Элементарные преобразования строк блочной матрицы. Элементарные матрицы. Правило Крамера решения систем n – линейных уравнений с n – неизвестными

Элементарные преобразования матрицы - это такие преобразования матрицы , в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений , которую представляет эта матрица.

Элементарные преобразования используются в методе Гаусса для приведения матрицы к треугольному или ступенчатому виду.

Определение

Элементарными преобразованиями строк называют:

В некоторых курсах линейной алгебры перестановка строк матрицы не выделяется в отдельное элементарное преобразование в силу того, что перестановку местами любых двух строк матрицы можно получить, используя умножение любой строки матрицы на константу , и прибавление к любой строке матрицы другой строки, умноженной на константу , .

Аналогично определяются элементарные преобразования столбцов .

Элементарные преобразования обратимы .

Обозначение указывает на то, что матрица может быть получена из путём элементарных преобразований (или наоборот).

Свойства

Инвариантность ранга при элементарных преобразованиях

Эквивалентность СЛАУ при элементарных преобразованиях

Назовём элементарными преобразованиями над системой линейных алгебраических уравнений :
  • перестановку уравнений;
  • умножение уравнения на ненулевую константу;
  • сложение одного уравнения с другим, умноженным на некоторую константу.
Т.е. элементарные преобразования над её расширенной матрицей. Тогда справедливо следующее утверждение: Напомним, что две системы называются эквивалентными, если множества их решений совпадают.

Нахождение обратных матриц

Теорема (о нахождении обратной матрицы).
Пусть определитель матрицы не равен нулю, пусть матрица определяется выражением . Тогда при элементарном преобразовании строк матрицы к единичной матрице в составе одновременно происходит преобразование к .

Приведение матриц к ступенчатому виду

Введём понятие ступенчатых матриц: Матрица имеет ступенчатый вид , если: Тогда справедливо следующее утверждение:

Связанные определения

Элементарная матрица. Матрица А является элементарной, если умножение на нее произвольной матрицы В приводит к элементарным преобразованиям строк в матрице В.

Литература

Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов . - 6-е изд., стер. - М .: ФИЗМАТЛИТ, 2004. - 280 с.


Wikimedia Foundation . 2010 .

Смотреть что такое "Элементарные преобразования матрицы" в других словарях:

    Введение. Э. ч. в точном значении этого термина первичные, далее неразложимые ч цы, из к рых, по предположению, состоит вся материя. В совр. физике термин «Э. ч.» обычно употребляется не в своём точном значении, а менее строго для наименования… … Физическая энциклопедия

    Введение. Э. ч. в точном значении этого термина первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии «Э. ч.» в современной физике находит выражение идея о первообразных сущностях,… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Матрица. Матрица математический объект, записываемый в виде прямоугольной таблицы элементов кольца или поля (например, целых, действительных или комплексных чисел), которая представляет… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

    Матрица математический объект, записываемый в виде прямоугольной таблицы чисел (или элементов кольца) и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения… … Википедия

Матричная алгебра - Элементарные преобразования матриц

Элементарные преобразования матриц

Элементарные преобразования матрицы находят широкое применение в различных математических задачах. Например, они составляют основу известного метода Гаусса (метода исключения неизвестных) для решения системы линейных уравнений .

К элементарным преобразованиям относятся:
1) перестановка двух строк (столбцов);
2) умножение всех элементов строки (столбца) матрицы на некоторое число, не равное нулю;
3) сложение двух строк (столбцов) матрицы, умноженных на одно и то же число, отличное от нуля.

Две матрицы называются эквивалентными , если одна из них может быть получена из другой после конечного числа элементарных преобразований. В общем случае эквивалентные матрицы равными не являются, но имеют один и тот же ранг.

Вычисление определителей с помощью элементарных преобразований

С помощью элементарных преобразований легко вычислить определитель матрицы. Например, требуется вычислить определитель матрицы:

где ≠ 0.
Тогда можно вынести множитель :

теперь, вычитая из элементов j - го столбцасоответствующие элементы первого столбца, умноженные на, получим определитель:

который равен: где

Затем повторяем те же действия для и, если все элементы то тогда окончательно получим:

Если для какого-нибудь промежуточного определителя окажется, что его левый верхний элемент , то необходимо переставить строки или столбцы втак, чтобы новый левый верхний элемент был не равен нулю. Если Δ ≠ 0, то это всегда можно сделать. При этом следует учитывать, что знак определителя меняется в зависимости от того, какой элемент является главным (то есть, когда матрица преобразована так, что). Тогда знак соответствующего определителя равен.

П р и м е р. С помощью элементарных преобразований привести матрицу

Матрица преобразований применяется для вычисления новых координат объекта при его трансформации. Изменяя значения элементов матрицы преобразования, к объектам можно применять любые трансформации (например: масштабирование, зеркальное отражение, поворот, перемещение и т. п.). При любой трансформации сохраняется параллельность линий объекта.

Координаты в PDF выражаются в терминах двумерного пространства. Точка (x, y) в пространстве может быть выражена в векторной форме . Постоянный третий элемент этого вектора (1) нужен для использования вектора с матрицами 3х3 в вычислениях, описанных ниже.

Преобразование между двумя системами координат представлено, как матрица 3х3 и записывается следующим образом:

Координатные преобразования выражаются в виде матричных умножений:

Так как последняя колонка не оказывает ни какого влияния на результаты расчета, то она в вычислениях не принимает участия. Координаты трансформации высчитываются по следующим формулам:

Единичная матрица

Единичной матрицей называется, та у которой значения матрицы a и d равны 1 , а остальные равны 0 . Такая матрица применяется по умолчанию, так как не приводит к трансформации. Поэтому единичную матрицу используют как основу.

Масштабирование

Для увеличения или уменьшения размера объекта по горизонтали/вертикали следует изменить значение a или d соответственно, а остальные применить из единичной матрицы.

Например: Для увеличения размера объекта в два раза по горизонтали, значение a необходимо принять равным 2, а остальные оставить такими как в единичной матрице.

Отражение

Чтобы получить зеркальное отображение объекта по горизонтали следует установить значение a = -1 , по вертикали d = -1 . Изменение обеих значений применяется для одновременного отображения по горизонтали и вертикали.

Наклон

Наклон объекта по вертикали/горизонтали обеспечивается изменением значений b и c соответственно. Изменение значения b/-b - наклон вверх/вниз, c/-c – вправо/влево.

Например: Для наклона объекта по вертикали вверх установим значение b = 1

Высчитываем новые координаты объекта:

В итоге к наклону объекта приводит только координата y , которая увеличивается на значение x .

Поворот

Поворот — это комбинация масштабирования и наклона, но для сохранения начальных пропорций объекта, преобразования должны проводится с точными вычислениями при использовании синусов и косинусов.

Сам поворот происходит против часовой стрелки, α задаёт угол поворота в градусах.

Перемещение

Перемещение осуществляется изменением значений e (по горизонтали) и f (по вертикали). Значения задаются в пикселях.

Например: Перемещение с использованием матрицы применяется редко из-за того, что эту операцию можно проделать другими методами, например, изменить положение объекта во вкладке .

Поскольку матрица трансформации имеет только шесть элементов, которые могут быть изменены, визуально она отображается в PDF . Такая матрица может представлять любое линейное преобразование из одной координатной системы в другую. Матрицы преобразований образуются следующим образом:

  • Перемещения указываются как , где t x и t y — расстояния от оси системы координат по горизонтали и вертикали, соответственно.
  • Масштабирование указывается как . Это масштабирует координаты так, что 1 единица в горизонтальном и вертикальном измерениях в новой координатной системе такого же размера, как и s x и s y единиц в старой координатной системе соответственно.
  • Повороты производятся матрицей , что соответствует повороту осей координатной системы на θ градусов против часовой стрелки.
  • Наклон указывается как , что соответствует наклону оси x на угол α и оси y на угол β .

На рисунке ниже показаны примеры трансформации. Направления перемещения, угол поворота и наклона, показанные на рисунке, соответствуют положительным значениям элементов матрицы.

Умножения матрицы не коммутативны — порядок, в котором перемножаются матрицы, имеет значение.

В таблице ниже приведены допустимые преобразования и значения матрицы.

Исходный рисунок Трансформированный рисунок Матрица Описание
1 0
0 2
0 0

Масштаб по вертикали. Если значение матрицы больше 1, объект расширяется, меньше 1 — сжимается.

2 0
0 1
0 0

Масштаб по горизонтали. Если значение матрицы больше 1, объект расширяется, меньше 1 — сжимается.

-1 0
0 1
0 0

Отражение по горизонтали.

1 0
0 -1
0 0

Отражение по вертикали.

1 1
0 1
0 0

Наклон по вертикали вверх.

1 -1
0 1
0 0

Наклон по вертикали вниз.

1 0
1 1
0 0

Наклон по горизонтали вправо.

1 0
-1 1
0 0

Элементарными преобразованиями называют следующие действия над строками и столбцами матрицы A:

1) перестановку местами двух строк или столбцов матрицы;

2) умножение строки или столбца матрицы на число, отличное от нуля;

3) прибавление к одной строке (столбцу) другой строки (столбца).

Теорема. Элементарные преобразования не меняют ранг матрицы, то есть, если матрица B получена из матрицы A элементарными преобразованиями, то.

Доказательство. 1). При перестановке местами двух столбцов матрицы максимальное число линейно независимых столбцов не меняется, а значит, не меняется и её ранг.

2). Пусть матрица Bполучена из матрицыAумножениемi- ой строки на числоt0 иr(A) =k. Очевидно, любой минор матрицыB, не содержащийi- тую строку, равен соответствующему минору матрицыA, а любой минор матрицыB, содержащийi-тую строку, равен соответствующему минору матрицыAумноженному на числоt. Следовательно, минор порядкаkматрицыB, соответствующий базисному минору матрицыA, будет отличен от нуля, а все миноры порядкаk+1 матрицыB, как и все миноры порядкаk+1 матрицыA, будут равны нулю. А это значит, чтоr(B)=k=r(A).

3). Пусть матрица Bполучена из матрицыAприбавлениемi- ой строки кj-той строке иr(A) =k. Миноры порядкаk+1 матрицыB, не содержащиеj-тую строку, будут равны соответствующим минорам матрицыA, и поэтому равны нулю. Миноры порядкаk+1 матрицыB, содержащиеi- тую иj-тую строки, будут равны сумме двух нулевых определителей. Один из этих определителей содержит две одинаковых строки (вj-той строке расположены элементыi–той строки), а второй определитель является минором порядкаk+1 матрицыAи поэтому равен нулю. Миноры порядкаk+1 матрицыB, содержащиеj-тую строку, но не содержащиеi-тую строку, будут равны сумме двух миноров порядкаk+1 матрицыAи поэтому тоже будут равны нулю. Следовательно, все миноры порядкаk+1 матрицыBравны 0 иr(B)k=r(A).

Пусть матрица Cполучена из матрицыBумножениемi–той строки на (-1). Тогда матрицаAполучается из матрицыCприбавлениемi–той строки кj-той строке и умножениемi–той строки на (-1). Следовательно, как было доказано выше, будетr(A)r(C) =r(B). Таким образом, одновременно справедливы неравенстваr(B)r(A) иr(A)r(B) откуда следует, чтоr(A) =r(B).

Это свойство элементарных преобразований используют на практике для вычисления ранга матрицы. Для этого, при помощи элементарных преобразований, приводят данную (ненулевую) матрицу A к трапецевидной форме, то есть к виду

B = ,

где элементы для всех i = 1,2,...,k; элементыдля всех i > j и

i > k. Очевидно, что r(B) = k, то есть ранг матрицы Bравен числу ненулевых строк. Это следует из того, что минор порядка k матрицыB, расположенный на пересечении первых k строк и столбцов, является определителем диагонального вида и равен; а любой минор порядка k+1 матрицы В содержит нулевую строку, а значит, равен 0 (либо, если k = n, таких миноров нет вообще).

Теорема. Любую ненулевую матрицуAразмерностиmnможно привести к трапецевидной форме при помощи элементарных преобразований.

Доказательство. Так какA0, то существует элемент матрицы
. Переставив местами первую иi-тую строки, первый иj-тый столбцы, переместим элементв левый верхний угол матрицы и обозначим
. Затем кi-той строке полученной матрицы (i= 2,3, …,m) прибавим первую строку, умноженную на число. В результате этих элементарных преобразований получим матрицу

A
.

Если все элементы
матрицыAравны нулю, то теорема доказана. Если же существует элемент
, то, перестановкой второй иi-той строк, второго иj-того столбцов матрицыA, переместим элементна место элементаи обозначим
(если
, тогда сразу обозначим
). Затем кi-той строке полученной матрицы (i= 3, …,m) прибавим вторую строку, умноженную на число. В результате получим матрицу


.

Продолжив этот процесс, за конечное число шагов получим матрицу B, то есть приведем матрицуAк трапецевидной форме.

Пример. Вычислим ранг матрицы

. Стрелками обозначены следующие элементарные преобразования: 1) переставили местами первую и вторую строки; 2) прибавили к четвертой строке третью; 3) прибавили к третьей строке первую, умноженную на -2, и четвертую строку поделили на 3; 4) поделили третью строку на 5 и переставили местами третью и четвертую строки; 5) к третьей строке, умноженной на -3, прибавили вторую строку и к четвертой строке прибавили третью. Видно, что матрица, полученная из матрицы А указанными элементарными преобразованиями, имеет трапецевидную форму с тремя ненулевыми строками. Следовательно, r(A) = 3.

Элементарные преобразования матрицы - это такие преобразования матрицы , в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений , которую представляет эта матрица.

Элементарные преобразования используются в методе Гаусса для приведения матрицы к треугольному или ступенчатому виду.

Определение

Элементарными преобразованиями строк называют:

В некоторых курсах линейной алгебры перестановка строк матрицы не выделяется в отдельное элементарное преобразование в силу того, что перестановку местами любых двух строк матрицы можно получить, используя умножение любой строки матрицы на константу k {\displaystyle k} , и прибавление к любой строке матрицы другой строки, умноженной на константу k {\displaystyle k} , k ≠ 0 {\displaystyle k\neq 0} .

Аналогично определяются элементарные преобразования столбцов .

Элементарные преобразования обратимы .

Обозначение указывает на то, что матрица A {\displaystyle A} может быть получена из B {\displaystyle B} путём элементарных преобразований (или наоборот).

Свойства

Инвариантность ранга при элементарных преобразованиях

Теорема (об инвариантности ранга при элементарных преобразованиях).
Если A ∼ B {\displaystyle A\sim B} , то r a n g A = r a n g B {\displaystyle \mathrm {rang} A=\mathrm {rang} B} .

Эквивалентность СЛАУ при элементарных преобразованиях

Назовём элементарными преобразованиями над системой линейных алгебраических уравнений :
  • перестановку уравнений;
  • умножение уравнения на ненулевую константу;
  • сложение одного уравнения с другим, умноженным на некоторую константу.
То есть элементарные преобразования над её расширенной матрицей. Тогда справедливо следующее утверждение: Напомним, что две системы называются эквивалентными, если множества их решений совпадают.

Нахождение обратных матриц

Теорема (о нахождении обратной матрицы).
Пусть определитель матрицы A n × n {\displaystyle A_{n\times n}} не равен нулю, пусть матрица B {\displaystyle B} определяется выражением B = [ A | E ] n × 2 n {\displaystyle B=_{n\times 2n}} . Тогда при элементарном преобразовании строк матрицы A {\displaystyle A} к единичной матрице E {\displaystyle E} в составе B {\displaystyle B} одновременно происходит преобразование E {\displaystyle E} к A − 1 {\displaystyle A^{-1}} .
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то