Fast avr схему. Схема приставки для восстановления FUSE-битов в AVR микроконтроллерах. Подключение выводов микроконтроллеров в режиме высоковольтного последовательного программирования

Рис.1

Т = Т0+Т1 . Период импульсов

Т = 1/F

S = T/T1

Duty cycle

Коэффициент заполнения D=1/S или так D = T1/T*100%

Цифровые устройства, например, микроконтроллер может работать только с двумя уровнями сигнала, т.е. ноль и единица или выключено и включено. Таким образом, вы можете легко использовать его для контроля состояния нагрузки, например включит или выключить светодиод. Так же вы можете использовать его для управления любым электрическим прибором, используя соответствующие драйверы (транзистор, симистор, реле и т.д.).Но иногда нужно больше, чем просто "включить" и "выключить" устройство. Поэтому, если вы хотите контролировать яркость светодиода (или лампы) или скорости двигателя постоянного тока, то цифровые сигналы просто не могу этого сделать. Эта ситуация очень часто встречается в цифровой технике и называется Широтно-Импульсной Модуляцией(PWM).

Почти все современные микроконтроллеры имеют специализированные аппаратные средства для генерации ШИМ-сигнала. В этом уроке мы будем изучать основы техники ШИМ и в дальнейшем мы увидим, как реализовать ШИМ с помощью микроконтроллеров AVR.

Цифровые устройства, как микроконтроллер может генерировать только два уровня на выходных линиях, высокий = 5В и низкий = 0В. Но что, если мы хотим получить 2,5 или 3,1 или любое напряжение в пределах 0-5В? Для этого, вместо создания постоянного напряжения постоянного тока на выходе мы будем генерировать меандр, который имеет высокий = 5В и низкий = 0V уровни (см. рисунок 1).

Рис.1

Из рисунка видно что сигнал на некоторое время остается поочередно на низком и высоком уровне. Т0 - низкий уровень, Т1 - высокий уровень. Период сигнала будет равен Т = Т0+Т1 . Период импульсов - это промежуток времени, между двумя характерными точками двух соседних импульсов. Обычно период измеряют между двух фронтов или двух спадов соседних импульсов и обозначают заглавной латинской буквой T.

Период следования импульсов напрямую связан с частотой импульсной последовательности, и его можно вычислить по формуле: Т = 1/F

Если длина импульса T1 точно равна половине периода T, то такой сигнал часто называют "меандр".

Скважностью импульсов называется отношение периода следования импульсов к их длительности и обозначается буквой S: S = T/T1

Скважность - безразмерная величина и не имеет единиц измерения, но может быть выражена в процентах. Часто в англоязычных текстах встречается термин Duty cycle , это так называемый коэффициент заполнения или величина рабочего цикла ШИМ. Коэффициент заполнения D является величиной, обратной скважности.

Коэффициент заполнения обычно выражается в процентах и вычисляется по формуле: D=1/S или так D = T1/T*100%

На рисунке выше (рис. 1) можно увидеть, что T1 = T0, это равно половине периода времени. Так величина рабочего цикла ШИМ составляет 50%. Если частота таких импульсов достаточно велика (скажем, 5000 Гц), то мы получаем половину от 5В т.е. 2,5В. Таким образом, если выход контроллера связан с двигателем (с помощью соответствующих драйверов) он будет работать на 50% его полной скорости. Техника ШИМ использует этот факт для создания любого напряжения между двумя уровнями (например, между 0-12В). Весь фокус в том,что при изменении величины рабочего цикла между 0-100% получаем тот же процент входного напряжения на выходе. Ниже приведены некоторые примеры ШИМ сигнала различной скважности.

Если на выходе поставить R/С фильтр, то можно получить чистый DC уровень сигнала, а не квадратные волны. Но это не требуется для коллекторных двигателей или для управления яркостью светодиодов. Для этого можно подавать ШИМ сигнал непосредственно на драйвер (например, биполярный транзистор, MOSFET и т.д.).

Под режимом работы 16-разр. таймера понимается его алгоритм счета и поведение связанного с ним выхода формирователя импульсов, что определяется комбинацией бит, задающих режим работы таймера (WGMn3-0) и режим формирования выходного сигнала (COMnx1:0). При этом биты задания режима формирования выходного сигнала не влияют на алгоритм счета, т.к. алгоритм счета зависит только от состояния бит задания режима работы таймера. В режимах с ШИМ биты COMnx1:0 позволяют включить/отключить инверсию на генерируемом ШИМ-выходе (т.е. выбрать ШИМ с инверсией или ШИМ без инверсии). Для режимов без ШИМ биты COMnx1:0 определяют, какое действие необходимо выполнить при возникновении совпадения: сбросить, установить или инвертировать выход (см. также “Блок формирования выходного сигнала” и "Временные диаграммы 16-разр. таймеров-счетчиков").

Нормальный режим работы

Самым простым режимом работы является нормальный режим (WGMn3-0 = 0b0000). В данном режиме счетчик работает как суммирующий (инкрементирующий), при этом сброс счетчика не выполняется. Переполнение счетчика происходит при переходе через максимальное 16-разр. значение (0xFFFF) к нижнему пределу счета (0x0000). В нормальном режиме работы флаг переполнения таймера-счетчика TOVn будет установлен на том же такте синхронизации, когда TCNTn примет нулевое значение.

Фактически, флаг переполнения TOVn является 17-ым битом таймера-счетчика за тем исключением, что он только устанавливается и не сбрасывается. Однако программно это свойство может быть использовано для повышения разрешающей способности таймера, если использовать прерывание по переполнению таймера, при возникновении которого флаг TOVn сбрасывается автоматически. Для нормального режима работы не существует каких-либо особых ситуаций, поэтому запись нового состояния счетчика может быть выполнена в любой момент.

В нормальном режиме можно использовать блок захвата. Однако при этом следует соблюдать, чтобы максимальный интервал времени между возникновениями внешних событий не превысил периода переполнения счетчика. Если такое условие не соблюдается, необходимо использовать прерывание по переполнению таймера-счетчика или предделитель.

Блок сравнения может использоваться для генерации прерываний. Не рекомендуется использовать выход OCnx для генерации сигналов в нормальном режиме работы, т.к. в этом случае будет затрачена значительная часть процессорного времени.

Режим сброса таймера при совпадении (СТС)

В режиме СТС (WGM01, WGM00 =0b10) регистр OCR0 используется для задания разрешающей способности счетчика. Если задан режим CTC и значение счетчика (TCNT0) совпадает со значением регистра OCR0, то счетчик обнуляется (TCNT0=0). Таким образом, OCR0 задает вершину счета счетчика, а, следовательно, и его разрешающую способность. В данном режиме обеспечивается более широкий диапазон регулировки частоты генерируемых прямоугольных импульсов. Он также упрощает работу счетчика внешних событий.

В режиме сброса таймера при совпадении (WGMn3-0 = 0b0100 или 0b1100) разрешающая способность таймера задается регистрами OCRnA или ICRn. В режиме СТС происходит сброс счетчика (TCNTn), если его значение совпадает со значением регистра OCRnA (WGMn3-0 = 0b0100) или с ICRn (WGMn3-0 = 0b1100). Значение регистра OCRnA или ICRn определяет верхний предел счета, а, следовательно, и разрешающую способность таймера. В данном режиме обеспечивается более широкий диапазон регулировки частоты генерируемых прямоугольных импульсов. Он также упрощает работу счетчика внешних событий. Временная диаграмма работы таймера в режиме СТС показана на рисунке 1. Счетчик (TCNTn) инкрементирует свое состояние до тех пор, пока не возникнет совпадение со значением OCRnA или ICRn, а затем счетчик (TCNTn) сбрасывается.

Рисунок 1 – Временная диаграмма для режима СТС

По достижении верхнего предела счета может генерироваться прерывание с помощью флагов OCFnA или ICFn, соответствующим используемым регистрам для задания верхнего предела счета. Если прерывание разрешено, то процедура обработки прерывания может использоваться для обновления верхнего предела счета. Однако, задание значения вершины счета близкого к значению нижнего предела счета, когда счетчик работает без предделения или с малым значением предделения, необходимо выполнять с особой осторожностью, т.к. в режиме СТС нет двойной буферизации. Если значение, записанное в OCRnA или ICRn, меньше текущего значения TCNTn, то сброс счетчика по условию совпадения наступит, когда он достигнет максимального значения (0xFFFF), затем перейдет в исходное состояние 0x0000 и достигнет нового значения OCRnA или ICRn. Во многих случаях возникновение такой ситуации не желательно. В качестве альтернативы может выступить режим быстрой ШИМ, где регистр OCRnA определяет верхний предел счета (WGMn3-0 = 0b1111), т.к. в этом случае OCRnA имеет двойную буферизацию.

Для генерации сигнала в режиме CTC выход OCnA может использоваться для изменения логического уровня при каждом совпадении, для чего необходимо задать режим переключения (COMnA1, COMnA0 = 0b01). Значение OCnA будет присутствовать на выводе порта, только если для данного вывода задано выходное направление. Максимальная частота генерируемого сигнала равна fOC0 = fclk_I/O/2, если OCRnA = 0x0000. Для других значений OCRn частоту генерируемого сигнала можно определить по формуле:

где переменная N задает коэффициент деления предделителя (1, 8, 32, 64, 128, 256 или 1024).

Также как и для нормального режима работы, флаг TOV0 устанавливается на том же такте таймера, когда его значение изменяется с 0xFFFF на 0x0000.

Режим быстрой ШИМ (FAST PWM)

Режим быстрой широтно-импульсной модуляции (ШИМ) (WGMn3-0 = 0b0101, 0b0110, 0b0111, 0b1110, 0b1111) предназначен для генерации ШИМ-импульсов повышенной частоты. В отличие от других режимов работы в этом используется однонаправленная работа счетчика. Счет выполняется в направлении от нижнего к верхнему пределу счета.

Если задан неинвертирующий режим выхода, то при совпадении TCNTn и OCRnx сигнал OCnx устанавливается, а на верхнем пределе счета сбрасывается. Если задан инвертирующий режим, то выход OCnx сбрасывается при совпадении и устанавливается на верхнем пределе счета. За счет однонаправленности счета, рабочая частота для данного режима в два раза выше по сравнению с режимом ШИМ с фазовой коррекцией, где используется двунаправленный счет. Возможность генерации высокочастотных ШИМ сигналов делает использование данного режима полезным в задачах стабилизации питания, выпрямления и цифро-аналогового преобразования. Высокая частота, при этом, позволяет использовать внешние элементы физически малых размеров (индуктивности, конденсаторы), тем самым снижая общую стоимость системы.

Разрешающая способность ШИМ может быть фиксированной 8, 9 или 10 разрядов или задаваться регистром ICRn или OCRnA, но не менее 2 разрядов (ICRn или OCRnA = 0x0003) и не более 16 разрядов (ICRn или OCRnA = 0xFFFF). Разрешающая способность ШИМ при заданном значении верхнего предела (ВП) вычисляется следующим образом:

В режиме быстрой ШИМ счетчик инкрементируется до совпадения его значения с одним из фиксированных значений 0x00FF, 0x01FF или 0x03FF (если WGMn3:0 = 0b0101, 0b0110 или 0b0111, соответственно), значением в ICRn (если WGMn3:0 = 0b1110) или значением в OCRnA (если WGMn3:0 = 0b1111), а затем сбрасывается следующим тактом синхронизации таймера. Временная диаграмма для режима быстрой ШИМ представлена на рисунке 2. На рисунке показан режим быстрой ШИМ, когда для задания верхнего предела используется регистр OCRnA или ICRn. Значение TCNTn на временной диаграмме показано в виде графика функции для иллюстрации однонаправленности счета. На диаграмме показаны как инвертированный, так и неинвертированный ШИМ-выходы. Короткой горизонтальной линией показаны точки на графике TCNTn, где совпадают значения OCRnx и TCNTnx. Флаг прерывания OCnx устанавливается при возникновении совпадении.

Рисунок 2 – Временная диаграмма для режима быстрой ШИМ

Флаг переполнения таймера-счетчика (TOVn) устанавливается всякий раз, когда счетчик достигает верхнего предела. Дополнительно тем же тактовым импульсом вместе с флагом TOVn могут установиться флаги OCnA или ICFn, если для задания верхнего предела используется регистр OCRnA или ICRn, соответственно. Если одно из этих прерываний разрешено, то в процедуре обработки прерывания может быть выполнено обновление верхнего предела счета и порогов сравнения.

Если изменяется значение верхнего предела счета, то необходимо соблюдение условия, чтобы записываемое новое значение верхнего предела было больше или равно значений во всех регистрах порога сравнения. В противном случае совпадение между TCNTn и OCRnx никогда не возникнет. Обратите внимание, что при использовании фиксированных значений верхнего предела во время записи в регистры OCRnx происходит маскирование к 0 неиспользуемых разрядов.

Механизм модификации регистра ICRn отличается от OCRnA в том случае, если он используется для задания верхнего предела. Регистр ICRn не имеет двойной буферизации. Это означает, что если в ICRn записывается малое значение во время работы счетчика с малым предделением или без него, то имеется опасность записи в регистр ICRn значения, которое окажется меньше текущего значения TCNTn. Как результат, в такой ситуации будет пропущено совпадение на вершине счета. В этом случае счетчик дойдет до максимального значения (0xFFFF), перезапустится со значения 0x0000, а только затем возникнет совпадение. Регистр OCRnA содержит схему двойной буферизации, поэтому, его можно модифицировать в любой момент времени.

class="eliadunit">

Если выполняется запись по адресу OCRnA, то фактически значение помещается в буферный регистр OCRnA. Если же возникает совпадение между TCNTn и вершиной счета, то следующим тактом синхронизации таймера происходит копирование буферного регистра в регистр порога сравнения OCRnA. Обновление регистра выполняется тем же тактом, что и сброс TCNTn и установка флага TOVn.

Рекомендуется использовать регистр ICRn для задания верхнего предела, если верхний предел счета является константой. В этом случае также освобождается регистр OCRnA для генерации ШИМ-сигнала на выходе OCnA. Однако, если частота ШИМ динамически изменяется (за счет изменения верхнего предела), то в этом случае выгоднее использовать регистр OCRnA для задания верхнего предела, т.к. он поддерживает двойную буферизацию.

В режиме быстрой ШИМ блоки сравнения позволяют генерировать ШИМ-сигналы на выводах OCnx. Если COMnx1:0 =0b10, то задается ШИМ без инверсии выхода, а если COMnx1:0 = 0b11, то задается режим ШИМ с инверсией на выходе (см. таблицу 59). Фактическое значение OCnx можно наблюдать на выводе порта, если для него задано выходное направление (DDR_OCnx). ШИМ-сигнал генерируется путем установки (сброса) регистра OCnx при возникновении совпадения между OCRnx и TCNTn, а также путем сброса (установки) регистра OCnx вместе со сбросом счетчика (переход с верхнего предела на нижний предел).

Частота ШИМ выходного сигнала для заданного значения верхнего предела (ВП) определяется выражением:

где N – переменная, которая задает значение коэффициента предделения (1, 8, 32, 64, 128, 256 или 1024).

Запись предельных значений в регистр OCRnx связана с особыми случаями в генерации ШИМ-импульсов. Если OCRnx установить равным нижнему пределу (0x0000), то на выходе будет возникать короткий импульс каждый (ВП+1)-ый такт синхронизации таймера. Запись в OCRnx значения равного верхнему пределу приведет к установке постоянного уровня лог. 1 или 0 на выходе (зависит от выбранной с помощью бит COMnx1:0 полярности выходного сигнала).

Если требуется генерация меандра (прямоугольные импульсы со скважностью 2 или заполнением 50%) высокой частоты, то необходимо использовать режим быстрой ШИМ с установкой бит COMnA1:0 = 0b01, которая вызывает переключение (инвертирование) логического уровня на выходе OCnA при каждом совпадении. Данное применимо, только если OCRnA используется для задания верхнего предела (WGMn3-0 =0b1111). Максимальная генерируемая частота меандра в этом случае fOCnA = fclk_I/O/2, если OCRnA =0x0000. Данная особенность аналогична переключению OCnA в режиме СТС за исключением двойной буферизации, которая имеется в режиме быстрой ШИМ.

Режим широтно-импульсной модуляции с фазовой коррекцией (Phase Correct)

Режим широтно-импульсной модуляции с фазовой коррекцией (ШИМ ФК) (WGMn3-0 = 0b0001, 0b010, 0b0011, 0b1010 или 0b1011) предназначен для генерации ШИМ сигнала с фазовой коррекцией и высокой разрешающей способностью. Режим ШИМ ФК основан на двунаправленной работе таймера-счетчика. Счетчик циклически выполняет счет в направлении от нижнего предела (0x0000) до верхнего предела, а затем обратно от верхнего предела к нижнему пределу. Если задан неинвертирующий режим выхода формирователя импульсов, то выход OCnx сбрасывается/устанавливается при совпадении значений TCNTn и OCRnx во время прямого/обратного счета. Если задан инвертирующий режим выхода, то, наоборот, во время прямого счета происходит установка, а во время обратного – сброс выхода OCnx. При двунаправленной работе максимальная частота ШИМ-сигнала меньше, чем при однонаправленной работе, однако, за счет такой особенности, как симметричность в режимах ШИМ с двунаправленной работой, данные режимы предпочитают использовать при решении задач управления приводами.

Разрешающая способность ШИМ в данном режиме может быть либо фиксированной (8, 9 или 10 разрядов) либо задаваться с помощью регистра ICRn или OCRnA. Минимальная разрешающая способность равна 2-м разрядам (ICRn или OCRnA = 0x0003), а максимальная -16-ти разрядам (ICRn или OCRnA =0xFFFF). Если задан верхний предел, то разрешающая способность ШИМ в данном режиме определяется следующим образом:

В режиме ШИМ ФК счетчик инкрементируется пока не достигнет одного из фиксированных значений 0x00FF, 0x01FF или 0x03FF (соответственно для WGMn3-0 = 0b0001, 0b0010 или 0b0011), а также значения равного ICRn (если WGMn3-0 = 0b1010) или OCRnA (если WGMn3:0 = 0b1011). Далее, при достижении верхнего предела, счетчик изменяет направление счета. Значение TCNTn остается равным верхнему пределу в течение одного такта синхронизации таймера. Временная диаграмма для режима ШИМ ФК представлена на рисунке 3. На рисунке показан режим ШИМ ФК с использованием регистра OCRnA или ICRn для задания верхнего предела. Состояние TCNTn представлено в виде графика функции для иллюстрации двунаправленности счета. На рисунке представлены, как неинвертированный, так и инвертированный ШИМ-выход. Короткие горизонтальные линии указывают точки на графике изменения TCNTn, где возникает совпадение со значением OCRnx. Флаг прерывания OCnx устанавливается при возникновении совпадения.

Рисунок 3 – Временная диаграмма для режима ШИМ ФК

Флаг переполнения таймера-счетчика (TOVn) устанавливается всякий раз, когда счетчик достигает нижнего предела. Если для задания верхнего предела используется регистр OCRnA или ICRn, то, соответственно устанавливается флаг OCnA или ICFn тем же тактовым импульсом, на котором произошло обновление регистра OCRnx из буферного регистра (на вершине счета). Флаги прерывания могут использоваться для генерации прерывания по достижении счетчиком нижнего или верхнего предела.

При изменении значения верхнего предела счета необходимо следить, чтобы оно было больше или равно значениям во всех регистрах сравнения. В противном случае совпадение между TCNTn и OCRnx никогда не возникнет. Обратите внимание, что при использовании фиксированных значений верхнего предела счета во время записи в регистры OCRnx неиспользуемые разряды обнуляются. Третий период на рисунке 53 иллюстрирует случай, когда динамическое изменение верхнего предела счета приводит к генерации несимметричного импульса. Данная особенность основывается на времени обновления регистра OCRnx. Поскольку, обновление OCRnx возникает на вершине счета, то и период ШИМ начинается и заканчивается на вершине счета. Это подразумевает, что длительность обратного счета определяется предыдущим значением верхнего предела, а прямого – новым значением верхнего предела. Если два этих значения разные, то и длительность прямого и обратного счета будет также отличаться. Различие в длительности приводит несимметричности выходных импульсов.

Если стоит задача изменения верхнего предела при работающем счетчике, то вместо этого режима рекомендуется использовать режим ШИМ ФЧК (фазовая и частотная коррекция). Если используется статическое значение верхнего предела, то между данными режимами практически нет отличий.

В режиме ШИМ ФК блоки сравнения позволяют генерировать ШИМ-сигналы на выводах OCnx. Если установить COMnx1:0 = 0b10, то выход ШИМ будет без инверсии, а если COMnx1:0=0b11, то с инверсией. Фактическое значение OCnx можно наблюдать на выводе порта, если в регистре направления данных для данного вывода порта задано выходное направление (DDR_OCnx). ШИМ-сигнал генерируется путем установки (сброса) регистра OCnx при совпадении значений OCRnx и TCNTn во время прямого счета, а также путем сброса (установки) регистра OCnx при совпадении между OCRnx и TCNTn во время обратного счета. Результирующая частота ШИМ-сигнала в режиме ШИМ ФК при заданном верхнем пределе (ВП) может быть вычислена по следующему выражению:

Запись предельных значений в регистр OCRnx связано с особыми случаями в генерации ШИМ-сигналов в режиме ШИМ ФК. Если задать режим ШИМ без инверсии и OCRnx установить равным нижнему пределу, то на выходе непрерывно будет установлен лог. 0, а если равным верхнему пределу, то на выходе постоянно присутствует лог. 1. Для ШИМ с инверсией указанные уровни необходимо заменить противоположными.

Если задать использование OCnA в качестве верхнего предела (WGMn3:0 = 0b1011) и установить COMnA1:0 =0b01, то на выходе OCnA будет генерироваться меандр.

Режим широтно-импульсной модуляции с фазовой и частотной коррекцией (Phase and Frequency Correct)

Режим широтно-импульсной модуляции с фазовой и частотной коррекцией (ШИМ ФЧК) (WGMn3-0 = 0b1000 или 0b1001) предназначен для генерации ШИМ-импульсов высокой разрешающей способности с фазовой и частотной коррекцией. Также как и режим ШИМ ФК режим ШИМ ФЧК основан на двунаправленной работе счетчика. Счетчик циклически считает от нижнего предела (0x0000) до верхнего предела, а затем обратно от верхнего предела к нижнему пределу. Если задан неинвертирующий режим ШИМ, то выход OCnx сбрасывается, если возникает совпадение между TCNTn и OCRnx во время прямого счета, и устанавливается, если возникает совпадение во время обратного счета. В инвертирующем режиме работа инверсная. Двунаправленная работа, по сравнению с однонаправленной, связана с генерацией более низких частот. Однако, благодаря симметричности в режимах ШИМ с двунаправленным счетом, их применение предпочтительно в задачах управления приводами.

Основное отличие между режимами ШИМ ФК и ШИМ ФЧК состоит в моменте обновления регистра OCRnx из буферного регистра OCRnx (см. рисунок 3 и рисунок 4).

Разрешающая способность ШИМ в этом режиме может задаваться с помощью регистра ICRn или OCRnA. Минимальная разрешающая способность равна 2-ум разрядам (ICRn или OCRnA = 0x0003), а максимальная разрешающая способность - 16-ти разрядам (ICRn или OCRnA = 0xFFFF). Разрешающая способность ШИМ в разрядах может быть вычислена по следующему выражению:

В режиме ШИМ ФЧК счетчик инкрементируется до совпадения со значением в ICRn (WGMn3:0 = 0b1000) или в OCRnA (WGMn3:0 = 0b1001). Это означает достижение вершины счета, после чего происходит изменение направления счета. Значение TCNTn остается равным вершине счета в течение одного такта синхронизации таймера. Временная диаграмма для режима ШИМ ФЧК показана на рисунке 54. На рисунке показан режим ШИМ ФЧК, когда вершину счета задает регистр OCRnA или ICRn. Значение TCNTn показано в виде графика функции для иллюстрации двунаправленности счета. На диаграмме показан как неинвертирующий, так и инвертирующий ШИМ выходы. Короткие горизонтальные линии указывают на точки график TCNTn, где возникает совпадение между OCRnx и TCNTn. Флаг прерывания OCnx устанавливается после возникновения совпадения.

Рисунок 4 – Временная диаграмма режима ШИМ с фазовой и частотной коррекцией

Флаг переполнения таймера-счетчика (TOVn) устанавливается тем же тактом, когда произошло обновление регистров значением из буферного регистра (на нижнем пределе счета). Если для задания верхнего предела используется регистр OCRnA или ICRn, то по достижении счетчиком верхнего предела устанавливается флаг OCnA или ICFn, соответственно. Флаги прерывания могут использоваться для генерации прерывания при достижении счетчиком верхнего или нижнего предела.

При изменении верхнего предела необходимо следить, чтобы новое значение было больше или равно значениям во всех регистрах порога сравнения. В противном случае, если задано значение верхнего предела меньше любого из значений регистров порога сравнения, совпадение между TCNTn и OCRnx никогда не наступит.

На рисунке 4 показано, что в отличие от режима ШИМ ФК, генерируемый выходной сигнал симметричен на всех периодах. Поскольку, регистры OCRnx обновляются на нижнем пределе счета, то длительности прямого и обратного счетов всегда равны. В результате выходные импульсы имеют симметричную форму, а, следовательно, и откорректированную частоту.

Использование регистра ICRn для задания верхнего предела рекомендуется, если значение верхнего предела является константой. В этом случае также освобождается регистр OCRnA для широтно-импульсной модуляции импульсов на выводе OCnA. Однако если требуется динамическое изменение частоты ШИМ за счет изменения верхнего предела, то для задания верхнего предела рекомендуется использовать регистр OCRnA за счет наличия у него двойной буферизации.

В режиме ШИМ ФЧК блоки сравнения позволяют генерировать ШИМ-импульсы на выводе OCnx. Если COMnx1:0 = 0b10, то задается неинвертирующий ШИМ выход, а, если COMnx1:0=0b11, то инвертирующий (см. таблицу 60). Значение OCnx будет присутствовать на соответствующем выводе порта только в случае, если для него задано выходное направление. ШИМ сигнал генерируется путем установки (сброса) регистра OCnx при совпадении между OCRnx и TCNTn во время прямого счета и сброса (установки) регистра OCnx при совпадении между OCRnx и TCNTn во время обратного счета. Частота ШИМ в данном режиме при заданном верхнем пределе (ВП) счета определяется следующим образом:

где N – коэффициент деления предделителя (1, 8, 32, 64, 128, 256 или 1024).

Запись предельных значений в регистр OCRnx связана с особыми случаями в генерации ШИМ-сигналов в данном режиме. Если задать OCRnx равным нижнему пределу (0x0000), то в неинвертирующем режиме на выходе будет постоянного присутствовать низкий логический уровень, а при записи значения равного верхнему пределу на выходе будет длительно присутствовать высокий логический уровень. В инвертирующем режиме приведенные уровни будут противоположными.

Если OCRnA используется для задания верхнего предела (WGMn3:0 = 0b1001) и COMnA1:0 = 0b01, то на выходе OCnA будет генерироваться меандр.

Аппаратная реализация ШИМ дает безусловные преимущества перед программной,так как разгружает процессор как лишним и громоздким кодом, так и временем на его обслуживание, а также дает больше возможностей использования работы с ШИМ. Достаточно провести инициализацию таймер/счетчика (занести необходимые значения в регистры используемые таймер/счетчиком) как таймер/счетчик может работать независимо от процессора, соответственно процессор может заниматься другими задачами,только иногда обращаясь в необходимый момент для корректировки или изменения режима или получения результатов от таймер/счетчика.

Описание флагов прерываний

T1 может генерировать прерывание при наступлении:

  1. переполнения счетного регистра TCNT1;
  2. при равенстве счетного регистра TCNT1 и регистра сравнения OCR1A и OCR1B (по отдельности для каждого регистра);
  3. при сохранении счетного регистра в регистре захвата ICR1.

T2 может генерировать прерывание при наступлении:

  1. переполнения счетного регистра TCNT2;
  2. при равенстве счетного регистра TCNT2 и регистра сравнения OCR2.

Флаги всех прерываний находится в регистре TIFR,а разрешение/запрещение прерываний в регистре TIMSK.

Разряды регистра TIMSK
Регистр 7 6 5 4 3 2 1 0
TIMSK OCIE2 TOIE2 TICIE1 OCIE1A OCIE1B TOIE1 OCIE0* TOIE0
  • OCIE2 - Флаг разрешения прерывания по событию "совпадение" таймера/счетчика Т2
  • TOIE2 - Флаг разрешения прерывания по переполнению таймера/счетчика Т2
  • TICIE1 - Флаг разрешения прерывания по событию "захват" таймера/счетчика Т1
  • OCIE1A - Флаг разрешения прерывания по событию "совпадение А" таймера/счетчика Т1
  • OCIE1B - Флаг разрешения прерывания по событию "совпадение В" таймера/счетчика Т1
  • TOIE1 - Флаг разрешения прерывания по переполнению таймера/счетчика Т1
  • OCIE0* - Флаг разрешения прерывания по событию "совпадение" таймера/счетчика Т0 (* - отсутствует в ATmega8)
  • TOIE0 - Флаг разрешения прерывания по переполнению таймера/счетчика Т0
  • OCF2 - Флаг прерывания по событию "совпадение" таймера/счетчика Т2
  • TOV2 - Флаг прерывания по переполнению таймера/счетчика Т2
  • ICF1 - Флаг прерывания по событию "захват" таймера/счетчика Т1
  • OCF1A - Флаг прерывания по событию "совпадение А" таймера/счетчика Т1
  • OCF1B - Флаг прерывания по событию "совпадение В" таймера/счетчика Т1
  • TOV1 - Флаг прерывания по переполнению таймера/счетчика Т1
  • OCF0 - Флаг прерывания по событию "совпадение" таймера/счетчика Т0
  • TOV0 - Флаг прерывания по переполнению таймера/счетчика Т0

Описание работы тайтер/счетчика Т1 в контроллере ATmega8/16

Шеснадцатиразрядный таймер/счетчик Т1 может использоватся для формирования временных интервалов, подсчета количества внешних сигналов, и для генерации сигналов с ШИМ разной скважности и длительности на выводах OC1A и OC1B. Кроме того по внешнему сигналу с вывода ICP1 или от аналогового компаратора, Т1 может сохранять свое текущее состояние в отдельном регистре захвата ICR1.

Разряды регистров TCCR1A:TCC1B:TCNT1:OCR1A:OCR1B:ICR1
Регистр 7 6 5 4 3 2 1 0
TCCR1A COM1A1 COM1A0 COM1B1 COM1BO FOC1A FOC1B WGM11 WGM10
TCCR1B ICNC1 ICES1 * WGM13 WGM12 CS12 CS11 CS10
TCNT1:H R/W R/W R/W R/W R/W R/W R/W R/W
TCNT1:L R/W R/W R/W R/W R/W R/W R/W R/W
OCR1A:H R/W R/W R/W R/W R/W R/W R/W R/W
OCR1A:L R/W R/W R/W R/W R/W R/W R/W R/W
OCR1B:H R/W R/W R/W R/W R/W R/W R/W R/W
OCR1B:L R/W R/W R/W R/W R/W R/W R/W R/W
ICR1:H R/W R/W R/W R/W R/W R/W R/W R/W
ICR1:L R/W R/W R/W R/W R/W R/W R/W R/W

Каждый 16-разрядный регистр физически размещается в двух 8-разрядных регистрах поэтому при чтении записи в них нужно выполнить две операции. При записи первым загружается старший байт потом младший,при чтении наоборот сначала младший прочитывается потом старший.

TCCR1A:TCCR1B - 8-разрядные регистры управления таймером/счетчиком Т1

TCNT1 - 16-разрядный счетный регистр таймера/счетчика Т1. Взависимости от режима работы содержимое этого регистра обнуляется,инкрементируется(увеличивается значение на 1) или декрементируется(уменьшается значение на 1) по каждому импульсу тактового сигнала таймера/счетчика.

OCR1A:OCR1B - 16-разрядные регистры сравнения

ICR1 - 16-разрядный регистр захвата,сохраняет значение TCNT1 при подаче активного фронта сигнала на вывод ICP1 или по сигналу от компаратора.

Назначение битов

COM1A1:COM1A0:COM1B1:COM1B0 - Эти разряды определяют поведение вывода OC1A:OC1B при совпадении значения счетного регистра TCNT1 и регистра сравнения OCR1A:OCR1B

FOC1A:FOC1B - Эти разряды служат для прнудительного изменения состояния вывода OC1A:OC1B

ICNC1 - Разряд управления схемой помех,если бит равен "0" захват будет по первому активному фронту, если "1" захват будет после четвертой одинаковой выборки сигнала захвата.

ICES1 - Разряд выбора активного фронта сигнала,если его значение равно "0", сохранение счетного регистра TCNT1 в регистре захвата OCR1 будет по спадающему фронту сигнала, если "1" по нарастающему.

WGM13:WGM12:WGM11:WGM10 - Эти разряды определяют режим работы таймера/счетчика Т1

CS22:CS21:C20 - Разряды, определяющие источник тактового сигнала таймера/счетчика Т1.

Выбор режима работы таймера/счетчика Т1
WGM13 WGM12 WGM11 WGM10 Режим работы Модуль счета (TOP)
0 0 0 0 Normal $FFFF
0 0 0 1 Phase correct PWM

8-разрядный

$00FF
0 0 1 0 Phase correct PWM

9-разрядный

$01FF
0 0 1 1 Phase correct PWM

10-разрядный

$03FF
0 1 0 0 CTC (сброс при совпадении) OCR1A
0 1 0 1 Fast PWM

8-разрядный

$00FF
0 1 1 0 Fast PWM

9-разрядный

$01FF
0 1 1 1 Fast PWM

10-разрядный

$03FF
1 0 0 0 ICR1
1 0 0 1 Phase and Freguensy Correct PWM OCR1A
1 0 1 0 Phase correct PWM ICR1
1 0 1 1 Phase correct PWM OCR1A
1 1 0 0 CTC (сброс при совпадении) ICR1
1 1 0 1 Зарезервировано *
1 1 1 0 Fast PWM ICR1
1 1 1 1 Fast PWM OCR1A

Выбор источника тактового сигнала

Режим Normal

Самый простой режим работы Т1. По каждому импульсу тактового сигнала происходит инкремент счетного регистра TCNT1 (увеличение значения на 1). При переходе через значение $FFFF модуля счета (ТОР) возникает переполнение и вследующем такте начинается счет со значения $0000, в этот же момент устанавливается флаг TOV1=1 в регистре TIFR, и может быть сгенерировано прерывание если установлен флаг TOIE1=1 в регистре TIMSK. Для того, чтобы сгенерировать сигна заданной частоты в этом режиме необходимо записать в разряды COM1A1=0:COM1A0=1 для вывода OC1A или COM1B1=0:COM1B0=1 для вывода OC1B контроллера.

Кроме того по каждому такту происходит сравнение счетного регистра TCNT1 и регистра сравнения OCR1A:OCR1B, при совпадении устанавливается флаг прерывания OCF1A=1:OCF1B=1 и если разряд OCIE1A=1:OCIE1B=1 регистра TIMSK генерируется прерывание. В тот же момент может быть изменено состояние вывода OC1A:OC1B в зависимости от установок битов COM1A1:COM1A0:COM1B1:COM1B0.

Режим СТС (сброс при совпадении)

В этом режиме Т1 работает по такому же принципу как и в режиме Normal. Отличие заключается в том, что максимально возможное значение счетного регистра TCNT1 ограничивается значением регистра сравнения OCR1A или ICR1 (смотрите таблицу выбора режима таймер/счетчика). При достижении TCNT1 значения OCR1A или ICR1, значение TCNT1 обнуляется в TCNT1=$0000 В этот же момент устанавливается флаг TOV1=1 COM1A1:COM1A0:COM1B1:COM1B0 Опрелеляют поведение вывода ОС1A:OC1B при совпадении.

Режим Fast PWM (быстродействующий ШИМ)

С помощью этого режима можно генерировать высокочастотный сигал ШИМ. Принцип и порядок работы не отличается от режима Normal, кроме наличия двойной буферизации регистра OCR1A:OCR1B, благодаря которому исключается появление несиметричных импульсов сигнала, а также отличается поведением выводов ОС1A:OC1B (смотрите таблицу).


Режим Phase Correct PWM (ШИМ с точной фазой)

Отличие этого режима от предыдущих заключается в том, что счетный регистр работает как реверсивный счетчик. Так как этот режим рекомендуется Atmel как наиболее подходящий для регулировки двигателей, мы его рассмотрим наиболее подробно. При достижении счетным регистром TCNT1 значения модуля счета (ТОР) (или значения регистра ICR1 или значения регистра OCR1A, смотрите таблицу выбора режима таймер/счетчика), происходит изменение направления счета. При достижении счетным регистром TCNT1 минимального значения ($0000) также происходит изменение направления счета и в тот же момент устанавливается флаг прерывания TOV1 регистра TIFR. Так же при равенстве содержимого счетного регистра TCNT1 и регистра сравнения OCR1A:OCR1B ,устанавливается флаг OCF1A:OCF1B регистра TIFR и изменяется состояние вывода OC1A:OC1B,согласно таблице.

Во избежание несимметричных выбросов во время записи значения в регистр OCR1A:OCR1B, в этом режиме реализована двойная буферизация записи. Благодаря этому действительное изменение значения регистра изменяется в момент достижения счетным регистром TCNT1 значения модуля счета (ТОР) (или значения регистра ICR1 или значения регистра OCR1A смотрите таблицу выбора режима таймер/счетчика). Поэтому в самом начале, при инициализации таймер/счетчика вывод ОС1A:OC1B не изменит свое состояние при совпадении до тех пор, пока регистр не достигнет значения (ТОР).

Задача: Разработаем программу управления яркостью лампы накаливания на 12 Вольт при помощи ШИМ. При нажатии на кнопку «Больше» яркость лампы увеличивается, при нажатии на кнопку «Меньше» яркость уменьшается. Схема нашего будущего устройства показана на рисунке. Как обычно используем микроконтроллер Atmega8, который будет тактироваться от внутреннего генератора частотой 4MHz. Собственно у нас получится диммер, эти устройства предназначены для регулировки яркости осветительных приборов. Сейчас наибольшее распространение получили светодиодные диммеры.

Для простоты к нашей схеме можно тоже подключить светодиод, но с лампочкой будет нагляднее. Кнопки подключены к выводам PD0 , PD1 . Нагрузку подключаем к выводу PB1(OC1A) через резистор и полевой транзистор MOSFET, который и будет работать у нас в качестве ключа (в ключевом режиме). Полевой транзистор предпочтительней потому, что его затвор изолирован от силовой схемы и управление производится электрическим полем, а ток управления достигает микроампер. Это позволяет, используя один-два транзистора, управлять нагрузкой огромной мощности (до десятков ампер и десятков-сотен вольт), не нагружая микроконтроллер. Учитывая также тот факт, что полевые транзисторы можно соединять параллельно (в отличие от биполярных), возможно получить еще более мощный каскад на сотни ампер.

Теперь разберемся, как микроконтроллер реализует ШИМ и напишем программу. Как уже говорилось ранее, в нашем МК есть 3 таймера, и все они могут работать в ШИМ-режиме. Мы будем работать с шестнадцатиразрядным таймером/счетчиком. Битами WGM13-10 настроим наш таймер на работу FastPWM с верхним пределом счета ICR1 . Принцип программы такой, наш таймер считает от 0 до 65535(0xFFFF), в регистр ICR1 впишем число 255, это будет верхний предел счета таймера(TOP), частота ШИМ сигнала у нас будет постоянной. Также наш таймер настроен на то, что при совпадении счетного регистра и регистра сравнения (TCNT1 = OCR1A) будет переключатся вывод контроллера OC1A . Коэффициент заполнения ШИМ можно изменить, записав в регистр сравнения OCR1A определенное число от 0 до 255, чем больше это число тем больше будет коэффициент заполнения, тем ярче будет гореть лампа. В зависимости от того какая кнопка нажата меняется переменная i , а потом она записывается в регистр OCR1A .

Полный текст программы представлен ниже. В комментариях более подробно описана работа программы.

/***Занятие №8. Формирование ШИМ сигналов***/ #include #include int main(void) { unsigned int i=0; //определяем переменную i /***Настройка портов ввода-вывода***/ PORTB = 0x00; DDRB |= (1 << PB1); PORTD |= (1 << PD1)|(1 << PD0); // подключаем внутренние нагрузочные резисторы DDRD = 0x00; /***Настройка таймера***/ TCCR1A |= (1 << COM1A1)|(0 << COM1A0) // Установим биты COM1A1-COM1A0:0b10, означает сброс вывода канала A при сравнении |(1 << WGM11)|(0 << WGM10); // Установим биты WGM13-10:0b1110, согласно таблице это TCCR1B |= (1 << WGM13)|(1 << WGM12) // будет режим - FAST PWM, где верхний предел счета задается битом ICR1 |(0 << CS12)|(0 << CS11)|(1 << CS10); // Битами CS12-10:0b001 задаем источник тактового сигнала для таймера МК, включен без делителя TCNT1 = 0x00; // начальная установка счетчика ICR1 = 0xFF; // задаем период ШИМ, здесь у нас число 255, // по формуле fPWM=fclk_I/O/N*(1+ICR1)// вычисляем частоту ШИМ, она будет равна 15625 Hz OCR1A = 0x00; // начальный коэффициент заполнения ШИМ /***Основной цикл программы***/ while(1) { if((PIND&(1 << PD0)) == 0) //если кнопка "больше" нажата { if (i < 254) { // коэффициент заполнения ШИМ изменяется от 0 до 255 i=i+1; // увеличиваем i на единицу OCR1A = i; // записываем переменную в регистр сравнения _delay_ms(30); // задержка 30ms } } if((PIND&(1 << PD1)) == 0) //если кнопка "меньше" нажата { if (i > 0) // коэффициент заполнения ШИМ изменяется от 255 до 0 { i--; // уменьшаем i на единицу(так тоже можно писать) OCR1A = i; // записываем переменную в регистр сравнения _delay_ms(30); // задержка 30ms } } } }

Внимание! Сперва подаем питание на микроконтроллер, потом нужно убедиться, что транзистор подсоединен к выводу МК, и лишь затем подавать питание в цепь с лампой и полевым транзистором. Иначе можете сжечь транзистор. Дело в том, что в выключенном состоянии "ножки" МК "болтаются в воздухе" - они ни к чему не подключены, и на них возникают наводки. Этих слабеньких наводок достаточно, чтобы частично открыть очень чувствительный полевой транзистор. Тогда его сопротивление между стоком и истоком упадет от нескольких МОм до нескольких Ом или долей Ом и через него потечет большой ток к лампе. Но транзистор не откроется полностью, т. к. для этого нужно подать на затвор не 1-3 В наводки, а стабильные 5 В, и его сопротивление будет намного больше минимального. Это приведет к выделению на нем большого количества тепла, и он задымится, а может и сгореть.

В общем у таймера есть регистр сравнения OCR** и когда значение в таймере совпадает со значением регистра сравнения OCR** может произойти 2 вещи:

  • Прерывание
  • Изменение состояния внешнего вывода сравнения OC**

Теперь мы можем настроить ШИМ когда счётчик досчитает до значения OCR** напряжение на выбранной нами ножке OC** измениться от 5 до 0. Когда таймер досчитает до конца и начнёт считать сначала изменим напряжения с 0 до 5, на выходе у нас будут прямоугольные импульсы

Есть 3 режима работы ШИМ

СТС (сброс при совпадении) - Это можно назвать ЧИМ частотно-импульсно моделированный сигнал, когда таймер досчитает до значения OCR** он сбрасывается и меняет значение OC** на противоположное. Таким образом скважность ШИМ всегда одинаковая.

Это используют когда нужно отсчитывать точные периоды, или генерировать прерывания через определённое время.

Fast PWM (быстрый ШИМ) - счётчик считает от 0 до 255, после чего сбрасывается в 0.

Когда значение таймера совпадает с OCR** соответствующий вывод сбрасывается в 0, при обнулении ставиться 1.

Чаще всего используется как обычный ШИМ.

Phase Correct PWM (ШИМ с точной фазой) - в этом режиме счётчик считает от 0 до 255, а потом считает в обратном направлении до нуля. При первом совпадении с OCR** вывод сбрасывается в 0, при 2 совпадении (когда счётчик идёт обратно), ставиться 1.

Используют для того чтобы не сбивалась фаза при изменении скважности.



Если мы хотим работать с выводом OC1A ставим биты в COM1A1 COM1A0
Вообще "/" означает ИЛИ. TCNT1 = OCR1A для ШИМ на выводе OC1A

Timer/Counter Mode of Operation - режим работы таймера/счетчика.

Top - значение TCNT1 при котором происходит переключение значения вывода OC**.

TOV1 Flag Set on - при каких значениях устанавливается бит регистра GIFR

Выбираем из последней таблицы тот режим который нам нужен, не смотрим на Top . Из 2 таблицы выбираем любой из 2 последних вариантов. Остаётся только расставить нужные биты в регистрах.

#define F_CPU 8000000UL #include #include int main() { DDRD = 0xFF; OCR1A=0xC0; // Сравниваем с этим значением OCR1B=0x40; //Настройка ШИМ и таймера TCCR1A|=(1<CS10 выставили 1, он считает с частотой МК про то как настроить частоту таймера


Перейдем к изучению встроенных таймеров.
Изучение прерываний и особенно таймеров в микроконтроллерах представляет определенную сложность из за их многофункциональности. Сегодня постараемся разобраться в терминах и названиях.

В микроконтроллерах AVR могут быть от одного до 4-х таймеров, восьмиразрядные или шестнадцатиразрядные.
Упрощенно таймеры обозначаются буквой T, и номером от нуля до трех. Обычно четные Т0 и Т2 являются восьмиразрядными, а нечетные Т1 и Т3 шестнадцатиразрядными. При программировании упрощенный вариант используется только в комментариях, а в программах прописывается полное название таймера – регистр TCNT. Ниже показаны обозначения таймеров:

Таймеры

T0, T2 – (TCNT0, TCNT2) восьмиразрядные счетчики (четные)
TCNTn - счетный регистр 8 разрядного счетчика
где; n-номер счетчика

T1, T3 – (TCNT1Н и TCNT1L, TCNT3H и TCNT3L) шестнадцатиразрядные счетчики (нечетные)
TCNTny - счетный регистр 16 разрядного счетчика
где; n-номер счетчика
y-старший (H) или младший (L) разряд

Т1 состоит из двух восьмиразрядных регистров TCNT1Н и TCNT1L , а
Т3 из двух регистров TCNT3H и TCNT3L . Буквой H обозначается старший разряд, а L младший.

Так как таймеры являются регистрами, то к ним можно обращаться в любой момент времени, считывать, записывать, обнулять и менять значение.
Приняты определенные правила записи и чтения в таймеры TCNT1Н и TCNT1L.

1. Программы записи и чтения данных таймера должны быть атомарными, т.е. перед чтением или записью мы запрещаем прерывания, а по окончании процесса вновь разрешаем.
2. При записи сначала записывается старший байт H а затем младший L.
3. При чтении сначала считывается младший байт L затем старший H.
Например:
Запись данных в счетный регистр.
CLI ; Запрещаем прерывания OUT TCNT1H,R16 ; Запись старшего байта OUT TCNT1L,R17 ; Запись младшего байта SEI ; Разрешаем прерывания

Чтение данных из счетного регистра
CLI ; Запрещаем прерывания IN TCNT1L,R16 ; Считывание младшего байта IN TCNT1H,R17 ; Считывание старшего байта SEI ; Разрешаем прерывания

Почему такие правила? А все для того, чтобы не исказились данные за то время, которое уйдет на процесс считывания из каждого регистра.
Если использовать прямое чтение 8-битных регистров TCNT1H и TCNT1L, то нельзя быть уверенным, что эти регистры прочитались одновременно. Может произойти следующая ситуация: Счетчик содержал значение $01FF, Вы считали TCNT1H (содержащий значение 01 в какую-то переменную). За это время пришел счетный импульс, и содержимое TCNT1L стало равно $00, а в TCNT1H записалось значение $02.

Теперь Вы читаете значение TCNT1L в другую переменную, получаете в этой переменной значение $00 (ведь таймер/счетчик уже произвел счет). 16-битное значение этих переменных получилось $0100, но на момент считывания старшего байта содержимое счетчика было $01FF, и младший байт у Вас должен был прочитаться как FF. Для предотвращения такой ситуации служит временный регистр, содержащийся в блоке таймера/счетчика. Этот регистр прозрачный, т.е. действует автоматически. При считывании значения регистра TCNT1L в переменную, содержимое TCNT1H попадает в этот регистр. Затем при чтении старшего байта в переменную, считывается значение временного регистра. Временный регистр абсолютно прозрачен для пользователя, но для его корректной работы необходимо соблюдать указанную выше последовательность действий. Обращение к регистрам через дополнительный (буферный) регистр называется двойной буферизацией

Таймеры связаны с счетными импульсами , которые могут быть внешними и поступать на специальный вход микросхемы или формироваться собственным генератором. В свою очередь частота собственного генератора может синхронизироваться внешним кварцевым резонатором, а может определяться внутренней RC – схемой. После этого, внешняя частота или частота собственного генератора, проходят предделитель, управляемый регистром CLKPR .Частоту генератора после предделителя (прескалера) CLKPR нередко называют тактовым сигналом (тактовой частотой) процессора (CPU) .
Частота, подаваемая на вход таймера обозначается как CLKTn Эта частота соответствует тактовому сигналу процессора.
Один счетный импульс увеличивает значение таймера на единицу, поэтому регистры TCNT являются счетными, и называются таймером/счетчиком (ТС) .
Для правильной работы таймера/счетчика по внешнему тактовому сигналу минимальное время между двумя переключениями внешнего тактового сигнала должно быть не менее одного периода тактового сигнала CPU. Синхронизируется внешний тактовый сигнал нарастающим фронтом внутреннего тактового сигнала CPU. (Это нужно помнить при построении частотомеров).
Управляющим регистром для таймера/счетчика TCNT является регистр TCCR .
Маской прерывания для таймера/счетчика TCNT служит регистр TIMSK (регистр управления прерываниями таймера).
Регистром флагов маски прерывания TIMSK - является регистр TIFR . Запомните, что эти 3 регистра (TCCR, TIMSK, TIFR) при работе таймера/счетчика TCNT используются почти всегда.

Прерывания могут вызываться по переполнению регистра TCNT, сравнению значения регистра TCNT со значением специальных регистров сравнения OCR, захвату – по значениям специальных регистров захвата ICR и определяются режимом работы таймера/счетчика . Кроме этого запрос прерывания может происходить по срабатыванию сторожевого таймера (Watchdog Timer) WDT.

Таймеры/счетчики могут работать в разных режимах и соответственно выполнять разные функции.
Режим работы, то есть, поведение таймера/счетчика и выхода сигнала совпадения, определяется как режимом работы генератора сигналов, управляемого регистрами WGM02; WGM01; WGM00 (сокращенная запись WGM02:0 ), так и режимом вывода сигнала совпадения, управляемых регистрами СОМ0х1; СОМ0х0 (сокращенная запись СОМ0х1:0 ). Состояние битов, от которых зависит режим вывода сигнала совпадения, не влияет на последовательность подсчета, которая определяется только состоянием битов конфигурации генератора сигналов.

Биты СОМ0х1:0 определяют, должен ли выходной сигнал ШИМ быть инвертирован или нет (инвертированный или не инвертированный ШИМ).
(ШИМ) Широтно-импульсная модуляция или Pulse-width modulation (PWM).
Для не-ШИМ-режимов содержимое битов СОМ0х1:0 определяет, должен ли сигнал на выходе быть установлен в единицу, сброшен в ноль либо переключен в противоположное состояние в момент совпадения

--
Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Можно сделать шаг равный единице, тогда изменения будут выглядеть следующим образом:
plus: rcall delay ; Переход в подпрограмму задержки inc temp2 ; Переходим на один шаг и проверяем, не равен ли результат нулю breq plus_1 ; Если равен, то переходим на метку plus_1 rjmp Correct ; Возват на опрос кнопок plus_1: dec temp2 ; вычитаем единицу rjmp Correct ; Возврат на опрос кнопок minus: rcall delay ; Переход в подпрограмму задержки dec temp2 ; Переходим на один шаг и проверяем, не равен ли результат нулю breq minus_1 ; Если равен, то переходим на метку minus_1 rjmp Correct ; Возврат на опрос кнопок minus_1: inc temp2 ; прибавить единицу rjmp Correct ; Возврат на опрос кнопок

В связи с неактуальностью AVRStudio 5, и микроконтроллера ATtiny2313 серия статей будет переписана под AtmelStudio6, и микроконтроллеры ATmega8 и ATmega16. Заранее приношу извинения за неудобства.

Еще один простой пример изготовления отладочной платы, но на этот раз для устройств с применением микроконтроллера ATTiny2313. Расположение ножек для программирования у ATTiny2313 идентичное ATTiny13. Соответственно и платы выйдут похожими. Отличием от будет наличие внешнего задающего генератора (кварца). По умолчанию, с завода ATTiny2313 поставляется с включенным внутренним генератором, поэтому если работа микроконтроллера не планируется от внешнего генератора его можно не устанавливать. Разъем питания дублируем на случай подключения к плате программатора с питанием от схемы (на один разъем подаем питание, с другого питаем программатор).


Для изготовления отладочной платы устройств на ATTiny2313 нам нужно:


Собираем отладочную плату по рисунку:

1 припаиваем в панельку под микросхему и штырьки (как на рисунке);
2 как показано на рисунке (красная линия) делаем перемычку с лицевой стороны платы. Еще одну перемычку делаем с другой стороны;
3 перемычками-«соплями» соединяем штырьки и ножки панельки (места пайки обведены зеленым).

Наша отладочная плата готова!

Заключение.

— Ставим метки на GND, SCK для правильного подключения питания и программатора;
— Все остальное на отладочную плату будет допаиваться в согласно выбранной схемы устройства. (как вариант можно допаять штырьки к каждой ножке микроконтроллера для подключения других плат и периферии);
— Для более надежной работы в условиях повышенных помех очень желательно дополнить схему, подтягивающим к питанию ножку сброса, резистором (внутренний подтягивающий резистор имеет сопротивление около 10 кОм – этого бывает мало) и фильтрующим керамическим конденсатором на ножках питания (в пределах 0.1 мкФ);
-Теперь вставляем в панельку микроконтроллер и при помощи прошиваем ATTiny2313 нужной прошивкой.

(Visited 16 038 times, 1 visits today)

Раздел: Метки: ,

Навигация по записям

Простая отладочная плата для устройств AVR ATTiny2313 с кварцем. : 70 комментариев


  1. GetChiper Автор записи

    Фьюзы трогали?
    На другой тини2313 проверяли?

  2. Toxa12345

    я долго мучался о том: «КАКОЙ жэ мк выбрать» остановился на тиньке 2313 по тому, что она дешевле атмег, и не настолько кострирована как тинька 13 так жэ изза наличия линий RxD и TxD что позволяет осуществить связь по ЮАРТ
    З.Ы. у нас в Курске купить МК не проблема. тинька 2313-стоит 130 руб. а атмега8 аж 200руб про тиньку 13 не узнавал


  3. GetChiper Автор записи

    А может ATmega88 или ATmega48?

  4. Andrey1979

    Доброго времени.
    Собрал я плату по предложенной схеме, подключил к USBasp, подключил 2313, подал 5 в. Extreme Burner выдает Incorrect Chip Found. Соответственно ничего не прошить не считать нельзя. При замене тиньки то же самое.
    Кто нибудь сталкивался с подобным?
    Возможно это связано с помехами?

    «– Для более надежной работы в условиях повышенных помех очень желательно дополнить схему, подтягивающим к питанию ножку сброса, резистором (внутренний подтягивающий резистор имеет сопротивление около 10 кОм – этого бывает мало) и фильтрующим керамическим конденсатором на ножках питания (в пределах 0.1 мкФ);»

    а еще, специально для чайников, можно ли отразить данные действия в виде схемы.


  5. GetChiper Автор записи

    Чего там отображать.
    Конденсатор ставится параллельно питанию (т.е. между ножками 10 и 20)
    Резистор 10 кОм ставится между Vcc и сбросом (т.е. между ножками 1 и 20)

  6. Andrey1979

    Спасибо за ответ. Поставил 4,7 КОм и 220пФ. Стало немного веселее. extreme burner пишет то же что и было. А вот khazama через раз сообщает The chip signature is 0x1e000. MISMATCH Expected signature for ATTiny 2313 is 1e 91 0a. В остальных случаях также пишет ошибку соединения.

    Использую беспаечную макетную плату, так что проблем с грязной пайкой быть не должно. Где еще можно поискать?


  7. GetChiper Автор записи

    220пФ маловато. Нужно 0.1 мкФ — керамический (не полярный) и 10-100 мкФ электролитический (полярный) поставить в параллель.

  8. Dederik

    добрый день))) я ненашел кварц 20,000 вместо него толька смог найти кварц 4,000. если я поставлю кварц 4,000 то у меня будет тормозит микро-р? и конденсаторы то же надо ли менять для кварца 4,000? я живу в самарканде с радио запчастями у нас проблема(((даже и незнаю где найти панельку под микрокон-р(((можна ли самому сделать панельку под микро-р?

  9. Dederik

    ответе хоть кто нибудь)))


  10. GetChiper Автор записи

    Спокойно — были выходные 🙂

    Кварц можно поставить любой если Вы планируете на этой платке учиться и делать свои устройства (конденсаторы под кварц менять не нужно). А можно вообще не ставить кварц — пользоваться встроенным RC-генератором.

    Насчет сделать панельку — может просто насмерть припаять МК в макетке?

  11. Dederik

    спасибо за помощь))) у меня еще один к вам вопрос, но не по теме не знаю где и задать(((сегодня ко мне принесли электронный счетчик на ремонт Holley DDS28. я там покопалься и нашел там микро-р Fudan FM24C02 которая отвечает за показания счетчика. в микро-ре храниться вся запись. не подскажете как сделать под него программатор чтоб можно было считывать и редактировать данные микро-ра??? и как к вам на прямую писать???


  12. GetChiper Автор записи

    FM24C02 — это последовательная энергонезависимая память (EEPROM)
    я думаю найдется много шнурков и программ для этого дела (если поисковик поспрашивать) — вот первое попавшееся http://www.msplata.ru/teleprog.html

  13. Dederik

    Спасибо за помощь:-)

  14. kosmogon

Данное устройство - Attiny fusebit doctor - позволяет восстановить конфигурацию Fuse-битов (заводские установки, согласно техническому описанию) микроконтроллеров семейства Tiny фирмы Atmel. Поддерживает все микроконтроллеры, которые имеют интерфейс высоковольтного последовательного программирования (HVSP):

  • в 8-выводном корпусе: , , ;
  • в 14-выводном корпусе: , ;
  • в 20-выводном корпусе, со специальным адаптером: , .

Если Вам необходимо устройство для восстановления конфигурации fuse-битов микроконтроллеров семейства ATtiny, ознакомьтесь с проектом: .

Устройство очень простое в изготовлении, не содержит дорогостоящих компонентов. Основой является микроконтроллер , а также несколько резисторов и транзисторов ( , ), регулятор напряжения +5 В (7805T). Стоит заметить, что для питания устройства необходим стабилизированный источник питания с выходным напряжением +12 В (что важно для инициализации режима высоковольтного программирования).

При программировании Fuse-битов микроконтроллера следует учитывать, что используется внутренний осциллятор 4 МГц без делителя на 8. А также можно включить опцию «fast rising power».

Принципиальная схема

Печатная плата

Плата с установленными компонентами

Подключение выводов микроконтроллеров в режиме высоковольтного последовательного программирования

Восстановление конфигурации микроконтроллера (пациента) начинается по нажатию кнопки Start. Для индикации статуса предусмотрены два светодиода, состояния которых обозначают:

  • включен зеленый светодиод - конфигурация Fuse-битов восстановлена. Если установлены Lock-биты, то проверяется только соответствие текущей конфигурации битов заводским установкам и если она совпадает, то включается зеленый светодиод;
  • включен красный светодиод - ошибка при считывании сигнатуры микроконтроллера: невозможно прочитать, отсутствует микроконтроллер в сокете или сигнатура не совпадает с имеющимися в базе данных устройства;
  • мигает зеленый светодиод - сигнатура верна, конфигурация Fuse-битов не верная. Lock-биты установлены, требуется операция стирания Flash-памяти;
  • мигает красный светодиод - сигнатура верна, lock-биты не установлены, но по некоторым причинам Fuse-биты не могут быть записаны, не проходит проверка после 10 попыток.

Устройство для восстановления Fuse-битов действует согласно протокола высоковольтного последовательного программирования. Первоначально при запуске процесса, восстанавливаемый микроконтроллер (пациент) переключается в режим высоковольтного программирования памяти, затем считывается сигнатура чипа и проверяется возможность работы устройства с ним. После этого выполняется операция стирания, если пользователь указал это. Следующий этап - считывание lock-битов и, если они не установлены, то «пациент» получает новую конфигурацию Fuse-битов, соответствующую модели микроконтроллера-пациента. После этого выполняется проверка установки (верификация) Fuse-битов и, если тест проходит удачно, устройство заканчивает свою работу. В противном случае устройство повторяет цикл запись-верификация Fuse-битов 10 раз.

На плате установлены две перемычки (джамперы) «chip erase» и «unknown signature»:

  • chip erase - разрешает операцию стирания всей Flash-памяти чипа. Это необходимо в том случае, если установлены lock-биты, т.е. нет возможности исправить Fuse-биты, пока не будут сняты lock-биты. Джампер включен - операция стирания разрешена.
  • unknown signature - неизвестная сигнатура чипа - явление очень редкое, но все же случается, что чип стер свою сигнатуру. Сигнатура, байты калибровки и другие данные не могут неизменно храниться в структуре чипа, они могут быть случайно повреждены (стерты) в случае нестабильного электропитания в процессе программирования. Обычно в таких случаях получаемые значения сигнатуры - FF FF FF, но чип работает нормально, Flash-память можно считать и записать. Если считанная сигнатура не совпадает ни с одной из базы данных устройства (включая значения FF FF FF и 00 00 00), то при включении этого джампера устройство запишет универсальную конфигурацию Fuse-битов. Универсальная конфигурация означает, что будет восстановлен ISP (включение бита SPIEN) и функциональность вывода Reset (отключение бита RSTDISBL) микроконтроллера, опции осциллятора затронуты не будут. При таких действиях микроконтроллер получит возможность дальнейшего восстановления, но уже при помощи обычного SPI программатора.

Внимание! Не используйте опцию «unknown signature» с микроконтроллерами ATtiny11 или ATtiny15.

Приложение:

  1. Файлы проекта (формат Eagle 5.4.0), принципиальная схема и рисунок печатной платы (pdf, png), .hex-файл и.bin-файл для программирования микроконтроллера - .
  2. Обновленная прошивка для микроконтроллера (Версия 2): исходный код (BASCOM v.1.11.9.0), .hex-файл и.bin-файл для программирования микроконтроллера - .
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то