Характеристики, назначения и функции маршрутизатора. Работа и применение роутера

Современные цифровые компьютерные сети имеют чрезвычайно разветвленную топологию, множество соединений и сложнейшие алгоритмы адресации и перенаправления потоков траффика. Для обеспечения бесперебойной работы этой системы служат специальные устройства, маршрутизирующие информацию и следящие за ее корректной доставкой. Так что такое маршрутизатор?

Итак, что такое маршрутизатор? Это сетевое устройство, перенаправляющее пакеты данных в одной или нескольких подсетях в соответствие с некоторым заранее определенным принципом. В отличие от концентратора (хаба) и коммутатора (switch), которые просто соединяют компьютеры физической линией, маршрутизатор анализирует пакеты данных, определяет адресата и выбирает маршрут данных исходя из полученных сведений. Первые модели могли определять маршруты только по заданной администратором карте, современные же модели способны анализировать текущую производительность сети, отслеживать изменения топологии и определять классы приоритета траффика, предоставляя более быстрые каналы и короткие маршруты интерактивному контенту за счет менее значимых потоков файлов и, к примеру, электронной почты. Кроме профессиональных роутеров, отвечающих за функционирование сетей целых городов и регионов (так называемых маршрутизаторов уровня ядра) существуют и компактные модели, предназначенные для контроля и распределения траффика в отдельной квартире или офисе.

Маршрутизатор: устройство и принцип работы

Каждый маршрутизатор имеет один или несколько портов, память для хранения таблиц маршрутизации и процессор, обрабатывающий пакеты и другую служебную информацию.

Из каждого входящего пакета маршрутизатор извлекает адреса, сверяется с таблицей маршрутизации и, если обнаруживает, что имеется путь, по которому пункт назначения может быть достигнут, пересылает пакет через нужный порт. Однако, если адрес указан некорректно, маршрут отсутствует, либо пересылка запрещена настройками безопасности — пакет отбрасывается.

К системе безопасности относят:

  • Firewall — некоторые адреса или порты могут быть закрыты полностью, ни один пакет никогда не попадет и не покинет сеть при правильной настройке этой подсистемы.
  • VPN — виртуальные частные сети. При этом внутри (а точнее, «поверх») сети формируется виртуальный зашифрованный сегмент, имеющий собственную систему адресации. Чужие компьютеры не смогут отправить вредоносные пакеты при такой организации траффика.
  • NAT — трансляция сетевых адресов. Роутер изменяет заголовок пакета таким образом, чтобы скрыть подробности внутренней организации сети от внешних наблюдателей. Любой внутренний адрес транслируется в определенный внешний, прозрачно для приложений, использующих сеть.

Часто роутеры имеют систему автоматической генерации таблицы маршрутизации по заданным параметрам, указываемым либо администратором сети через специальный интерфейс, используя один из разработанных протоколов (RIP, OSPF, BGP), рассчитывающих метрики (производительность и приоритетность) сетей, размер пакета, классы траффика и прочие сведения.

Технологии современных маршрутизаторов

Современные маршрутизаторы умеют перенаправлять траффик не только в проводных сетях, но и осуществлять транслирование данных между наземными и беспроводными сегментами, породив целый класс устройств, называемых . Точно таким же образом к некоторым устройствам можно подключать оптоволоконные линии.

Часто в одном корпусе заключен не только маршрутизатор, но и сервер DHCP, автоматически настраивающий сетевые интерфейсы подключенных компьютеров и добавляющий их в таблицу маршрутизации, сервер печати, распознающий пакеты, предназначенные для принтера и управляющий подключенным к роутеру печатающим устройством, веб-сервер для организации веб-интерфейса к консоли управления и (фотографиям, музыке, видео), хранящемуся на дисках (технология, близкая к NAS).

Роутером может служить не только специальное устройство, но и компьютер со специфическим программным обеспечением и одной и более сетевыми платами.

Или шлюзом , называется узел сети с несколькими IP-интерфейсами (содержащими свой MAC-адрес и IP-адрес), подключенными к разным IP-сетям, осуществляющий на основе решения задачи маршрутизации перенаправление дейтаграмм из одной сети в другую для доставки от отправителя к получателю.

Представляют собой либо специализированные вычислительные машины, либо компьютеры с несколькими IP-интерфейсами, работа которых управляется специальным программным обеспечением.

Маршрутизация в IP-сетях

Маршрутизация служит для приема пакета от одного устройства и передачи его по сети другому устройству через другие сети. Если в сети нет маршрутизаторов, то не поддерживается маршрутизация. Маршрутизаторы направляют (перенаправляют) трафик во все сети, составляющие объединенную сеть.

Для маршрутизации пакета маршрутизатор должен владеть следующей информацией:

  • Адрес назначения
  • Соседний маршрутизатор, от которого он может узнать об удаленных сетях
  • Доступные пути ко всем удаленным сетям
  • Наилучший путь к каждой удаленной сети
  • Методы обслуживания и проверки информации о маршрутизации

Маршрутизатор узнает об удаленных сетях от соседних маршрутизаторов или от сетевого администратора. Затем маршрутизатор строит таблицу маршрутизации, которая описывает, как найти удаленные сети.

Если сеть подключена непосредственно к маршрутизатору, он уже знает, как направить пакет в эту сеть. Если же сеть не подключена напрямую, маршрутизатор должен узнать (изучить) пути доступа к удаленной сети с помощью статической маршрутизации (ввод администратором вручную местоположения всех сетей в таблицу маршрутизации) или с помощью динамической маршрутизации.

Динамическая маршрутизация - это процесс протокола маршрутизации, определяющий взаимодействие устройства с соседними маршрутизаторами. Маршрутизатор будет обновлять сведения о каждой изученной им сети. Если в сети произойдет изменение, протокол динамической маршрутизации автоматически информирует об изменении все маршрутизаторы. Если же используется статическая маршрутизация, обновить таблицы маршрутизации на всех устройствах придется системному администратору.

IP-маршрутизация - простой процесс, который одинаков в сетях любого размера. Например, на рисунке показан процесс пошагового взаимодействия хоста А с хостом В в другой сети. В примере пользователь хоста А запрашивает по ping IP-адрес хоста В. Дальнейшие операции не так просты, поэтому рассмотрим их подробнее:

  • В командной строке пользователь вводит ping 172.16.20.2. На хосте А генерируется пакет с помощью протоколов сетевого уровня и ICMP .

  • IP обращается к протоколу ARP для выяснения сети назначения для пакета, просматривая IP-адрес и маску подсети хоста А. Это запрос к удаленному хосту, т.е. пакет не предназначен хосту локальной сети, поэтому пакет должен быть направлен маршрутизатору для перенаправления в нужную удаленную сеть.
  • Чтобы хост А смог послать пакет маршрутизатору, хост должен знать аппаратный адрес интерфейса маршрутизатора, подключенный к локальной сети. Сетевой уровень передает пакет и аппаратный адрес назначения канальному уровню для деления на кадры и пересылки локальному хосту. Для получения аппаратного адреса хост ищет местоположение точки назначения в собственной памяти, называемой кэшем ARP.
  • Если IP-адрес еще не был доступен и не присутствует в кэше ARP, хост посылает широковещательную рассылку ARP для поиска аппаратного адреса по IP-адресу 172.16.10.1. Именно поэтому первый запрос Ping обычно заканчивается тайм-аутом, но четыре остальные запроса будут успешны. После кэширования адреса тайм-аута обычно не возникает.
  • Маршрутизатор отвечает и сообщает аппаратный адрес интерфейса Ethernet, подключенного к локальной сети. Теперь хост имеет всю информацию для пересылки пакета маршрутизатору по локальной сети. Сетевой уровень спускает пакет вниз для генерации эхо-запроса ICMP (Ping) на канальном уровне, дополняя пакет аппаратным адресом, по которому хост должен послать пакет. Пакет имеет IP-адреса источника и назначения вместе с указанием на тип пакета (ICMP) в поле протокола сетевого уровня.
  • Канальный уровень формирует кадр, в котором инкапсулируется пакет вместе с управляющей информацией, необходимой для пересылки по локальной сети. К такой информации относятся аппаратные адреса источника и назначения, а также значение в поле типа, установленное протоколом сетевого уровня (это будет поле типа, поскольку IP по умолчанию пользуется кадрами Ethernet_II). Рисунок 3 показывает кадр, генерируемый на канальном уровне и пересылаемый по локальному носителю. На рисунке 3 показана вся информация, необходимая для взаимодействия с маршрутизатором: аппаратные адреса источника и назначения, IP-адреса источника и назначения, данные, а также контрольная сумма CRC кадра, находящаяся в поле FCS (Frame Check Sequence).
  • Канальный уровень хоста А передает кадр физическому уровню. Там выполняется кодирование нулей и единиц в цифровой сигнал с последующей передачей этого сигнала по локальной физической сети.

  • Сигнал достигает интерфейса Ethernet 0 маршрутизатора, который синхронизируется по преамбуле цифрового сигнала для извлечения кадра. Интерфейс маршрутизатора после построения кадра проверяет CRC, а в конце приема кадра сравнивает полученное значение с содержимым поля FCS. Кроме того, он проверяет процесс передачи на отсутствие фрагментации и конфликтов носителя.
  • Проверяется аппаратный адрес назначения. Поскольку он совпадает с адресом маршрутизатора, анализируется поле типа кадра для определения дальнейших действий с этим пакетом данных. В поле типа указан протокол IP, поэтому маршрутизатор передает пакет процессу протокола IP, исполняемому маршрутизатором. Кадр удаляется. Исходный пакет (сгенерированный хостом А) помещается в буфер маршрутизатора.
  • Протокол IP смотрит на IP-адрес назначения в пакете, чтобы определить, не направлен ли пакет самому маршрутизатору. Поскольку IP-адрес назначения равен 172.16.20.2, маршрутизатор определяет по своей таблице маршрутизации, что сеть 172.16.20.0 непосредственно подключена к интерфейсу Ethernet 1.
  • Маршрутизатор передает пакет из буфера в интерфейс Ethernet 1. Маршрутизатору необходимо сформировать кадр для пересылки пакета хосту назначения. Сначала маршрутизатор проверяет свой кэш ARP, чтобы определить, был ли уже разрешен аппаратный адрес во время предыдущих взаимодействий с данной сетью. Если адреса нет в кэше ARP, маршрутизатор посылает широковещательный запрос ARP в интерфейс Ethernet 1 для поиска аппаратного адреса для IP-адреса 172.16.20.2.
  • Хост В откликается аппаратным адресом своего сетевого адаптера на запрос ARP. Интерфейс Ethernet 1 маршрутизатора теперь имеет все необходимое для пересылки пакета в точку окончательного приема. На рисунке показывает кадр, сгенерированный маршрутизатором и переданный по локальной физической сети.

Кадр, сгенерированный интерфейсом Ethernet 1 маршрутизатора, имеет аппаратный адрес источника от интерфейса Ethernet 1 и аппаратный адрес назначения для сетевого адаптера хоста В. Важно отметить, что, несмотря на изменения аппаратных адресов источника и назначения, в каждом передавшем пакет интерфейсе маршрутизатора, IP-адреса источника и назначения никогда не изменяются. Пакет никоим образом не модифицируется, но меняются кадры.

  • Хост В принимает кадр и проверяет CRC. Если проверка будет успешной, кадр удаляется, а пакет передается протоколу IP. Он анализирует IP-адрес назначения. Поскольку IP-адрес назначения совпадает с установленным в хосте В адресом, протокол IP исследует поле протокола для определения цели пакета.
  • В нашем пакете содержится эхо-запрос ICMP, поэтому хост В генерирует новый эхо-ответ ICMP с IP-адресом источника, равным адресу хоста В, и IP-адресом назначения, равным адресу хоста А. Процесс запускается заново, но в противоположном направлении. Однако аппаратные адреса всех устройств по пути следования пакета уже известны, поэтому все устройства смогут получить аппаратные адреса интерфейсов из собственных кэшей ARP.

В крупных сетях процесс происходит аналогично, но пакету придется пройти больше участков по пути к хосту назначения.

Таблицы маршрутизации

В стеке TCP/IP маршрутизаторы и конечные узлы принимают решения о том, кому передавать пакет для его успешной доставки узлу назначения, на основании так называемых таблиц маршрутизации (routing tables).

Таблица представляет собой типичный пример таблицы маршрутов, использующей IP-адреса сетей, для сети, представленной на рисунке.

Таблица маршрутизации для Router 2

В таблице представлена таблица маршрутизации многомаршрутная, так как содержится два маршрута до сети 116.0.0.0. В случае построения одномаршрутной таблицы маршрутизации, необходимо указывать только один путь до сети 116.0.0.0 по наименьшему значению метрики.

Как нетрудно видеть, в таблице определено несколько маршрутов с разными параметрами. Читать каждую такую запись в таблице маршрутизации нужно следующим образом:

Чтобы доставить пакет в сеть с адресом из поля Сетевой адрес и маской из поля Маска сети, нужно с интерфейса с IP-адресом из поля Интерфейс послать пакет по IP-адресу из поля Адрес шлюза, а «стоимость» такой доставки будет равна числу из поля Метрика.

В этой таблице в столбце "Адрес сети назначения" указываются адреса всех сетей, которым данный маршрутизатор может передавать пакеты. В стеке TCP/IP принят так называемый одношаговый подход к оптимизации маршрута продвижения пакета (next-hop routing) – каждый маршрутизатор и конечный узел принимает участие в выборе только одного шага передачи пакета. Поэтому в каждой строке таблицы маршрутизации указывается не весь маршрут в виде последовательности IP-адресов маршрутизаторов, через которые должен пройти пакет, а только один IP-адрес - адрес следующего маршрутизатора, которому нужно передать пакет. Вместе с пакетом следующему маршрутизатору передается ответственность за выбор следующего шага маршрутизации. Одношаговый подход к маршрутизации означает распределенное решение задачи выбора маршрута. Это снимает ограничение на максимальное количество транзитных маршрутизаторов на пути пакета.

Для отправки пакета следующему маршрутизатору требуется знание его локального адреса, но в стеке TCP/IP в таблицах маршрутизации принято использование только IP-адресов для сохранения их универсального формата, не зависящего от типа сетей, входящих в интерсеть. Для нахождения локального адреса по известному IP-адресу необходимо воспользоваться протоколом ARP.

Одношаговая маршрутизация обладает еще одним преимуществом - она позволяет сократить объем таблиц маршрутизации в конечных узлах и маршрутизаторах за счет использования в качестве номера сети назначения так называемого маршрута по умолчанию – default (0.0.0.0), который обычно занимает в таблице маршрутизации последнюю строку. Если в таблице маршрутизации есть такая запись, то все пакеты с номерами сетей, которые отсутствуют в таблице маршрутизации, передаются маршрутизатору, указанному в строке default. Поэтому маршрутизаторы часто хранят в своих таблицах ограниченную информацию о сетях интерсети, пересылая пакеты для остальных сетей в порт и маршрутизатор, используемые по умолчанию. Подразумевается, что маршрутизатор, используемый по умолчанию, передаст пакет на магистральную сеть, а маршрутизаторы, подключенные к магистрали, имеют полную информацию о составе интерсети.

Кроме маршрута default, в таблице маршрутизации могут встретиться два типа специальных записей - запись о специфичном для узла маршруте и запись об адресах сетей, непосредственно подключенных к портам маршрутизатора.

Специфичный для узла маршрут содержит вместо номера сети полный IP-адрес, то есть адрес, имеющий ненулевую информацию не только в поле номера сети, но и в поле номера узла. Предполагается, что для такого конечного узла маршрут должен выбираться не так, как для всех остальных узлов сети, к которой он относится. В случае, когда в таблице есть разные записи о продвижении пакетов для всей сети N и ее отдельного узла, имеющего адрес N,D, при поступлении пакета, адресованного узлу N,D, маршрутизатор отдаст предпочтение записи для N,D.

Записи в таблице маршрутизации, относящиеся к сетям, непосредственно подключенным к маршрутизатору, в поле "Метрика" содержат нули («подключено»).

Алгоритмы маршрутизации

Основные требования к алгоритмам маршрутизации:

  • точность;
  • простота;
  • надёжность;
  • стабильность;
  • справедливость;
  • оптимальность.

Существуют различные алгоритмы построения таблиц для одношаговой маршрутизации. Их можно разделить на три класса:

  • алгоритмы простой маршрутизации;
  • алгоритмы фиксированной маршрутизации;
  • алгоритмы адаптивной маршрутизации.

Независимо от алгоритма, используемого для построения таблицы маршрутизации, результат их работы имеет единый формат. За счет этого в одной и той же сети различные узлы могут строить таблицы маршрутизации по своим алгоритмам, а затем обмениваться между собой недостающими данными, так как форматы этих таблиц фиксированы. Поэтому маршрутизатор, работающий по алгоритму адаптивной маршрутизации, может снабдить конечный узел, применяющий алгоритм фиксированной маршрутизации, сведениями о пути к сети, о которой конечный узел ничего не знает.

Проста маршрутизация

Это способ маршрутизации не изменяющийся при изменении топологии и состоянии сети передачи данных (СПД).

Простая маршрутизация обеспечивается различными алгоритмами, типичными из которых являются следующие:

  • Случайная маршрутизация – это передача сообщения из узла в любом случайно выбранном направлении, за исключением направлений по которым сообщение поступило узел.
  • Лавинная маршрутизация – это передача сообщения из узла во всех направлениях, кроме направления по которому сообщение поступило в узел. Такая маршрутизация гарантирует малое время доставки пакета, засчет ухудшения пропускной способности.
  • Маршрутизация по предыдущему опыту – каждый пакет имеет счетчик числа пройденных узлов, в каждом узле связи анализируется счетчик и запоминается тот маршрут, который соответствует минимальному значению счетчика. Такой алгоритм позволяет приспосабливаться к изменению топологии сети, но процесс адаптации протекает медленно и неэффективно.

В целом, простая маршрутизация не обеспечивает направленную передачу пакета и имеет низкую эффективности. Основным ее достоинством является обеспечение устойчивой работы сети при выходе из строя различных частей сети.

Фиксированная маршрутизация

Этот алгоритм применяется в сетях с простой топологией связей и основан на ручном составлении таблицы маршрутизации администратором сети. Алгоритм часто эффективно работает также для магистралей крупных сетей, так как сама магистраль может иметь простую структуру с очевидными наилучшими путями следования пакетов в подсети, присоединенные к магистрали, выделяют следующие алгоритмы:

  • Однопутевая фиксированная маршрутизация – это когда между двумя абонентами устанавливается единственный путь. Сеть с такой маршрутизацией неустойчива к отказам и перегрузкам.
  • Многопутевая фиксированная маршрутизация – может быть установлено несколько возможных путей и вводится правило выбора пути. Эффективность такой маршрутизации падает при увеличении нагрузки. При отказе какой-либо линии связи необходимо менять таблицу маршрутизации, для этого в каждом узле связи храниться несколько таблиц.

Адаптивная маршрутизация

Это основной вид алгоритмов маршрутизации, применяющихся маршрутизаторами в современных сетях со сложной топологией. Адаптивная маршрутизация основана на том, что маршрутизаторы периодически обмениваются специальной топологической информацией об имеющихся в интерсети сетях, а также о связях между маршрутизаторами. Обычно учитывается не только топология связей, но и их пропускная способность и состояние.

Адаптивные протоколы позволяют всем маршрутизаторам собирать информацию о топологии связей в сети, оперативно отрабатывая все изменения конфигурации связей. Эти протоколы имеют распределенный характер, который выражается в том, что в сети отсутствуют какие-либо выделенные маршрутизаторы, которые бы собирали и обобщали топологическую информацию: эта работа распределена между всеми маршрутизаторами, выделяют следующие алгоритмы:

  • Локальная адаптивная маршрутизация – каждый узел содержит информацию о состоянии линии связи, длины очереди и таблицу маршрутизации.
  • Глобальная адаптивная маршрутизация – основана на использовании информации получаемой от соседних узлов. Для этого каждый узел содержит таблицу маршрутизации, в которой указано время прохождения сообщений. На основе информации, получаемой из соседних узлов, значение таблицы пересчитывается с учетом длины очереди в самом узле.
  • Централизованная адаптивная маршрутизация – существует некоторый центральный узел, который занимается сбором информации о состоянии сети. Этот центр формирует управляющие пакеты, содержащие таблицы маршрутизации и рассылает их в узлы связи.
  • Гибридная адаптивная маршрутизация – основана на использовании таблицы периодически рассылаемой центром и на анализе длины очереди с самом узле.

Показатели алгоритмов (метрики)

Маршрутные таблицы содержат информацию, которую используют программы коммутации для выбора наилучшего маршрута. Чем характеризуется построение маршрутных таблиц? Какова особенность природы информации, которую они содержат? В данном разделе, посвященном показателям алгоритмов, сделана попытка ответить на вопрос о том, каким образом алгоритм определяет предпочтительность одного маршрута по сравнению с другими.

В алгоритмах маршрутизации используется множество различных показателей. Сложные алгоритмы маршрутизации при выборе маршрута могут базироваться на множестве показателей, комбинируя их таким образом, что в результате получается один гибридный показатель. Ниже перечислены показатели, которые используются в алгоритмах маршрутизации:

  • Длина маршрута.
  • Надежность.
  • Задержка.
  • Ширина полосы пропускания.

Длина маршрута.

Длина маршрута является наиболее общим показателем маршрутизации. Некоторые протоколы маршрутизации позволяют администраторам сети назначать произвольные цены на каждый канал сети. В этом случае длиной тракта является сумма расходов, связанных с каждым каналом, который был траверсирован. Другие протоколы маршрутизации определяют "количество пересылок" (количество хопов), т. е. показатель, характеризующий число проходов, которые пакет должен совершить на пути от источника до пункта назначения через элементы объединения сетей (такие как маршрутизаторы).

Надежность.

Надежность, в контексте алгоритмов маршрутизации, относится к надежности каждого канала сети (обычно описываемой в терминах соотношения бит/ошибка). Некоторые каналы сети могут отказывать чаще, чем другие. Отказы одних каналов сети могут быть устранены легче или быстрее, чем отказы других каналов. При назначении оценок надежности могут быть приняты в расчет любые факторы надежности. Оценки надежности обычно назначаются каналам сети администраторами. Как правило, это произвольные цифровые величины.

Задержка.

Под задержкой маршрутизации обычно понимают отрезок времени, необходимый для передвижения пакета от источника до пункта назначения через объединенную сеть. Задержка зависит от многих факторов, включая полосу пропускания промежуточных каналов сети, очереди в порт каждого маршрутизатора на пути передвижения пакета, перегруженность сети на всех промежуточных каналах сети и физическое расстояние, на которое необходимо переместить пакет. Т. к. здесь имеет место конгломерация нескольких важных переменных, задержка является наиболее общим и полезным показателем.

Полоса пропускания.

Полоса пропускания относится к имеющейся мощности трафика какого-либо канала. При прочих равных показателях, канал Ethernet 10 Mbps предпочтителен любой арендованной линии с полосой пропускания 64 Кбайт/с. Хотя полоса пропускания является оценкой максимально достижимой пропускной способности канала, маршруты, проходящие через каналы с большей полосой пропускания, не обязательно будут лучше маршрутов, проходящих через менее быстродействующие каналы.

, /ˈɹaʊtɚ/ ) или ро́утер (прочтение слова англ. router как транслитерированного)) - специализированный сетевой компьютер , имеющий минимум два сетевых интерфейса и пересылающий пакеты данных между различными сегментами сети , принимающий решения о пересылке на основании информации о топологии сети и определённых правил, заданных администратором .

Маршрутизаторы делятся на программные и аппаратные. Маршрутизатор работает на более высоком «сетевом» уровне 3 сетевой модели OSI , нежели коммутатор и сетевой мост , которые работают на 2 уровне и 1 уровне модели OSI соответственно.

Принцип работы

Обычно маршрутизатор использует адрес получателя, указанный в пакетных данных, и определяет по таблице маршрутизации путь, по которому следует передать данные. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.

Существуют и другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня . Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя, фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование/дешифрование передаваемых данных и т. д.

Таблица маршрутизации

Применение

Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий или широковещательные домены , а также благодаря фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN -соединений, использующих протоколы xDSL , PPP , ATM , Frame relay и т. д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет , осуществляя функции трансляции адресов и межсетевого экрана .

В качестве маршрутизатора может выступать как специализированное (аппаратное) устройство, так и обычный компьютер , выполняющий функции маршрутизатора. Существует несколько пакетов программного обеспечения (на основе ядра Linux , на основе операционных систем BSD) с помощью которого можно превратить ПК в высокопроизводительный и многофункциональный маршрутизатор, например, Quagga , IPFW или простой в применении .

Устройства для малого/домашнего офиса - галерея

Устройства сбора и передачи данных (УСПД) в АИИС КУЭ

Маршрутизатор является основным сетевым устройством сети АИИС КУЭ. Основной функцией маршрутизатора является транзит цифровых информационных потоков между исполнительными устройствами (например счетчиками) в сети потребления энергоресурсов и центром. Он предназначен для конфигурирования каналов связи, согласования протоколов и обеспечения обмена данными счетчиков энергии, концентраторов, ретрансляторов и других компонентов автоматизированных информационно-измерительных систем коммерческого и технического учета энергоресурсов. Отличительной особенностью является возможность использовать одновременно несколько каналов передачи данных (GSM /GPRS , PLC , Радиоканал , Ethernet , RS-232 и др.)

См. также

Примечания

Литература

  • Аллан Леинванд, Брюс Пински Конфигурирование маршрутизаторов Cisco = Cisco Router Configuration. - 2-е изд. - М .: «Вильямс», 2001. - С. 368. - ISBN 1-57870-241-0

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Обычно для создания простой локальной сети (компьютерной сети) построенной на технологии Ethernet или Wi-Fi используется сетевое устройство (маршрутизатор, модем, коммутатор, точка беспроводного доступа...). Но из всего этого многообразия сетевых устройств нас интересует маршрутизатор. Так зачем нужен маршрутизатор и какую роль он выполняет в локальной сети?

Маршрутизатор (router) - это сетевой компьютер связывающий участки локальной сети, который обрабатывает полученные данные по заданным правилам администратора и опираясь на таблицу маршрутизации определяет путь для пересылки данных.

Чтобы было более понятно, давайте разберем участие маршрутизатора в домашней локальной сети. Предположим, что у вас дома есть настольный компьютер (desktop), ноутбук (laptop), принтер или МФУ (Многофункциональное устройство), планшет и в добавок вы хотите купить телевизор Smart с 3D. К вам в квартиру заходит всего лишь одинкабель LAN по которому провайдер предоставляет вам доступ к сети интернет. Возникает вопрос: "Как одновременно всем устройствам дать выход в сеть интернет, если кабель от провайдера в квартире один?".

Вот тут-то и приходит на помощь беспроводной маршрутизатор, который можно подключить к кабелю провайдера (верхнее изображение) и дать всем устройствам (Smart TV, компьютер, планшет...) выход в сеть интернет. Если провайдер использует телефонные линии, то подключение маршрутизатора к сети интернет выполняется через модем (нижнее изображение). Связь домашних устройств с беспроводным маршрутизатором осуществляется по кабелю LAN (опрессовка витой пары без инструмента) и по беспроводной сети Wi-Fi (примеры слабого сигнала Wi-Fi).

Принцип работы маршрутизатора.

Таким образом маршрутизатор связывает разнородные сегменты сети (локальную домашнюю сеть и глобальную сеть интернет) и на основе таблицы маршрутизации отправляет данные адресату.

Таблица маршрутизации - это электронная база данных в маршрутизаторе, которая представляет из себя некий набор правил. В ней содержится информация о сетевых маршрутах по которой определяется наилучший путь для передачи пакета данных.

Таблица содержит в себе адрес и маску сети назначения, адрес шлюза (маршрутизатор в сети на который отправляются данные), метрику (расстояние) и интерфейс (имя или идентификатор устройства).

Следует сказать, что маршрутизатор в отличии от коммутатора не умеет составлять таблицу на основе информации из полученных пакетов. Она храниться в его памяти и может создаваться динамически или статически.

Через специальные протоколы маршрутизатор время от времени по каждому адресу отправляет тестовую информацию и на полученных данных поддерживает фактическую карту сети. Другими словами маршрутизаторы периодически сканируют сеть и обмениваются информацией друг о друге и сети к которой они подключены. Этот процесс называется динамической маршрутизацией.

Статическая маршрутизация подразумевает создание таблицы администратором вручную. В этом случае вся маршрутизация выполняется без участия специальных протоколов.

В отличии от коммутатора (Switch/уровень 2 в OSI/"Канальный") и концентратора (Hub/уровень 1 в OSI/"Физический") маршрутизатор стоит на голову выше, так как работает на третьем уровне в модели OSI (базовая эталонная модель), который называется "Сетевым".

Наиболее распространенные разновидности технологий Ethernet

Обзор современных локальных сетей Ethernet

Ethernet (эзернет, от лат. aether - эфир) - пакетная технология компьютерных сетей.

Ethernet наиболее популярное во всем мире семейство стандартов для локальных сетей, которое охватывает физический и канальный уровень модели OSI. Стандарты Ethernet отличаются поддерживаемой скоростью; широко распространены на сегодняшний день скорости 10, 100 и 1000 Мбит/с (т.е. 1 Гбит/с). Различные варианты технологии также отличаются типом используемой среды передачи данных, например, в наиболее популярных стандартах Ethernet используется недорогой тип кабеля, а именно неэкрани рованная витая пара (Unshielded Twisted Pair UTP), в то время как в других более дорогой оптоволоконный кабель. Использование оптоволоконного кабеля оправдано в том случае, если нужно подключить устройства, которые находятся на большом рас стоянии друг от друга, или в случае повышенных требований к безопасности сети. Для обеспечения различных потребностей при создании локальных сетей и были разработаны различные стандарты, работающие на разных скоростях, разном типе среды передачи данных (чем больше расстояние, тем дороже технология) и т.п. Институт инженеров по электротехнике и электронике (IEEE) опубликовал множество стандартов Ethernet, после того, как в начале 1980х он возглавил процесс стандартизации локальных сетей. Большинство стандартов поразному реализовано на физическом уровне, работает с различными скоростями и типами кабелей.

В стандартах IEEE канальный уровень разделен на два подуровня:

     IEEE 802.3 подуровень контроля доступа к среде передачи данных

(подуровень MAC);

     IEEE 802.2 подуровень управления логическим каналом (подуровень LLC).

Фактически MAC-адрес получил свое название от названия нижнего подуровня канального уровня Ethernet. Каждый новый стандарт физического уровня, публикуемый IEEE, содержит дос таточно много отличий от предшествующих, но при этом использует тот же заголовок формата 802.3 и подуровень LLC в качестве верхнего уровня.

В табл. 3.2 перечислены наиболее часто используемые стандарты Ethernet IEEE

для физического уровня.

Таблица 3.2. Наиболее распространенные разновидности технологии Ethernet

Общеизвестно

е название

Скорость

Альтернативное

название

Стандарт

Тип кабеля, максимальная длина (м)

Медный, 100

Медный, 100

Gigabit Ethernet

Оптический, 550 для SX, 5000 для LX

Gigabit Ethernet

Медный, 100

    Прикладной уровень (Application layer). Верхний (7-й) уровень модели, обеспечивает взаимодействие сети и пользователя. Уровень разрешает приложениям пользователя доступ к сетевым службам, таким как обработчик запросов к базам данных, доступ к файлам, пересылке электронной почты. Также отвечает за передачу служебной информации, предоставляет приложениям информацию об ошибках и формирует запросы к уровню представления. Пример: HTTP, POP3, SMTP.

    Уровень представления (Presentation layer). 6-й уровень отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с уровня приложений, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. На уровне представления может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

    Сеансовый уровень (Session layer). 5-й уровень модели отвечает за поддержание сеанса связи, что позволяет приложениям взаимодействовать между собой длительное время. Сеансовый уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия.

    Транспортный уровень (Transport layer). 4-й уровень модели, предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом неважно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Протоколы этого уровня предназначены для взаимодействия типа точка-точка. Пример: TCP, UDP

    Сетевой уровень (Network layer). 3-й уровень сетевой модели OSI, предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор.

    Канальный уровень (Data Link layer). Этот уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Данные, полученные с физического уровня, он упаковывает во фреймы, проверяет на целостность, если нужно исправляет ошибки и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием. Спецификация IEEE 802 разделяет этот уровень на 2 подуровня - MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня. На этом уровне работают коммутаторы, мосты. В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI, NDIS

    Физический уровень (Physical layer). Самый нижний уровень модели, предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и соответственно их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов. Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством. На этом уровне работают концентраторы (хабы), повторители (ретрансляторы) сигнала и медиаконверторы. Функции физического уровня реализуются на всех устройствах, подключенных к сети. Со стороны компьютера функции физического уровня выполняются сетевым адаптером или последовательным портом.

В основном используются протокол TCP/IP

Определение:

Transmission Control Protocol/Internet Protocol, TCP/IP (Протокол управления передачей/Протокол Интернета)

Большинство операционных систем сетевых серверов и рабочих станций поддерживает TCP/IP, в том числе серверы NetWare, все системы Windows, UNIX, последние версии Mac OS, системы OpenMVS и z/OS компании IBM, а также OpenVMS компании DEC. Кроме того, производители сетевого оборудования создают собственное системное программное обеспечение для TCP/IP, включая средства повышения производительности устройств. Стек TCP/IP изначально применялся на UNIX-системах, а затем быстро распространился на многие другие типы сетей.

Протоколы локальных сетей

Протоколы локальных сетей

Свойства протоколов локальной сети

В основном протоколы локальных сетей имеют такие же свойства, как и Другие коммуникационные протоколы, однако некоторые из них были разработаны давно, при создании первых сетей, которые работали медленно, были ненадежными и более подверженными электромагнитным и радиопомехам. Поэтому для современных коммуникаций некоторые протоколы не вполне пригодны. К недостаткам таких протоколов относится слабая защита от ошибок или избыточный сетевой трафик. Кроме того, определенные протоколы были созданы для небольших локальных сетей и задолго до появления современных корпоративных сетей с развитыми средствами маршрутизации.

Протоколы локальных сетей должны иметь следующие основные характеристики:

    обеспечивать надежность сетевых каналов;

    обладать высоким быстродействием;

    обрабатывать исходные и целевые адреса узлов;

    соответствовать сетевым стандартам, в особенности - стандарту IEEE 802.

В основном все протоколы, рассматриваемые в этой главе, соответствуют перечисленным требованиям, однако, как вы узнаете позднее, у одних протоколов возможностей больше, чем у других.

В таблице перечислены протоколы локальных сетей и операционные системы, с которыми эти протоколы могут работать. Далее в главе указаны протоколы и системы (в частности, операционные системы серверов и хост компьютеров) будут описаны подробнее.

Таблица Протоколы локальных сетей и сетевые операционные системы

Протокол

Соответствующая операционная система

Первые версии операционных систем Microsoft Windows

Apple Macintosh

UNIX, Novel NetWare, современные версии операционных систем Microsoft Windows, операционные системы мэйнфреймов IBM

Операционные системы мэйнфреймов и миникомпьютеров IBM

Клиентские системы, взаимодействующие с мэйнфреймами IBM, настроенными на работу с протоколом SNA

Понятие протокола Интернет

Очевидно, что рано или поздно компьютеры, расположенные в разных точках земного шара, по мере увеличения своего количества должны были обрести некие средства общения. Такими средствами стали компьютерные сети. Сети бывают локальными и глобальными. Локальная сеть - это сеть, объединяющая компьютеры, географически расположенные на небольшом расстоянии друг от друга - например, в одном здании. Глобальные сети служат для соединения сетей и компьютеров, которых разделяют большие расстояния - в сотни и тысячи километров. Интернет относится к классу глобальных сетей.

Простое подключение одного компьютера к другому - шаг, необходимый для создания сети, но не достаточный. Чтобы начать передавать информацию, нужно убедиться, что компьютеры "понимают" друг друга. Как же компьютеры "общаются" по сети? Чтобы обеспечить эту возможность, были разработаны специальные средства, получившие название "протоколы". Протокол - это совокупность правил, в соответствии с которыми происходит передача информации через сеть. Понятие протокола применимо не только к компьютерной индустрии. Даже те, кто никогда не имел дела с Интернетом, скорее всего работали в повседневной жизни с какими-либо устройствами, функционирование которых основано на использовании протоколов. Так, обычная телефонная сеть общего пользования тоже имеет свой протокол, который позволяет аппаратам, например, устанавливать факт снятия трубки на другом конце линии или распознавать сигнал о разъединении и даже номер звонящего.

Исходя из этой естественной необходимости, миру компьютеров потребовался единый язык (то есть протокол), который был бы понятен каждому из них.

Основные протоколы используемые в работе Интернет:

Что такое маршрутизатор? Это устройство, которое предназначено для передачи разных файлов по «всемирной паутине» с помощью подключённых к нему мобильных или ПК устройств. В этой теме мы рассмотрим характеристики маршрутизаторов, их функции и назначения.

Маршрутизатор представляет собой небольшое устройство , которое состоит из следующих компонентов:

  • встроенной антенны;
  • аппаратного блока;
  • шнура и питания.

Проще говоря, маршрутизатор - это сетевое устройство, которое по локальной сети может передавать файлы (фотографии, документы, аудио - и видеозаписи) между подключёнными к роутеру ноутбуками.

  1. История;
  2. Как работает устройство;
  3. Виды и назначения маршрутизаторов.

История

Маршрутизатор появился в 1974 году как раз в то время, когда и была создана «мировая паутина». В 1976 году первые сетевые роутеры были уже широко известны по всему миру. У каждого такого сетевого роутера есть уровни и они делятся на три категории: маршрутизаторы ядра сети, граничные (сюда входят граничные, а также абонентские устройства меток) и межпровайдерские.

Что касается внешнего вида, то именно к этому производители роутеров относятся более, чем серьёзно. А теперь поговорим об этом более подробно и начнём с того, что в сетевом роутере очень много разъёмов.

Все они имеют свои названия и начнём с главного - WAN-порт и он предназначен для подключения к интернету. Далее, можно обнаружить несколько одинаковых LAN-портов (их число зависит от уровня роутера, но в среднем присутствует от 4 до 8 штук, а у промышленных их, вообще, около 100 и более). Все они существуют для подключения по внешней или внутренней локальной сети.

Одним из самых важных является разъём для подключения блока питания. А также недалеко от этих разъёмов может находиться антенна или разнообразные для неё гнёзда (их бывает несколько). Затем находится кнопка включения/выключения и режим сброса настроек (reset). Кнопка для подключения WiFi и USB-порт. Он нужен для подключения сторонних устройств, например, сканер или даже принтер. И также с внешней стороны присутствует индикатор.

По сути, роутер нужен для того, чтобы из нескольких локальных сетей получилась одна. Но и этого со временем стало не хватать, поэтому позднее каждая сеть смогла находить другие локальные сети с помощью роутеров. Рассмотрим ситуацию более понятно благодаря наглядному примеру . Итак, в класс, где находятся несколько компьютеров или ноутбуков нужно поставить сетевое устройство для того, чтобы каждый из них мог подключаться к одной локальной сети. Или, например, необходимо раздать интернет на несколько компьютеров одновременно.

Кроме этих функций сетевого устройства, есть и множество других. Например, подключать несколько компьютеров к интернету и устанавливать между ними соединения. А также маршрутизатор способен защищать группу (домашнюю или рабочую) от всяческих угроз в виде вирусов. Раздавать ip-адреса сетевой роутер также может, независимо от того, к какому уровню он относится. Есть и такая функция маршрутизаторов , как шифрование и контролирование трафика, а также регулирование доступа в интернет.

Как работает устройство

Каждый роутер имеет свою установку и режим, например, для внешней сети устанавливаются протоколы, а для внутренней схемы маршрутизации. Но в обоих случаях одновременно существует и контроль и защита, что, конечно же, имеет большое преимущество. Чтобы понять работу роутера, нужно как минимум ознакомиться с научными работами, с помощью которых и появился роутер. Но поскольку эта задача для многих будет непонятной, мы решили предоставить упрощённое описание принципа работы маршрутизатора.

Для начала нужно знать , что все данные в интернете могут передаваться маленькими пакетами. Но прежде чем передавать такую порцию данных, необходимо указывать адрес или, другим словом, точку доставки. Можно сказать, что маршрутизатор является почтальоном, который вначале получает нужный пакет, далее по внешней или внутренней локальной сети находит нужную точку доставки, после чего отправляет «посылку».

Виды и назначения маршрутизаторов

Поговорим о характеристиках маршрутизаторов, видов которых очень много у каждого из них своё назначение. Более того, каждый маршрутизатор выпускается с разными модемами, поэтому подключаются они к разным каналам.

Итак, существуют модемы dsl - adsl и vdsl . Они предназначены для того, чтобы интернет мог передаваться по телефонным проводам. Кабельный модем нужен для того, чтобы благодаря своему кабелю провайдер мог подключить абонента к интернету. Немного отличающиеся от других, маршрутизаторы с волоконно-оптическим кабелем выпускаются отдельно. Есть и своя линия, которая выпускает отдельные виды модемов. А также очень популярные на данный момент широкополосные 3G маршрутизаторы, которые можно использовать с sim-картой. Такие чаще всего называются модемами в режиме роутера. Без телефонных проводов такое устройство работать просто не сможет, но именно модем в режиме роутера более удобен/

Кроме роутеров , которые можно использовать дома, есть некоторое количество для разных случаев жизни:

Из всего вышесказанного следует один вывод - приобретать маршрутизатор необходимо после того, как выбрали, какой именно тип роутера вам нужен . После покупки не стоит включать и настраивать режимы маршрутизатора, лучше обратиться с этим к специалистам и позже наслаждаться интернетом.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то