Формула нахождения мощности электрического тока. Знание - сила

При проектировании любых электрических цепей выполняется расчет мощности. На его основе производится выбор основных элементов и вычисляется допустимая нагрузка. Если расчет для цепи постоянного тока не представляет сложности (в соответствии с законом Ома, необходимо умножить силу тока на напряжение – Р=U*I), то с вычислением мощности переменного тока – не все так просто. Для объяснения потребуется обратиться к основам электротехники, не вдаваясь в подробности, приведем краткое изложение основных тезисов.

Полная мощность и ее составляющие

В цепях переменного тока расчет мощности ведется с учетом законов синусоидальных изменений напряжения и тока. В связи с этим введено понятие полной мощности (S), которая включает в себя две составляющие: реактивную (Q) и активную (P). Графическое описание этих величин можно сделать через треугольник мощностей (см. рис.1).

Под активной составляющей (Р) подразумевается мощность полезной нагрузки (безвозвратное преобразование электроэнергии в тепло, свет и т.д.). Измеряется данная величина в ваттах (Вт), на бытовом уровне принято вести расчет в киловаттах (кВт), в производственной сфере – мегаваттах (мВт).

Реактивная составляющая (Q) описывает емкостную и индуктивную электронагрузку в цепи переменного тока, единица измерения этой величины Вар.

Рис. 1. Треугольник мощностей (А) и напряжений (В)

В соответствии с графическим представлением, соотношения в треугольнике мощностей можно описать с применением элементарных тригонометрических тождеств, что дает возможность использовать следующие формулы :

  • S = √P 2 +Q 2 , – для полной мощности;
  • и Q = U*I*cos⁡ φ , и P = U*I*sin φ – для реактивной и активной составляющих.

Эти расчеты применимы для однофазной сети (например, бытовой 220 В), для вычисления мощности трехфазной сети (380 В) в формулы необходимо добавить множитель – √3 (при симметричной нагрузке) или суммировать мощности всех фаз (если нагрузка несимметрична).

Для лучшего понимания процесса воздействия составляющих полной мощности давайте рассмотрим «чистое» проявление нагрузки в активном, индуктивном и емкостном виде.

Активная нагрузка

Возьмем гипотетическую схему, в которой используется «чистое» активное сопротивление и соответствующий источник переменного напряжения. Графическое описание работы такой цепи продемонстрировано на рисунке 2, где отображаются основные параметры для определенного временного диапазона (t).


Рисунок 2. Мощность идеальной активной нагрузки

Мы можем увидеть, что напряжение и ток синхронизированы как по фазе, так и частоте, мощность же имеет удвоенную частоту. Обратите внимание, что направление этой величины положительное, и она постоянно возрастает.

Емкостная нагрузка

Как видно на рисунке 3, график характеристик емкостной нагрузки несколько отличается от активной.


Рисунок 3. График идеальной емкостной нагрузки

Частота колебаний емкостной мощности вдвое превосходит частоту синусоиды изменения напряжения. Что касается суммарного значения этого параметра, в течение одного периода гармоники оно равно нулю. При этом увеличения энергии (∆W) также не наблюдается. Такой результат указывает, что ее перемещение происходит в обоих направлениях цепи. То есть, когда увеличивается напряжение, происходит накопление заряда в емкости. При наступлении отрицательного полупериода накопленный заряд разряжается в контур цепи.

В процессе накопления энергии в емкости нагрузки и последующего разряда не производится полезной работы.

Индуктивная нагрузка

Представленный ниже график демонстрирует характер «чистой» индуктивной нагрузки. Как видим, изменилось только направление мощности, что касается наращения, оно равно нулю.


Негативное воздействие реактивной нагрузки

В приведенных выше примерах рассматривались варианты, где присутствует «чистая» реактивная нагрузка. Фактор воздействия активного сопротивления в расчет не принимался. В таких условиях реактивное воздействие равно нулю, а значит, можно не принимать его во внимание. Как вы понимаете, в реальных условиях такое невозможно. Даже, если гипотетически такая нагрузка бы существовала, нельзя исключать сопротивление медных или алюминиевых жил кабеля, необходимого для ее подключения к источнику питания.

Реактивная составляющая может проявляться в виде нагрева активных компонентов цепи, например, двигателя, трансформатора, соединительных проводов, питающего кабеля и т.д. На это тратится определенное количество энергии, что приводит к снижению основных характеристик.

Реактивная мощность воздействует на цепь следующим образом:

  • не производит ни какой полезной работы;
  • вызывает серьезные потери и нештатные нагрузки на электроприборы;
  • может спровоцировать возникновение серьезной аварии.

Именно по этому, производя соответствующие вычисления для электроцепи, нельзя исключать фактор влияния индуктивной и емкостной нагрузки и, если необходимо, предусматривать использование технических систем для ее компенсации.

Расчет потребляемой мощности

В быту часто приходится сталкиваться с вычислением потребляемой мощности, например, для проверки допустимой нагрузки на проводку перед подключением ресурсоемкого электропотребителя (кондиционера, бойлера, электрической плиты и т.д.). Также в таком расчете есть необходимость при выборе защитных автоматов для распределительного щита, через который выполняется подключение квартиры к электроснабжению.

В таких случаях расчет мощности по току и напряжению делать не обязательно, достаточно просуммировать потребляемую энергию всех приборов, которые могут быть включены одновременно. Не связываясь с расчетами, узнать эту величину для каждого устройства можно тремя способами:



При расчетах следует учитывать, что пусковая мощность некоторых электроприборов может существенно отличаться от номинальной. Для бытовых устройств этот параметр практически никогда не указывается в технической документации, поэтому необходимо обратиться к соответствующей таблице, где содержатся средние значения параметров стартовой мощности для различных приборов (желательно выбирать максимальную величину).

Мощность. Ватт.

Напряжение измеряют вольтметром (V), а ток через нагрузку (R) - амперметром (A).

Понятно, что получить одну и ту же мощность можно при различных значениях напряжения источника тока. При напряжении источника 1 вольт, для получения мощности в 1 ватт, требуется пропустить через нагрузку ток 1 ампер (1В х 1А = 1Вт). Если же источник выдает напряжение 10 вольт, мощность в 1 ватт достигается при токе 0,1 ампер (10В х 0,1А = 1Вт).

Мощность в физике - это скорость выполнения какой-либо работы.

Чем быстрее выполняется работа, тем больше мощность исполнителя.

Мощная машина разгоняется быстрее. Мощный (сильный) человек способен быстрее затащить мешок картошки на девятый этаж.

1 Ватт - мощность, позволяющая совершить работу в 1 Дж за одну секунду (что такое джоуль описывалось выше).

Если Вы способны разогнать двухкилограммовое тело до скорости 1 м/с за одну секунду, значит, развиваете мощность 1 Вт.

Если Вы поднимаете килограммовый груз на высоту 0,1 метра за секунду, Ваша мощность равна 1 Вт ибо груз приобретает за секунду потенциальную энергию в 1 Дж.

Если уронить с одинаковой высоты одну тарелку на бетонный пол, а вторую на одеяло, первая наверняка разобьется, а вторая выживет. В чем разница? Начальные и конечные условия одинаковые. Тарелки падают с одной и той же высоты, стало быть, обладают одинаковой энергией. На уровне пола обе тарелки останавливаются - вроде все идентично. Разница лишь в том, что энергия, которую тарелка накопила в процессе полета, в первом случае выделяется мгновенно (очень быстро), а когда тарелка падает на одеяло или ковер, процесс торможения растягивается во времени.

Пусть падающая тарелка обладает кинетической энергией в 1Дж. Процесс столкновения с бетонным полом занимает, допустим, 0,001 сек. Получается, что мощность, выделяемая при ударе, равна 1/0,001=1000 Вт!

Если же тарелка плавно замедляется в течение 0,1 сек, мощность будет 1/0,1=10 Вт. Уже есть шанс выжить - если на месте тарелки окажется живой организм.

Для того и существуют зоны деформации и подушки безопасности в автомобилях, чтобы растянуть во времени процесс выделения энергии при аварии, т.е., снизить мощность при ударе. А выделение энергии, между прочим и есть работа. В данном случае, работа по разрыву ваших внутренних органов и ломанию костей.

Вообще, работа - это процесс преобразования одного вида энергии в другой .

Еще пример: можно без последствий сжечь содержимое баллона с пропаном в горелке. Но если смешать газ, содержащийся в баллоне с воздухом и воспламенить, произойдет взрыв .

В обоих случаях выделяется одинаковое количество энергии. Но во втором энергия выделяется за короткий промежуток времени. А мощность - отношение количества работы ко времени, за которое она сделана .

Касаемо электричества, 1 Вт - мощность, выделяемая на нагрузке, когда произведение тока через нее и напряжения на его концах равно единице. То есть, например, если ток через лампу равен 1 А, и напряжение на ее выводах равно 1 В, мощность, выделяемая на ней 1 Вт.

Такая же мощность будет у лампы с током 2 А при напряжении на ней 0,5 В - произведение этих величин тоже равно единице.

Итак:

P = U*I . Мощность равна произведению напряжения и силы тока .

Можем записать иначе:

I = P/U - сила тока равна мощности, деленной на напряжение.

Есть, допустим, лампа накаливания. На ее цоколе указаны параметры: напряжение 220 В, мощность 100 Вт. Мощность 100 Вт означает, что произведение напряжения, прикладываемое к ее выводом, умноженное на ток, протекающий через эту лампу равно ста. U*I=100.

Какой ток через нее будет протекать? Элементарно, Ватсон: I = P/U, делим мощность на напряжение (100/220), получаем 0,454 А. Ток через лампу 0,454 ампер. Или, иначе, 454 миллиампер (милли - тысячная доля).

Еще один вариант записи U = P/I . Тоже где-нибудь пригодится.

Теперь мы вооружены двумя формулами - законом Ома и формулой мощности электрического тока. А это уже инструмент.

Мы хотим узнать сопротивление нити накала той же стоваттной лампы накаливания.

Закон Ома говорит нам: R = U/I.

Можно не высчитывать ток через лампу, чтобы подставить его потом в формулу, а пойти коротким путем: так как I = P/U, подставляем P/U вместо I в формулу R = U/I.

В самом деле, почему бы ток (который нам неизвестен) не заменить напряжением и мощностью лампы, (которые указаны на цоколе).

Итак: R = U/P/U, что равно U^2/P. R = U^2/P. 220 (напряжение) возводим в квадрат и делим на сто (мощность лампы). Получаем сопротивление 484 Ом.

Можно проверить вычисления. Выше мы таки считали ток через лампу - 0,454 А.

R = U/I = 220/0,454 = 484 Ом. Как ни крути, верный вывод один.

Еще раз, формула мощности: P = U*I (1), или I = P/U (2), или U = P/I (3).

Закон Ома: I = U/R (4) или R = U/I (5) или U = I*R (6).

P - мощность

U - напряжение

I - ток

R - сопротивление

В любой из этих формул, вместо неизвестного значения можно подставить известные.

Если в нужно узнать мощность, имея значения напряжения и сопротивления, берем формулу 1, вместо тока I подставляем его эквивалент из формулы 4.

Получается P = U^2/R . Мощность равна квадрату напряжения, деленному на сопротивление. То есть, при изменении напряжения, приложенного к сопротивлению, выделяемая на нем мощность меняется в квадратичной зависимости : подняли напряжение в два раза, мощность (для резистора - нагрев) увеличилась в четыре раза! Так говорит нам математика.

Понять почему это происходит на практике, поможет опять-таки гидравлическая аналогия. Предмет, находящийся на некоей высоте, обладает потенциальной энергией. И, спускаясь с этой высоты, он может совершить работу. Так совершает работу по выработке энергии вода в гидроэлектростанции, опускаясь через гидротурбину с уровня водохранилища до нижнего бьефа (нижнего уровня).

Потенциальная энергия предмета зависит от его массы и от высоты, на которой он находится (тем больше бед наделает падающий камень чем больше он весит, и с чем большей высоты он падает). Также имеет значение сила тяжести в месте его падения. Один и тот же камень, падающий с одинаковой высоты более опасен на Земле , нежели на Луне, так как на Луне "сила тяжести" (сила, тянущая камень вниз) меньше земной в 6 раз. Итак, у нас три параметра, влияющих на потенциальную энергию - масса, высота и сила тяжести. Именно они и содержатся в формуле кинетической энергии:

Eк = m*g*h,

где m - масса предмета, g - ускорение свободного падения в данном месте ("сила тяжести"), h - высота, на которой находится предмет.

Соберем установку: насос с приводом от двигателя будет качать воду из нижнего резервуара в верхний, а стекающая под действием силы тяжести из верхнего резервуара вода, будет крутить генератор:

Понятно, что чем выше водяной столб, тем большей энергией будет обладать вода. Увеличим высоту столба в два раза. Понятно, что при удвоенной высоте h , вода будет обладать вдвое большей потенциальной энергией, и, вроде бы, мощность генератора должна возрасти вдвое? На самом деле, его мощность увеличится в четыре раза. Почему? Потому что из-за удвоенного давления сверху, поток воды через генератор удвоится. И удвоенный поток воды при удвоенном же давлении, приведет к четырехкратному увеличению мощности, выделяемой на генераторе: в два раза больше, и в два раза сильнее.

То же самое происходит на сопротивлении, при удвоении приложенного к нему напряжения. Мы же помним формулу мощности, выделяемой на резисторе?

P = U*I .

Мощность P равна произведению напряжения U , приложенного к резистору и тока I , протекающего через него. При удвоении приложенного напряжения U , мощность, вроде как должна удвоится. Но ведь повышение напряжения ведет и к пропорциональному росту тока через резистор! Стало быть, удвоится не только U , но и I . Именно поэтому, мощность зависит от приложенного напряжения в квадратичной зависимости.

Батарея с удвоенным напряжением "закачивает" электроны на вдвое большую "высоту", и это приводит точно к такой же картине, как в гидравлическом аналоге.

Нужно узнать мощность, зная сопротивление и ток, но не зная напряжение? Нет проблем. В ту же первую формулу вместо U подставляем эквивалент U из формулы 6. Получаем P = I^2*R . Мощность равна квадрату тока, умноженному на сопротивление.

Приведенный выше гидравлический аналог поможет понять, почему. Удвоение тока через данный резистор возможно только при удвоении приложенного к нему напряжения. А стало быть, формула P = U*I , сработает и тут, несмотря на отсутствие в формуле P = I^2*R напряжения. Просто напряжение в данном случае присутствует "за кадром", прячась за другими переменными.

Еще одна странность данной формулы - мощность прямо пропорциональна сопротивлению. Разве так может быть? Ну давайте тогда вообще разорвем цепь, сопротивление возрастет до бесконечности, а значит, соответственно вырастет мощность, выделяемая на том, чего нет? Бред какой.

На самом деле все просто. Рост сопротивления приведет к соответствующему уменьшению тока через резистор. Если в формуле

P = I^2*R,

сопротивление R увеличить вдвое, то ток I уменьшится вдвое. А зависимость мощности от тока в этой формуле - квадратичная. Стало быть, мощность выделяемая на резисторе ожидаемо упадет в два раза.

Напоминаю:

Напряжение (U ) - это "разность электрического давления" между какими-либо двумя точками электрической цепи (аналог разности давлений жидкости). Единица измерения - вольт .

Ток (I ) - это количество электронов, проходящих через участок цепи (аналог потока жидкости). Единица измерения - ампер . 1 А = 1 Кл/сек.

Сопротивление (R ) - способность участка цепи мешать (сопротивляться) перемещению электронов (как узкое место или засор в трубе). Единица измерения - ом .

Мощность (P ) - это произведение напряжения и тока (как если бы мы умножили расход воды через какой либо участок водопровода на разность давлений на концах этого участка). Единица измерения - ватт .

Тока, не самый простой. Если быть уж абсолютно точным, он очень непростой. Но это одно из основных понятий как физики, так и других научных дисциплин, связанных с электричеством. В повседневной жизни нам также часто приходится пользоваться этим понятием.

Не вдаваясь в подробное выяснение, и какова его природа, для понимания связанных с ним процессов воспользуемся аналогией с ручьем. Вода протекает от более высоко расположенного участка вниз. Для электрического тока ситуация примерно такая же, он протекает от точки с высоким потенциалом к точке с низким потенциалом. Величина разности потенциалов называется напряжением, обозначается буквой U и измеряется в единицах, именуемых вольт.

Вернемся опять к ручью. При протекании воды с высоты в низину происходит перенос определённого ее количества с одного места на другое. При протекании тока происходит примерно то же самое: определённое количество электричества переносится с одного места на другое. Для измерения этого процесса существует термин сила тока , определяется он как количество электричества, прошедшее в единицу времени через По аналогии с ручьем это означает, какое количество воды прошло через выбранный участок за единицу времени. Обозначается сила тока символом I, для ее измерения существует специальная единица - ампер.

Вот эти два понятия - и сила тока - выступают как основные характеристики электрического тока.

Вода, протекая сверху вниз, несёт с собой определённую энергию. Попадая, например, на лопатки турбины, она будет вызывать вращение последней и совершать определенную работу. Точно так же электрический ток может совершать работу. Эта работа, выполняемая за одну секунду, и есть мощность Принято ее обозначать буквой P, и измеряется она в ваттах.

Работа, выполняемая водой при падении, определяется ее количеством, попадающим на лопатки турбины, и высотой, с которой она падает. Чем больше воды и чем больше высота, с которой она падает, тем большая выполняется работа. Точно так же, чем больше напряжение (разность высот для воды) и сила тока (т.е. количество воды), тем больше выполняемая работа и, значит, мощность электрического тока.

Если попытаться формализовать это понятие, то все можно выразить простой формулой:

где: P - мощность электрического тока, в ваттах;

I - сила тока, в амперах;

U - напряжение, в вольтах.

Вот это и есть основная формула, по которой можно определить мощность электрического тока.

Однако электрический ток протекает не где-то в абстрактных условиях, а в реальных цепях, у которых есть свои характеристики. В частности, у проводника есть сопротивление, а напряжение U и сила тока I связаны между собой в цепи, где протекает постоянный ток через сопротивление по закону Ома. Так что мощность в цепи при необходимости можно выразить через сопротивление, или учесть характеристики цепи в выражении для мощности через ток и напряжение, связанные законом Ома.

Вследствие того, что цепь обладает сопротивлением, не вся энергия используется на выполнение полезной работы. Часть ее теряется при прохождении по цепи. Поэтому поступающая энергия, т.е. мощность источника энергии должна быть больше той мощности, которая необходима для выполнения определённой работы. Должен выполняться так называемый энергетический баланс - мощность, отдаваемая источником, должна быть равна нагрузки и мощности, теряемой в проводнике электрического тока.

Примерно так можно получить общее представление о том, что такое мощность электрического тока, как она определяется, от чего зависит.

Добавить сайт в закладки

Понятие мощности электрического тока

Мощность электрического тока

Прежде чем говорить об электрической мощности, следует определиться с понятием мощности в общем смысле. Обычно, когда люди говорят о мощности, они подразумевают некую силу, которой обладает тот или иной предмет (мощный электродвигатель), либо действие (мощный взрыв).

Но, как мы знаем из школьной физики, сила и мощность - это разные понятия, хотя зависимость у них есть.

Первоначально мощность (N) – это характеристика, относящаяся к определённому событию (действию), а если оно привязано к некоторому предмету, то с ним также условно соотносят понятие мощности. Любое физическое действие подразумевает воздействие силы. Сила (F), с помощью которой был пройден определённый путь (S), будет равняться совершенной работе (А). А работа, проделанная за определённое время (t), и будет приравниваться к мощности.

Мощность - это физическая величина, которая равна отношению совершенной работы, что выполняется за некоторый промежуток времени, к этому же промежутку времени. Поскольку работа является мерой изменения энергии, то ещё можно сказать так: мощность - это скорость преобразования энергии системы.

Разобравшись с понятием механической мощности, можно перейти к рассмотрению электрической мощности (мощность электрического тока). Как вы должны знать,U - это работа, выполняемая при перемещении 1 Кл, а ток I - количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность, или мощность электрического тока.

Анализируя приведённую формулу, можно сделать очень простой вывод: поскольку электрическая мощность P в одинаковой степени зависит от тока I и от напряжения U, то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе (это используется при передаче электроэнергии на удалённые расстояния от электростанций к местам потребления путём трансформаторного преобразования на повышающих и понижающих электроподстанциях).

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии - тепловую, световую, механическую и т. д.) имеет свою единицу измерения - Вт (Ватт). Она равна произведению 1 В на 1 А. В быту и на производстве мощность удобнее измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы - мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Реактивная электрическая мощность - это величина, которая характеризует такой вид электрической нагрузки, который создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U×I×sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой Q.

Активную и реактивную электрическую мощность на примере можно выразить так: дано электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости и индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

Содержание:

Любой из элементов электрической сети является материальным объектом определенной конструкции. Но его особенность состоит в двойственном состоянии. Он может быть как под электрической нагрузкой, так и обесточен. Если электрического подключения нет, целостности объекта ничто не угрожает. Но при присоединении к источнику электропитания, то есть при появлении напряжения (U) и электротока, неправильная конструкция элемента электросети может стать для него фатальной, если напряжение и электроток приведут к выделению тепла.

Отличия мощности при постоянном и переменном напряжении

Наиболее простым получается расчет мощности электрических цепей на постоянном электротоке. Для их участков справедлив закон Ома, в котором задействовано только приложенное U, и сопротивление. Чтобы рассчитать силу тока I, U делится на сопротивление R:

причем искомая сила тока именуется амперами.

А поскольку электрическая мощность Р для такого случая - это произведение U и силы электротока, она так же легко, как и электроток, вычисляется по формуле:

причем искомая мощность нагрузки именуется ваттами.

Все компоненты этих двух формул характерны для постоянного электротока и называются активными. Напоминаем нашим читателям, что закон Ома, позволяющий выполнить расчет силы тока, весьма многообразен по своему отображению. Его формулы учитывают особенности физических процессов, соответствующих природе электричества. А при постоянном и переменном U они протекают существенно отличаясь. Трансформатор на постоянном U - это абсолютно бесполезное устройство. Также как синхронные и асинхронные движки.

Принцип их функционирования заключен в изменяющемся магнитном поле, создаваемом элементами электрических цепей, обладающими индуктивностью. А такое поле появляется только как следствие переменного U и соответствующего ему переменного тока. Но электричеству свойственно также и накопление зарядов в элементах электрических цепей. Это явление называется электрической емкостью и лежит в основе конструкции конденсаторов. Параметры, связанные с индуктивностью и емкостью, называют реактивными.

Расчет мощности в цепях переменного электротока

Поэтому, чтобы определить ток по мощности и напряжению как в обычной электросети 220 В, так и в любой другой, где используется переменное U, потребуется учесть несколько активных и реактивных параметров. Для этого применяется векторное исчисление. В результате отображение рассчитываемой мощности и U имеет вид треугольника. Две стороны его - это активная и реактивная составляющие, а третья - их сумма. Например, полная мощность нагрузки S, именуемая вольт-амперами.

Реактивная составляющая называется варами. Зная величины сторон для треугольников мощности и U, можно выполнить расчет тока по мощности и напряжению. Как это сделать, поясняет изображение двух треугольников, показанное далее.

Для измерения мощности применяются специальные приборы. Причем их многофункциональных моделей совсем мало. Это связано с тем, что для постоянного электротока, а также в зависимости от частоты используется соответствующий конструктивный принцип измерителя мощности. По этой причине прибор, предназначенный для измерения мощности в цепях переменного электротока промышленной частоты, на постоянном электротоке или на повышенной частоте будет показывать результат с неприемлемой погрешностью.

У большинства наших читателей выполнение того или иного вычисления с использованием величины мощности скорее всего происходит не с измеренным значением, а по паспортным данным соответствующего электроприбора. При этом можно легко рассчитать ток для определения, например, параметров электропроводки или соединительного шнура. Если U известно, а оно в основном соответствует параметрам электросети, расчет тока по мощности сводится к получению частного от деления мощности и U. Полученный таким способом расчетный ток определит сечение проводов и тепловые процессы в электрической цепи с электроприбором.

Но вполне закономерен вопрос, как рассчитать ток нагрузки при отсутствии каких-либо сведений о ней? Ответ следующий. Правильный и полный расчет тока нагрузки, запитанной переменным U, возможен на основании измеренных данных. Они должны быть получены с применением прибора, который замеряет фазовый сдвиг между U и электротоком в цепи. Это фазометр. Полный расчет мощности тока даст активную и реактивную составляющие. Они обусловлены углом φ, который показан выше на изображениях треугольников.

Используем формулы

Этот угол и характеризует фазовый сдвиг в цепях переменного U, содержащих индуктивные и емкостные элементы. Чтобы рассчитывать активные и реактивные составляющие, используются тригонометрические функции, применяющиеся в формулах. Перед тем как посчитать результат по этим формулам, надо, используя калькуляторы или таблицы Брадиса, определить sin φ и cos φ. После этого по формулам

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то