автоматика может включить свет, когда вы просто во сне перевернетесь с боку на бок. Можно найти еще немало условий, где необходима именно схема без автоматики. Такие выключатели называют также проходными , а не только коридорными.

Теоретически такой проходной выключатель можно сделать и с большим количеством переключателей, но это значительно усложнит схему, потребуются переключатели все с большим количеством контактных групп. Уже даже всего пять переключателей сделают схему неудобной для монтажа и просто понимания принципов ее работы.

А если такой выключатель потребуется для коридора, в который выходит десять, а то и двадцать комнат? Ситуация достаточно реальная. Таких коридоров достаточно в провинциальных гостиницах, студенческих и заводских общежитиях. Как же быть в этом случае?

Вот тут на помощь придет электроника. Ведь как работает такой проходной выключатель? На одну клавишу нажали - свет включился, и горит до тех пор, пока не нажали на другую. Такой алгоритм работы напоминает работу электронного устройства - триггера. Более подробно о различных триггерах можно почитать в цикле статей « ».

Если просто стоять и нажимать на одну и ту же клавишу, то лампочка будет поочередно включаться и гаснуть. Такой режим похож на работу триггера в счетном режиме - с приходом каждого управляющего импульса состояние триггера меняется на противоположное.

При этом в первую очередь следует обратить внимание на то, что при использовании триггера клавиши не должны иметь фиксации: достаточно просто кнопок, наподобие звонковых. Для подсоединения такой кнопки потребуется всего два провода, причем не очень даже и толстых.

А если параллельно одной кнопке подключить еще одну, то получится проходной выключатель с двумя кнопками. Ничего не меняя в принципиальной схеме, можно подключить пять, десять и более кнопок. Схема с использованием триггера К561ТМ2 показана на рисунке 3.

Рисунок 3. Проходной выключатель на триггере К561ТМ2.

Триггер включен в счетном режиме. Для этого его инверсный выход подключен к входу D. Это стандартное включение, при котором каждый входной импульс по входу C изменяет состояние триггера на противоположное.

Входные импульсы получаются при нажатии кнопок S1…Sn. Цепочка R2C2 предназначена подавления дребезга контактов, и формирования одиночного импульса. При нажатии на кнопку происходит заряд конденсатора C2. При отпускании кнопки конденсатор разряжается через C - вход триггера, формируя входной импульс. Таким образом обеспечивается четкая работа всего переключателя в целом.

Цепочка R1C1, подключенная к входу R триггера обеспечивает сброс при начальном включении питания. Если этого сброса не требуется, то R - вход следует просто подключить к общему проводу питания. Если его оставить просто «в воздухе», то триггер воспримет это как высокий уровень и будет все время находиться в нулевом состоянии. Поскольку RS - входы триггера являются приоритетными, подача импульсов на вход C состояния триггера менять не сможет, вся схема окажется заторможенной, неработоспособной.

К прямому выходу триггера подключается выходной каскад, управляющий нагрузкой. Самый простой и надежный вариант это реле и транзистор, как показано на схеме. Параллельно катушке реле подключен диод D1, назначение которого уберечь выходной транзистор от напряжения самоиндукции при выключении реле Rel1.

Микросхема К561ТМ2 в одном корпусе содержит два триггера, один из которых не используется. Поэтому входные контакты незадействованного триггера следует соединить с общим проводом. Это контакты 8, 9, 10 и 11. Такое подключение предотвратит выход микросхемы из строя под воздействием статического электричества. Для микросхем структуры КМОП такое соединение всегда обязательно. Питающее напряжение +12В следует подать на 14 вывод микросхемы, а 7 вывод соединить с общим проводом питания.

В качестве транзистора VT1 можно применить КТ815Г, диод D1 типа 1N4007. Реле малогабаритное с катушкой на 12В. Рабочий ток контактов выбирается в зависимости от мощности светильника, хотя может быть и любая другая нагрузка. Здесь лучше всего использовать импортные реле типа TIANBO или им подобные.

Источник питания показан на рисунке 4.

Рисунок 4. Источник питания.

Источник питания выполнен по трансформаторной схеме с использованием интегрального стабилизатора 7812, обеспечивающего на выходе постоянное напряжение 12В. В качестве сетевого трансформатора используется трансформатор мощностью не более 5…10 Вт с напряжением вторичной обмотки 14…17В. Диодный мост Br1 можно применить типа КЦ407, либо собрать из диодов 1N4007, которые в настоящее время очень распространены.

Электролитические конденсаторы импортные типа JAMICON или подобные. Их теперь также проще купить, чем детали отечественного производства. Хотя стабилизатор 7812 имеет встроенную защиту от коротких замыканий, но все равно перед включением устройства следует убедиться в правильности монтажа. Это правило забывать не следует никогда.

Источник питания, выполненный по указанной схеме, обеспечивает гальваническую развязку от осветительной сети, что позволяет применять данное устройство в сырых помещениях, таких как погреба и подвалы. Если такого требования не предъявляется, то источник питания можно собрать по бестрансформаторной схеме, подобно той, которая показана на рисунке 5.

Рисунок 5. Бестрансформаторный источник питания.

Такая схема позволяет отказаться от использования трансформатора, что в ряде случаев достаточно удобно и практично. Правда кнопки, да и вся конструкция в целом, будут иметь гальваническую связь с осветительной сетью. Об этом не следует забывать, и соблюдать правила техники безопасности.

Выпрямленное сетевое напряжение через балластный резистор R3 подается на стабилитрон VD1 и ограничивается на уровне 12В. Пульсации напряжения сглаживаются электролитическим конденсатором C1. Нагрузка включается транзистором VT1. При этом резистор R4 подключается к прямому выходу триггера (вывод 1), как показано на рисунке 3.

Собранная из исправных деталей схема не требует налаживания, начинает работать сразу.

Сейчас мы займемся рассматриванием микросхемы TDA1029 производства небольшой европейской компании Philips. У этой небольшой европейской компании есть небольшое отделение по производству небольших полупроводниковых приборов. Я сам очень удивился - оказалось, что Philips выпускает еще что то кроме мобильников и прочей бытовой дребедени.

Так, к делу.
Вышеозначенная микросхемка представляет собой селектор сигналов для различных усилителей. В 16-ногом корпусе поместились 4 стереовхода и 1 стереовыход.
Основные параметры следующие:

В общем и целом очень даже неплохо, не правда ли? Так же в микросхему встроены следующие вкусности: бесшумное переключении входов, защита выхода от короткого замыкания.

Смотрим схему включения:

В принципе и комментировать то особо нечего. Слева от нас входы справа - выход. Так же справа переключатели выходов. Если не замкнут ни один из выключателей, то сигнал снимается с первого входа - самого верхнего по схеме. Если же замыкается один из переключателей, то селектор переключается в соответствующее состояние. Переключатели могут быть любого типа - через них не проходит звуковой сигнал, так что можно ставить все что придет в голову - тем и хорош электронный переключатель - у него нет контактов, которые со временем окисляются или протачиваются. Очень удобно во всех отношениях. Паяем и пользуемся.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Микросхема TDA1029 1 В блокнот
С1-С8, С10 Конденсатор 0.22 мкФ 9 В блокнот
С9 Электролитический конденсатор 100 мкФ 20 В 1 В блокнот
R1-R8 Резистор

470 кОм

8 В блокнот
S1-S3 Выключатель 3

В настоящее время в радиоэлектронной аппаратуре часто применяют электронные выключатели, в которых одной кнопкой можно осуществлять как ее включение, так и выключение. Сделать такой выключатель мощным, экономичным и малогабаритным можно, если применить полевой переключательный транзистор и цифровую КМОП микросхему.

Схема простого выключателя приведена на рис. 1. Транзистор VT1 выполняет функции электронного ключа, а триггер DD1 им управляет. Устройство постоянно подключено к источнику питания и потребляет небольшой ток - единицы или десятки микроампер.

Если на прямом выходе триггера высокий логический уровень, то транзистор закрыт, нагрузка обесточена. При замыкании контактов кнопки SB1 триггер переключится в противоположное состояние, на его выходе появится низкий логический уровень. Транзистор VT1 откроется, и напряжение поступит на нагрузку. В таком состоянии устройство будет находиться до тех пор, пока снова не окажутся замкнутыми контакты кнопки. Тогда транзистор закроется, нагрузка обесточится.

Указанный на схеме транзистор имеет сопротивление канала 0,11 Ом, а максимальный ток стока может достигать 18 А. Следует учитывать, что напряжение затвор-сток, при котором транзистор открывается, составляет 4...4,5 В. При напряжении питания 5...7 В ток нагрузки не должен превышать 5 А, в противном случае падение напряжения на транзисторе может превысить 1 В. Если напряжение питания больше, ток нагрузки может достигать 10... 12 А.

Когда ток нагрузки не превышает 4 А, транзистор можно использовать без теплоотвода. Если ток больше, необходим теплоотвод, либо следует применить транзистор с меньшим сопротивлением канала. Подобрать его нетрудно по справойной таблице, приведенной в статье "Мощные переключательные транзисторы фирмы International Rektifier" в "Радио", 2001, №5, с. 45.

На такой выключатель можно возложить и другие функции, например, автоматическое отключение нагрузки при снижении или превышении питающим напряжением заранее установленного значения. В первом случае это может понадобиться при питании аппаратуры от аккумуляторной батареи, чтобы не допустить ее чрезмерного разряда, во втором - для защиты аппаратуры от завышенного напряжения.

Схема электронного выключателя с функцией отключения при снижении напряжения приведена на рис. 2. В него дополнительно введены транзистор VT2,стабилитрон,конденсатор и резисторы, один из которых - подстроенный (R4).

При нажатии на кнопку SB 1 полевой транзистор VT1 открывается, напряжение поступает на нагрузку. Из-за зарядки конденсатора С1 напряжение на коллекторе транзистора в начальный момент не превысит 0,7 В, т.е. будет иметь низкий логический уровень. Если напряжение на нагрузке станет больше установленного подстроечным резистором значения, на базу транзистора поступит напряжение, достаточное для его открывания. В этом случае на входе "S" триггера останется низкий логический уровень, а кнопкой можно включать и выключать питание нагрузки.

Как только напряжение снизится ниже установленного значения, напряжение на движке подстроечного резистора станет недостаточным для открывания транзистора VT2 - он закроется. При этом на коллекторе транзистора напряжение увеличится до высокого логического уровня, который поступит на вход "S" триггера. На выходе триггера появится также высокий уровень, что приведет к закрыванию полевого транзистора. Нагрузка обесточится. Нажатия на кнопку в этом случае приведут только к кратковременному подключению нагрузки и последующему ее отключению.

Для введения защиты от превышения питающего напряжения автомат следует дополнить транзистором VT3, стабилитроном VD2 и резисторами R5, R6. В этом случае устройство работает аналогично описанному выше, но при увеличении напряжения выше определенного значения транзистор VT3 откроется, что приведет к закрыванию VT2, появлению высокого уровня на входе "S" триггера и закрыванию полевого транзистора VT1.

Кроме указанных на схеме, в устройстве можно применить микросхему К561ТМ2, биполярные транзисторы КТ342А-КТ342В, КТ3102А-КТ3102Е, стабилитрон КС156Г. Постоянные резисторы - МЛТ, С2-33, Р1-4, подстроенные - СПЗ-3, СПЗ-19, конденсатор - К10 17, кнопка - любая малогабаритная с самовозвратом.

При использовании деталей для поверхностного монтажа (микросхема CD4013, биполярные транзисторы КТ3130А-9 - КТ3130Г-9, стабилитрон BZX84C4V7, постоянные резисторы P1-I2, конденсатор К10-17в) их можно разместить на печатной плате (рис. 3) из односторонне фольгированного стеклотекстолита размерами 20x20 мм. Внешний вид смонтированной платы показан на рис. 4.

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим:) Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

Как работает:

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот На сходном принципе действия.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то