Гальванический элемент: схема, принцип работы, применение. Принцип работы и виды гальванических элементов Гальванические батареи

В первых опытах ученых в емкость с кислотой опускали две металлические пластины: медную и цинковую. Пластины соединяли проводником, после чего на медной пластине появлялись газовые пузырьки, а цинковая пластина стала растворяться. Было доказано, что по проводнику проходит электрический ток. Это исследование начинал итальянский ученый Гальвани, от него и получили название гальванические элементы.

После этого ученый Вольта разработал цилиндрическую форму этого элемента в виде вертикального столбика, включающего в себя набор колец меди, цинка и сукна, соединенных друг с другом, и пропитанных кислотой. Разработанный Вольтом вертикальный элемент полуметровой высоты вырабатывал напряжение, которое мог почувствовать человек.

Гальванические элементы — это источники электрической энергии, вырабатывающие электрический ток методом химического взаимодействия двух металлов в электролите. Химическая энергия в гальванических элементах преобразуется в электрический ток.

Виды и особенности устройства
Батарейки широко используются для питания разных электронных устройств, приборов, цифровой техники и делятся на три основных вида:
  1. Солевые.
  2. Щелочные.
  3. Литиевые.
Солевые гальванические элементы

Такие батарейки относятся к марганцево-цинковым элементам питания, и являются наиболее применяемыми в настоящее время.

Достоинствами солевых батареек являются:
  • Приемлемые электрические параметры для многих областей использования.
  • Удобство применения.
  • Малая цена ввиду небольших расходов на изготовление.
  • Простая технология изготовления.
  • Дешевое и доступное сырье.

Длительное время этот вид батареек является наиболее популярным, благодаря соотношению качества и цены. Однако в последние годы заводы изготовители уменьшают производство солевых гальванических элементов, и даже отказываются от выпуска, так как требования к источникам питания повышаются производителями электронной техники.

Недостатками солевых батареек являются:
  • Малый срок хранения, не более 2-х лет.
  • Резкое падение свойств при снижении температуры.
  • Резкое уменьшение емкости при повышении рабочего тока до эксплуатационных значений современных потребителей.
  • Быстрое уменьшение напряжения во время работы.

Солевые гальванические элементы в конце своего разряда могут потечь, что связано с вытеканием электролита из-за увеличения объема положительного электрода, который выдавливает электролит. Активная масса плюсового электрода состоит из диоксида марганца и электролита. Сажа и графит, добавленный в активную смесь, повышают электропроводность активной смеси. Их доля равна от 8 до 20% в зависимости от марки батарейки. Для увеличения срока работы окислителя активную смесь насыщают электролитом.

Минусовой электрод изготавливают из очищенного цинка, устойчивого к коррозии. В нем остается небольшая доля кадмия или свинца, являющегося ингибиторами коррозии. Раньше в батарейках в качестве электролита использовали хлорид аммония. Он участвует в реакции образования тока, создает проходимость ионов. Но такой электролит не показал хороших результатов, и его заменили хлоридом цинка с примесями хлорида кальция. Марганцево-кислые элементы работают дольше, и показывают лучшие результаты при пониженных температурах.

В солевых гальванических элементах отрицательным полюсом является цинковый корпус 7. Плюсовой электрод 6 изготовлен из активной прессованной массы, пропитанной электролитом. По центру этой массы находится угольный стержень 5, обработанный парафином для удержания влаги в электролите. Верхняя часть стержня закрыта металлическим колпаком. В сепараторе 4 находится густой электролит. В газовую камеру 1 поступают газы, образованные при работе батарейки. Сверху батарейку закрывают прокладкой 3. Весь гальванический элемент заключают в футляр 2, выполненный из картона или фольги.

Щелочные батарейки

Щелочные элементы питания появились в середине прошлого века. В них в качестве окислителя выступает диоксид марганца, а в качестве восстановителя порошковый цинк. Это дает возможность увеличить поверхность. Для предохранения от коррозии раньше применялось амальгамирование. Но после запрета на ртуть используют очищенные цинковые порошки с добавлением других металлов и ингибиторов коррозии.

Активным веществом анода щелочной (алкалиновой) батарейки стал очищенный цинк в виде порошка с добавлением алюминия, индия или свинца. Активная смесь катода включает в себя диоксид марганца, ацетиленовую сажу или графит. Электролит алкалиновых батареек состоит из едкого натра или калия с добавлением оксида цинка.

Порошковый анод позволяет значительно повысить использование активной смеси, в отличие от солевых батареек. Алкалиновые батарейки обладают значительно большей емкостью, чем солевые, при равных габаритных размерах. Они хорошо себя показали в работе на морозе.

Особенностью устройства алкалиновых элементов является порошковый цинк, поэтому вместо цинкового стакана используют стальной корпус для положительного вывода. Активная смесь положительного электрода находится возле внутренней стенки стального корпуса. В алкалиновой батарейке есть возможность разместить больше активной смеси положительного электрода, в отличие от солевой.

В активную смесь вставляется целлофановый сепаратор, смоченный электролитом. По центру батарейки проходит латунный отрицательный электрод. Остальной объем между сепаратором и отрицательным токоотводом заполняется анодной пастой в виде порошкового цинка, пропитанного густым электролитом. Обычно в качестве электролита используют щелочь, насыщенную специальными соединениями цинка. Это дает возможность предотвратить потребление щелочи в начале работы элемента, и снизить коррозию. Масса щелочных батареек выше солевых из-за стального корпуса и большей плотности активной смеси.

По многим основным параметрам алкалиновые гальванические элементы превосходят солевые элементы. Поэтому в настоящее время увеличивается объем производства щелочных батареек.

Литиевые элементы питания

Литиевые гальванические элементы применяются в различных современных устройствах. Они выпускаются различных типоразмеров и видов.

Существуют литиевые батарейки и , имеющие между собой большие отличия. Батарейки имеют в составе твердый органический электролит, в отличие от других видов элементов. Литиевые элементы используются в местах, где требуются средние и малые токи разряда, стабильное рабочее напряжение. Литиевый аккумулятор можно перезаряжать определенное количество раз, а батарейки не предназначены для этого, и используются только один раз. Их запрещается вскрывать или перезаряжать.

Основные требования к производству
  • Надежная герметизация корпуса. Нельзя допускать утечки электролита и проникновения внутрь других веществ из внешней среды. Нарушение герметичности приводит к их возгоранию, так как литий является высоко активным элементом. Гальванические элементы с нарушенной герметичностью не годятся для эксплуатации.
  • Изготовление должно проходить в герметичных помещениях с аргоновой атмосферой и контролем влажности.

Форма литиевых аккумуляторов бывает цилиндрической, дисковой или призматической. Габариты практически не отличаются от других видов батареек.

Область использования
Литиевые гальванические элементы обладают более длительным сроком работы, по сравнению с другими элементами. Область применения очень широка:
  • Космическая промышленность.
  • Авиационное производство.
  • Оборонная промышленность.
  • Детские игрушки.
  • Медицинская техника.
  • Компьютеры.
  • Фото- и видеокамеры.
Преимущества
  • Широкий интервал рабочих температур.
  • Компактные размеры и масса.
  • Длительная эксплуатация.
  • Стабильные параметры в различных условиях.
  • Большая емкость.
Недостатки
  • Возможность внезапного возгорания при несоблюдении правил пользования.
  • Высокая цена, по сравнению с другими видами батареек.
Принцип работы

Действие гальванических элементов основано на том, что два разных металла в среде электролита взаимодействуют между собой, в результате чего во внешней цепи образуется электрический ток.

Такие химические элементы сегодня называют батарейками. Величина напряжения батарейки зависит от применяемых видов металлов и от числа элементов, находящихся в ней. Все устройство батарейки расположено в металлическом цилиндре. Электроды представляют собой металлические сетки с напылением восстановителя и окислителя.

Батарейки не могут восстанавливать утраченные свойства, так как в них осуществляется прямое преобразование химической энергии окислителя и восстановителя в электрическую. Химические реагенты при функционировании батарейки постепенно расходуются, а электрический ток уменьшается.

Отрицательный вывод батарейки выполнен из цинка или лития, он теряет электроны и является восстановителем. Другой положительный вывод играет роль окислителя, его изготавливают из оксида магния или солей металлов. Состав электролита в обычных условиях не пропускает через себя электрический ток. При замыкании электрической цепи начинается распад электролита на ионы, что обуславливает появление его электрической проводимости. Электролит состоит чаще всего из раствора кислоты или солей натрия и калия.

Предпосылки к появлению гальванических элементов. Немного истории. В 1786 году итальянский профессор медицины, физиолог Луиджи Алоизио Гальвани обнаружил интересное явление: мышцы задних лапок свежевскрытого трупика лягушки, подвешенного на медных крючках, сокращались, когда ученый прикасался к ним стальным скальпелем. Гальвани тут же сделал вывод, что это — проявление «животного электричества».

После смерти Гальвани, его современник Алессандро Вольта, будучи химиком и физиком, опишет и публично продемонстрирует более реальный механизм возникновения электрического тока при контакте разных металлов.

Вольта, после серии экспериментов, придет к однозначному выводу о том, что ток появляется в цепи из-за наличия в ней двух проводников из разных металлов, помещенных в жидкость, и это вовсе не «животное электричество», как думал Гальвани. Подергивание лапок лягушки было следствием действия тока, возникающего при контакте разных металлов (медные крючки и стальной скальпель).

Вольта покажет те же явления, которые демонстрировал Гальвани на мертвой лягушке, но на совершенно неживом самодельном электрометре, и даст в 1800 году точное объяснение возникновению тока: «проводник второго класса (жидкий) находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов… Вследствие этого возникает электрический ток того или иного направления».

В одном из первых экспериментов Вольта опустил в банку с кислотой две пластинки — цинковую и медную — и соединил их проволокой. После этого цинковая пластина начала растворяться, а на медной стали выделяться пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток.

Так был изобретён «элемент Вольта» — первый гальванический элемент. Для удобства Вольта придал ему форму вертикального цилиндра (столба), состоящего из соединённых между собой колец цинка, меди и сукна, пропитанных кислотой. Вольтов столб высотою в полметра создавал напряжение, чувствительное для человека.

Поскольку начало исследованиям положил Луиджи Гальвани, то и название сохранило память о нем в своем названии.

Гальванический элемент — это химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Таким образом, в гальванических элементах химическая энергия переходит в электрическую.

Гальванические элементы сегодня

Гальванические элементы сегодня называют батарейками. Широко распространены три типа батареек: солевые (сухие), щелочные (их называют еще алкалиновыми, «alkaline» в переводе с английского - «щелочной») и литиевые. Принцип их работы — все тот же, описанный Вольта в 1800 году: два металла , и во внешней замкнутой цепи возникает электрический ток.

Напряжение батарейки зависит как от используемых металлов, так и от количества элементов в «батарейке». Батарейки, в отличие от аккумуляторов, не способны к восстановлению своих свойств, поскольку в них происходит прямое преобразование энергии химической, то есть энергии составляющих батарейку реагентов (восстановителя и окислителя), в энергию электрическую.

Входящие в батарейку реагенты, в процессе ее работы расходуются, ток при этом постепенно уменьшается, поэтому действие источника заканчивается после того как реагенты прореагируют полностью.

Щелочные и солевые элементы (батарейки) широко применяются для питания разнообразных электронных устройств, радиоаппаратуры, игрушек, а литиевые чаще всего можно встретить в портативных медицинских приборах типа глюкометров или в цифровой технике вроде фотоаппаратов.

Марганцево-цинковые элементы, которые называют солевыми батарейками — это «сухие» гальванические элементы, внутри которых нет жидкого раствора электролита.

Цинковый электрод (+) — это катод в форме стакана, а анодом служит порошкообразная смесь из диоксида марганца с графитом. Ток течет через графитовый стержень. В качестве электролита используется паста из раствора хлорида аммония с добавлением крахмала или муки для загущения, чтобы ничего не текло.

Обычно производители батареек не указывают точный состав солевых элементов, тем не менее, солевые батарейки являются самыми дешевыми, их обычно используют в тех устройствах, где энергопотребление крайне низко: в часах, в пультах дистанционного управления, в электронных термометрах и т. п.

Понятие "номинальная емкость" редко употребляется для характеристики марганцево-цинковых батареек, так как их емкость сильно зависит от режимов и условий эксплуатации. Основными недостатками этих элементов являются значительная скорость снижения напряжения на всем протяжении разряда и значительное уменьшение отдаваемой емкости при увеличении тока разряда. Конечное разрядное напряжение устанавливают в зависимости от нагрузки в интервале 0,7-1,0 В.

Важна не только величина тока разряда, но и временной график нагрузки. При прерывистом разряде большими и средними токами работоспособность батареек заметно увеличивается по сравнению с непрерывным режимом работы. Однако при малых разрядных токах и многомесячных перерывах в работе емкость их может снижаться в следствии саморазряда.

Выше на графике изображены разрядные кривые для средней солевой батарейки за 4, 10, 20 и 40 часов для сравнения с щелочной, о которой речь пойдет далее.

Щелочной элемент питания — марганцево-цинковый гальванический элемент питания, в котором в качестве катода используется диоксид марганца, в качестве анода — порошкообразный цинк, а в качестве электролита — раствор щёлочи, обычно в виде пасты гидроксида калия.

Эти батарейки обладают целым рядом преимуществ (в частности, существенно большей ёмкостью, лучшей работой при низких температурах и при больших токах нагрузки).

Щелочные батарейки, в сравнении с солевыми, могут обеспечивать больший ток в течение длительного времени. Больший ток становится возможным, поскольку цинк здесь используется не в виде стакана, а в виде порошка, обладающего большей площадью соприкосновения с электролитом. В качестве электролита применяется гидрооксид калия в виде пасты.

Именно благодаря способности данного вида гальванических элементов в течение длительного времени отдавать значительный ток (до 1 A), щелочные батарейки наиболее распространены в настоящее время.

В электрических игрушках, в портативной медицинской технике, в электронных приборах, в фотоаппаратах — всюду применяются щелочные батарейки. Они служат в 1,5 раза дольше солевых, если разряд идет малым током. На графике изображены разрядные кривые при различных токах для сравнения с солевой батарейкой (график был приведен выше) за 4, 10, 20 и 40 часов.

Литиевые батарейки

Еще одним достаточно распространенным видом гальванических элементов являются литиевые батарейки - одиночные неперезаряжаемые гальванические элементы, в которых в качестве анода используется литий или его соединения. Благодаря использованию щелочного металла они обладают высокой разностью потенциалов.

Катод и электролит литиевого элемента могут быть очень разными, поэтому термин «литиевый элемент» объединяет группу элементов с одинаковым материалом анода. В качестве катода могут использоваться например: диоксид марганца, монофторид углерода, пирит, тионилхлорид и др.

Литиевые батарейки отличается от других элементов питания высокой продолжительностью работы и высокой стоимостью. В зависимости от выбранного типоразмера и используемых химических материалов, литиевый элемент питания может производить напряжение от 1,5 В (совместим с щелочными батареями) до 3,7 В.

Эти элементы питания обладают наивысшей емкостью на единицу массы и длительным временем хранения. Литиевые элементы широко применяются в современной портативной электронной технике: для питания часов на материнских платах компьютеров, для питания портативных медицинских приборов, наручных часов, калькуляторов, в фототехнике и т. д.

На графике выше приведены разрядные кривые для двух литиевых батареек от двух популярных производителей. Начальный ток составлял 120 мА (на резистор порядка 24 Ома).

Гальванический элемент — это химический источник электрического тока, в котором происходит непосредственное преобразование химической энергии в электрическую. Поэтому он является . Внешний вид наиболее распространенных элементов питания приведен на рисунке 1.


Рисунок 1. Внешний вид пальчиковых гальванических элементов

Существуют солевые (сухие), щелочные и литиевые элементы. Гальванические элементы часто называют батарейками, однако это название неверно, т.к. батареей является соединение нескольких одинаковых устройств. Например, при последовательном соединении трех гальванических элементов образуется широко используемая 4,5 вольтовая батарейка.

Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. Напряжение зависит от использованных металлов. Некоторые из этих химических источников тока приведены в таблице 1.

Тип источников тока Катод Электролит Анод Напряжение,
В
Марганцево-цинковый MnO 2 KOH Zn 1,56
Марганцево-оловянный MnO 2 KOH Sn 1,65
Марганцево-магниевый MnO 2 MgBr 2 Mg 2,00
Свинцово-цинковый PbO 2 H 2 SO 4 Zn 2,55
Свинцово-кадмиевый PbO 2 H 2 SO 4 Cd 2,42
Свинцово-хлорный PbO 2 HClO 4 Pb 1,92
Ртутно-цинковый HgO KOH Zn 1,36
Ртутно-кадмиевый HgO 2 KOH Cd 1,92
Окисно-ртутно-оловянный HgO 2 KOH Sn 1,30
Хром-цинковый K 2 Cr 2 O 7 H 2 SO 4 Zn 1,8-1,9

В продаже в основном представлены Марганцево-цинковые элементы, которые называют солевыми. Производители батареек обычно не указывают их химический состав. Это самые дешевые гальванические элементы, которые можно применять только в устройствах с низким потреблением, таких как часы, электронные термометры или пульты дистанционного управления. На рисунке 2 приведены внешний вид и внутреннее устройство солевого элемента питания.



Рисунок 2. Внешний вид и устройство "сухого" гальванического элемента

Не менее распространенным элементом питания являются щелочные марганцевые батарейки. В продаже их называют алкалиновыми, не утруждая себя переводом названия на русский язык. Внутреннее устройство алкалинового гальванического элемента показано на рисунке 2.



Рисунок 3. Внутреннее и устройство щелочного гальванического элемента

Эти химические источники тока обладают большей емкостью (2...3 A/ч) и они могут обеспечивать больший ток в течение длительного времени.Больший ток стал возможным, т.к. цинк используется не в виде стакана, а в виде порошка, обладающего большей площадью соприкосновения с электролитом. В качестве электролита применяется гидрооксид калия. Именно благодаря способности данного вида гальванических элементов в течение длительного времени отдавать значительный ток (до 1 A), наиболее распространен в настоящее время.

Еще одним достаточно распространенным видом гальванических элементов являются литиевые барарейки. Благодаря использованию щелочного металла они обладают высокой разностью потенциалов. Напряжение литиевых элементов равно 3 В. Однако на рынке представлены и 1,5 В литиевые батарейки. Эти элементы питания обладают наивысшей емкостью на единицу массы и длительным временем хранения. Применяются в основном для питания часов на материнских платах компьютеров и фототехнике. В качестве недостатка можно назвать высокую стоимость. Внешний вид литиевых батареек приведен на рисунке 4.



Рисунок 4. Внешний вид литиевых элементов питания

Следует отметить, что практически все гальванические элементы способны подзаряжаться от сетевых источников питания. Исключение составляют литиевые батарейки, которые при попытке подзаряда могут взорваться .

Для применения в различных устройствах батарейки были стандартизированы. Наиболее распространенные виды корпусов гальванических элементов приведены в таблице 2.

Для крепления батареек внутри корпуса радиоэлектронных устройств в настоящее время предлагаются готовые батарейные отсеки. Применение их позволяет значительно упростить разработку корпуса радиоэлектронного устройства и удешевить его производство. Внешний вид некоторых из них приведен на рисунке 5.



Рисунок 5. Внешний вид отсеков для крепления гальванических элементов питания

Первый вопрос, который волнует покупателей батареек — это время их работы. Оно зависит от технологии производства гальванического элемента. График типовой зависимости выходного напряжения от технологии производства элемента питания приведен на рисунке 5.



Рисунок 6. График времени работы элемента питания в зависимости от технологии производства при токе разряда 1 А

Результаты тестов батареек различных фирм, проведенные на сайте http://www.batteryshowdown.com/ приведены на рисунке 7.



Рисунок 7. График времени работы батареек различных фирм при токе разряда 1 А

И, наконец, давайте сделаем выводы где какой тип батареек имеет смысл применять, так как при приобретении батареек мы всегда стараемся получить максимум полезного эффекта при минимуме затрат.

  1. Не стоит покупать батарейки в киосках или на рынке. Обычно они там достаточно долго лежат и поэтому за счет саморазряда практически теряют свою емкость. Это может быть даже опасно для аппаратуры, т.к. при использовании дешевых гальванических элементов (батареек) из них может протечь электролит. Это приведет к выходу аппаратуры из строя! Покупать лучше в магазинах с хорошим оборотом товара.
  2. щелочные (алкалиновые) батарейки следует применять в устройствах, потребляющих достаточно большой ток, таких как фонарики, плееры или фотоаппараты. В малопотребляющих устройствах их срок работы не отличается от солевых батареек.
  3. Солевые («обычные», угольно-цинковые гальванические элементы), будут отлично работать в часах, ИК пультах и прочих устройствах, рассчитанных на работу от одного комплекта батарей в течении года и более. При этом они не могут работать на морозе.
  4. Самые экономически выгодные батарейки на сегодня — пальчиковые АА. Как мизинчиковые (АAА), так и большие (R20), при одной и той же емкости стоят дороже. Ёмкость современных батареек R20 почти такая же как и пальчиковых батареек АА, и это при в три раза больших размерах!
  5. Не стоит обращать внимание на раскрученные бренды. Гальванические элементы фирм Duracell и Energizer стоят в полтора-два раза дороже батареек остальных фирм и при этом работают примерно столько-же

г. Кызыл, ТГУ

РЕФЕРАТ

Тема:"Гальванические элементы. Аккумуляторы."

Составила: Спиридонова В.А.

I курс, IV гр., ФМФ

Проверила: Кендиван О.Д.

2001 г.

I. Введение

II. Гальванические источники тока

1. Типы гальванических элементов

III. Аккумуляторы

1. Кислотные

2. Щелочные

3. Герметичные никель-кадмиевые

4. Герметичные

5. Аккумуляторы технологии "DRYFIT"

ВВЕДЕНИЕ

Химические источники тока (ХИТ) в течении многих лет

прочно вошли в нашу жизнь. В быту потребитель редко обращает

внимание на отличия используемых ХИТ. Для него это батарейки и

аккумуляторы. Обычно они используются в устройствах таких, как

карманные фонари, игрушки, радиоприемники или автомобили.

В том случае, когда потребляемая мощность относительно

велика (10Ач), используются аккумуляторы, в основном кислотные,

а также никель-железные и никель-кадмиевые. Они применяются в

портативных ЭВМ (Laptop, Notebook, Palmtop), носимых средствах

связи, аварийном освещении и пр.

В последние годы такие аккумуляторы широко применяются в

резервных источниках питания ЭВМ и электромеханических

системах, накапливающих энергию для возможных пиковых нагрузок

и аварийного питания электроэнергией жизненно-важных систем.

ГАЛЬВАНИЧЕСКИЕ ИСТОЧНИКИ ТОКА

Гальванические источники тока одноразового действия

представляют собой унифицированный контейнер, в котором

находятся электролит, абсорбируемый активным материалом

сепаратора, и электроды (анод и катод), поэтому они называются

сухими элементами. Этот термин используется применительно ко

всем элементам, не содержащим жидкого электролита. К обычным

сухим элементам относятся углеродно-цинковые элементы.

Сухие элементы применяются при малых токах и прерывистых

режимах работы. Поэтому такие элементы широко используются в

телефонных аппаратах, игрушках, системах сигнализации и др.

Действие любого гальванического элемента основано на протекании в нем окислительно-восстановительной реакции. В простейшем случае гальванический элемент состоит из двух пластин или стержней, изготовленных из различных металлов и погруженных в раствор электролита. Такая система делает возможным пространственное разделение окислительно-восстановительной реакции: окисление протекает на одном металле, а восстановление - на другом. Таким образом, электроны передаются от восстановителя к окислителю по внешней цепи.

Рассмотрим в качестве примера медно-цинковый гальванический элемент, работающий за счет энергии приведенной выше реакции между цинком и сульфатом меди. Этот элемент (элемент Якоби-Даниэля) состоит из медной пластины, погруженной в раствор сульфата меди (медный электрод), и цинковой пластины, погруженной в раствор сульфата цинка (цинковый электрод). Оба раствора соприкасаются друг с другом, но для предупреждения смешивания они разделены перегородкой, изготовленной из пористого материала.

При работе элемента, т.е. при замкнутой цепи, цинк окисляется: на поверхности его соприкосновения с раствором атомы цинка превращаются в ионы и, гидратируясь, переходят в раствор. Высвобождающиеся при этом электроны движутся по внешней цепи к медному электроду. Вся совокупность этих процессов схематически изображается уравнением полуреакции, или электрохимическим уравнением:

На медном электроде протекает восстановление ионов меди. Электроны, приходящие сюда от цинкового электрода, соединяются с выходящими из раствора дегидратирующимися ионами меди; образуются атомы меди, выделяющиеся в виде металла. Соответствующее электрохимическое уравнение имеет вид:

Суммарное уравнение реакции, протекающей в элементе, получится при сложении уравнений обеих полуреакций. Таким образом, при работе гальванического элемента, электроны от восстановителя переходят к окислителю по внешней цепи, на электродах идут электрохимические процессы, в растворе наблюдается направленное движение ионов.

Электрод, на котором протекает окисление, называется анодом(цинк). Электрод, на котором протекает восстановление, называется катодом (медь).

В принципе электрическую энергию может дать любая окислительно-восстановительная реакция. Однако, число реакций,

практически используемых в химических источниках электрической энергии, невелико. Это связано с тем, что не всякая окислительно-восстановительная реакция позволяет создать гальванический элемент, обладающий технически ценными свойствами. Кроме того, многие окислительно-восстановительные реакции требуют расхода дорогостоящих веществ.

В отличие от медно-цинкового элемента, во всех современных гальванических элементах и аккумуляторах используют не два, а один электролит; такие источники тока значительно удобнее в эксплуатации.

ТИПЫ ГАЛЬВАНИЧЕСКИХ ЭЛЕМЕНТОВ

Угольно-цинковые элементы

Угольно-цинковые элементы (марганец-цинковые) являются

самыми распространенными сухими элементами. В угольно-цинковых

элементах используется пассивный (угольный) коллектор тока в

контакте с анодом из двуокиси марганца (MnO2), электролит из

хлорида аммония и катодом из цинка. Электролит находится в

пастообразном состоянии или пропитывает пористую диафрагму.

Такой электролит мало подвижен и не растекается, поэтому

элементы называются сухими.

Угольно-цинковые элементы "восстанавливаются" в течении

перерыва в работе. Это явление обусловлено постепенным

выравниванием локальных неоднородностей в композиции

электролита, возникающих в процессе разряда. В результате

периодического "отдыха" срок службы элемента продлевается.

Достоинством угольно-цинковых элементов является их

относительно низкая стоимость. К существенным недостаткам

следует отнести значительное снижение напряжения при разряде,

невысокую удельную мощность (5...10 Вт/кг) и малый срок

хранения.

Низкие температуры снижают эффективность использования

гальванических элементов, а внутренний разогрев батареи его

повышает. Повышение температуры вызываетхимическую коррозию цинкового электрода водой, содержащейся вэлектролите, и высыхание электролита. Эти факторы удаетсянесколько компенсировать выдержкой батареи при повышеннойтемпературе и введением внутрь элемента, через предварительнопроделанное отверстие, солевого раствора.

Щелочные элементы

Как и в угольно-цинковых, в щелочных элементах используется анод из MnO2 и цинковый катод с разделенным электролитом.

Отличие щелочных элементов от угольно-цинковых заключается

в применении щелочного электролита, вследствие чего

газовыделение при разряде фактически отсутствует, и их можно

выполнять герметичными, что очень важно для целого ряда их

применений.

Ртутные элементы

Ртутные элементы очень похожи на щелочные элементы. В них

используется оксид ртути (HgO). Катод состоит из смеси порошка

цинка и ртути. Анод и катод разделены сепаратором и диафрагмой,

пропитанной 40% раствором щелочи.

Так как ртуть дефицитна и токсична, ртутные элементы не

следует выбрасывать после их полного использования. Они должны

поступать на вторичную переработку.

Серебряные элементы

Они имеют "серебряные" катоды из Ag2O и AgO.

Литиевые элементы

В них применяются литиевые аноды, органический электролит

и катоды из различных материалов. Они обладают очень большими

сроками хранения, высокими плотностями энергии и работоспособны

в широком интервале температур, поскольку не содержат воды.

Так как литий обладает наивысшим отрицательным потенциалом

по отношению ко всем металлам, литиевые элементы

характеризуются наибольшим номинальным напряжением при

минимальных габаритах.

Ионная проводимость обеспечивается введением в

растворители солей, имеющих анионы больших размеров.

К недостаткам литиевых элементов следует отнести их

относительно высокую стоимость, обусловленную высокой ценой

лития, особыми требованиями к их производству (необходимость

инертной атмосферы, очистка неводных растворителей). Следует

также учитывать, что некоторые литиевые элементы при их

вскрытии взрывоопасны.

Литиевые элементы широко применяются в резервных источниках питания схем памяти, измерительных приборах и прочих высокотехнологичных системах.

АККУМУЛЯТОРЫ

Аккумуляторы являются химическими источниками

электрической энергии многоразового действия. Они состоят из

двух электродов (положительного и отрицательного), электролита

и корпуса. Накопление энергии в аккумуляторе происходит при

протекании химической реакции окисления-восстановления

электродов. При разряде аккумулятора происходят обратные

процессы. Напряжение аккумулятора - это разность потенциалов

между полюсами аккумулятора при фиксированной нагрузке.

Для получения достаточно больших значений напряжений или

заряда отдельные аккумуляторы соединяются между собой

последовательно или параллельно в батареи. Существует ряд

общепринятых напряжений для аккумуляторных батарей: 2; 4; 6;

Ограничимся рассмотрением следующих аккумуляторов:

кислотных аккумуляторов, выполненных по традиционной

технологии;

стационарных свинцовых и приводных (автомобильных и

тракторных);

герметичных необслуживаемых аккумуляторов, герметичных

никель-кадмиевых и кислотных "dryfit" А400 и А500 (желеобразный

электролит).

КИСЛОТНЫЕ АККУМУЛЯТОРЫ

В качестве примера рассмотрим готовый к употреблению свинцовый аккумулятор. Он состоит из решетчатых свинцовых пластин, одни из которых заполнены диоксидом свинца, а другие - металлическим губчатым свинцом. Пластины погружены в 35-40%раствор H2SO4; при этой концентрации удельная электропроводность раствора серной кислоты максимальна.

При работе аккумулятора - при его разряде - в нем протекает окислительно-восстановительная реакция, в ходе которой металлический свинец окисляется:

Pb + SO4= PbSO4 + 2e-

А диоксид свинца восстанавливается:

Pb + SO4 + 4H+ + 2e- = PbSO4 + 2H2O

Электроны, отдаваемые атомами металлического свинца при окислении, принимаются атомами свинца PbO2при восстановлении; электроны передаются от одного электрода к другому по внешней цепи.

Таким образом, металлический свинец служит в свинцовом аккумуляторе анодом и заряжен отрицательно, а PbO2служит катодом и заряжен положительно.

Во внутренней цепи (в растворе H2SO4) при работе аккумулятора происходит перенос ионов. Ионы SO42-движутся к аноду, а ионы H+ - к катоду. Направление этого движения обусловлено электрическим полем, возникающим в результате протекания электродных процессов: у анода расходуются анионы, а у катода - катионы. В итоге раствор остается электронейтральным.

Если сложить уравнения, отвечающие окислению свинца и восстановлению PbO2, то получится суммарное уравнение реакции,

протекающей в свинцовом аккумуляторе при его работе (разряде):

Pb + PbO2 + 4H+ + 2SO4 = 2PbSO4 + 2H2O

Э.д.с. заряженного свинцового аккумулятора равна приблизительно 2В. По мере разряда аккумулятора материалы его катода (PbO2) и анода (Pb) расходуются. Расходуется и серная кислота. При этом напряжение на зажимах аккумулятора падает. Когда оно становится меньше значения, допускаемого условиями эксплуатации, аккумулятор вновь заряжают.

Для зарядки (или заряда) аккумулятор подключают к внешнему источнику тока (плюсом к плюсу и минусом к минусу). При этом ток протекает через аккумулятор в направлении, обратном тому, в котором он проходил при разряде аккумулятора. В результате этого электрохимические процессы на электродах "обращаются". На свинцовом электроде теперь происходит процесс восстановления

PbSO4 + 2e- = Pb + SO4

т.е. этод электрод становится катодом. На электроде из PbO2 идет процесс окисления

PbSO4 + 2H2O = PbO2 + 4H+ + 2e-

следовательно этот электрод является теперь анодом. Ионы в растворе движутся в направлениях, обратных тем, в которых они перемещались при работе аккумулятора.

Складывая два последние уравнения, получим уравнение реакции, протекающей при зарядке аккумулятора:

2PbSO4 + 2H2O = Pb + PbO2 + 4H+ + 2SO4

Нетрудно заметить, что этот процесс противоположен тому, который протекает при работе аккумулятора: при зарядке аккумулятора в нем вновь получаются вещества, необходимые для его работы.

Свинцовые аккумуляторы обычно соединяют в батарею, которую

помещают в моноблок из эбонита, термопласта, полипропилена,

полистирола, полиэтилена, асфальтопековой композиции, керамики

или стекла.

Одной из важнейших характеристик аккумулятора является

срок службы или ресурс-наработка (число циклов). Ухудшение

параметров аккумулятора и выход из строя обусловлены в первую

очередь коррозией решетки и оползанием активной массы

положительного электрода. Срок службы аккумулятора определяется

в первую очередь типом положительных пластин и условиями

эксплуатации.

Совершенствование свинцовых аккумуляторов идет по пути

изыскания новых сплавов для решеток (например свинцово- кальциевых), облегченных и прочных материалов корпусов

(например, на основе сополимера пропилена и этилена), улучшения

качества сепараторов.

ЩЕЛОЧНЫЕ АККУМУЛЯТОРЫ

Серебряно-цинковые.

Обладают хорошими электрическими характеристиками, имеют малую массу и объем. В них электродами служат оксиды серебра Ag2O, AgO (катод) и губчатый цинк (анод); электролитом служит раствор KOH.

При работе аккумулятора цинк окисляется, превращаясь в ZnO и Zn(OH)2, а оксид серебра восстанавливается до металла. Суммарную реакцию, протекающую при разряде аккумулятора, можно приближенно выразить уравнением:

AgO + Zn = Ag + ZnO

Э.д.с. заряженного серебряно-цинкового аккумулятора приближенно равна 1,85 В. При снижении напряжения до 1,25 В аккумулятор заряжают. При этом процессы на электродах "обращаются": цинк восстанавливается, серебро окисляется - вновь получаются вещества, необходимые для работы аккумулятора.

Кадмиево-никелевые и железно-никелевые.

КН и ЖН весьма сходны между собой. Основное их различие состоит в материале пластин отрицательного электрода; в аккумуляторах КН они кадмиевые, а в аккумуляторах ЖН - железные. Наиболее широкое применение имеют аккумуляторы КН.

Щелочные аккумуляторы в основном выпускаются с ламельными электродами. В них активные массы заключены в ламели - плоские коробочки с отверстиями. Активная масса положительных пластин заряженного аккумулятора в основном состоит из гидротированного оксида никеля (Ш) Ni2O3 x H2O или NiOOH. Кроме того, в ней содержится графит, добавляемый для увеличения электропроводности. Активная масса отрицательных пластин аккумуляторов КН состоит из смеси губчатого кадмия с порошком железа, а аккумуляторов ЖН - из порошка восстановленного железа. Электролитом служит раствор гидроксида калия, содержащий небольшое количество LiOH.

Рассмотрим процессы, протекающие при работе аккумулятора КН. При разряде аккумулятора кадмий окисляется.

Cd + 2OH- = Cd(ОН)2 + 2е-

А NiOOH восстанавливается:

2NiOOH + 2H2O + 2e- = 2Ni(ОН)2 + 2ОН-

По внешней цепи при этом происходит перенос электронов от кадмиевого электрода к никелевому. Кадмиевый электрод служит анодом и заряжен отрицательно, а никелевый - катодом и заряжен положительно.

Суммарную реакцию, протекающую в аккумуляторе КН при его работе, можно выразить уравнением, которое получится при сложении двух последних электрохимических уравнений:

2NiOOH + 2H2O + Cd = 2NI(OH)2 + CD(OH)2

Э.д.с. заряженного кадмиево-никелевого аккумулятора равна приблизительно 1,4 В. По мере работы (разряда) аккумулятора напряжение на его зажимах падает. Когда оно становится ниже 1В, аккумулятор заряжают.

При зарядке аккумулятора электрохимические процессы на его электродах "обращаются". На кадмиевом электроде происходит восстановление металла

Cd(OH)2 + 2e- = CD + 2OH-

На никелевом - окисление гидроксида никеля (П):

2Ni(OH)2 + 2OH- = 2NiOOH + 2H2O + 2e-

Суммарная реакция при зарядке обратна реакции, протекающей при разряде:

2Ni(OH)2 + Cd(OH)2 = 2NiOOH + 2H2O + Cd

ГЕРМЕТИЧНЫЕ НИКЕЛЬ-КАДМИЕВЫЕ АККУМУЛЯТОРЫ

Особую группу никель-кадмиевых аккумуляторов составляют герметичные аккумуляторы. Выделяющийся в конце заряда кислород окисляет кадмий, поэтому давление в аккумуляторе не повышается. Скорость образования кислорода должна быть невелика, поэтому аккумулятор заряжают относительно небольшим током.

Герметичные аккумуляторы подразделяются на дисковые,

цилиндрические и прямоугольные.

Герметичные прямоугольные никель-кадмиевые аккумуляторы

производятся с отрицательными неметаллокерамическими электродами из оксида кадмия или с металлокерамическими кадмиевыми электродами.

ГЕРМЕТИЧНЫЕ АККУМУЛЯТОРЫ

Широко распространенные кислотные аккумуляторы,

выполненные по классической технологии, доставляют много хлопот

и оказывают вредное влияние на людей и аппаратуру. Они наиболее

дешевы, но требуют дополнительных затрат на их обслуживание,

специальных помещений и персонал.

АККУМУЛЯТОРЫ ТЕХНОЛОГИИ "DRYFIT"

Наиболее удобными и безопасными из кислотных аккумуляторов

являются абсолютно необслуживаемые герметичные аккумуляторы

VRLA (Valve Regulated Lead Acid) произведенные по технологии

"dryfit". Электролит в этих аккумуляторах находится в желеобразном состоянии. Это гарантирует надежность аккумуляторов и безопасность их эксплуатации.

СПИСОК ЛИТЕРАТУРЫ:

1. Деордиев С.С.

Аккумуляторы и уход за ними.

К.: Техника, 1985. 136 с.

2. Электротехнический справочник.

В 3-х т. Т.2. Электротехнические изделия и устройства/под

общ. ред. профессоров МЭИ (гл. ред. И. Н. Орлов) и др. 7 изд. 6испр. и доп.

М.: Энергоатомиздат, 1986. 712 с.

3. Н.Л.Глинка.

Общая химия.

Издательство "Химия" 1977.

4. Багоцкий В.С., Скундин А.М.

Химические источники тока.

М.: Энергоиздат, 1981. 360 с.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то