Хранение информации. Понятие файла. Файловый принцип хранения данных. Типы файлов. Операции с файлами


Информация, представляемая для обработки на компьютере, называется данными. Для хранения на устройствах внешней памяти данные организуют в виде файлов. Файл - именованная область внешней памяти.

Способ организации как служебной, так и пользовательской информации о файлах на носителях называют файловой системой. Конкретная файловая система определяет, в частности, правила именования файлов.

Необходимые для выполнения операций с файлами и носителями программные средства входят в состав операционных систем. Такие программные средства не изменяют и не обращаются к содержимому файлов, а оперируют с ними просто как с целым, непрерывным массивом данных. Таким образом, файловая система обеспечивает выполнение операций для любых программ.

Имя файлу присваивает пользователь, или программа, создающая файл, предлагает имя в автоматическом режиме. По историческим причинам для пользователя имя файла в операционных системах фирмы Майкрософт состоит из двух частей, разделенных точкой: собственно имени и расширения. Тип файла определяется по его расширению, которое задает программа, сохраняющая файл.

С точки зрения прикладных программ, файл представляет собой некоторую последовательность байтов. Используя такой подход, как доступ к файлам, организуется также доступ к некоторым устройствам, которые принимают или возвращают поток байтов. К таким устройствам относятся принтеры, модемы, клавиатура или поток текстового вывода на экран и др.

В некоторых операционных системах предусмотрен такой доступ и к служебной информации самих носителей. Для работы с такими файлами предусмотрены специальные, зарезервированные системой, имена файлов.

Следует помнить, что для ОС линии Microsoft:

между именем и расширением ставится точка, не входящая ни в имя, ни в расширение;

имя файла можно набирать в любом регистре, т.к. для системы все буквы строчные;

символы, не использующиеся в имени файла * = + \ ; : , . < > / ?

имена устройств не могут использоваться в качестве имён файлов (prn, lpt, com, con, nul).

Наиболее часто встречающиеся расширения:

EXE, COM - готовая к выполнению программа;

ВАТ - пакетный командный файл;

SYS - программа-драйвер устройства (системная);

ВАК - резервная копия файла;

OBJ - объектный модуль («полуфабрикат» программы);

DAT - файл данных со служебной информацией;

BAS - исходный текст программы на Бейсике;

ТХТ - текстовый файл;

DOC - документ, созданный в Microsoft Word.

Для удобства хранения и работы файловые структуры организуются с помощью вложенных каталогов (папок).

Каталог - специальный системный файл, в котором хранится служебная информация о файлах.

На каждом носителе может быть множество каталогов. В каждом каталоге может быть зарегистрировано много файлов, но каждый файл регистрируется только в одном каталоге

На каждом логическом томе присутствует один главный, или корневой, каталог. В нем регистрируются файлы и подкаталоги (каталоги 1 уровня). В каталогах 1 уровня регистрируются файлы и каталоги 2 уровня и т. д. Получается древовидная структура каталогов, например:

Каталог, с которым работает пользователь в настоящий момент, называется текущим.

Когда используется файл не из текущего каталога, программе, осуществляющей доступ к файлу, необходимо указать, где именно этот файл находится. Это делается с помощью указания пути к файлу.

Путь к файлу - это последовательность имен каталогов, в операционных системах Windows разделенных символом «\» (в ОС линии UNIX используется символ «/»). Этот путь задает маршрут к тому каталогу, в котором находится нужный файл.

Рассмотрим, например, запись \KLASS10\DOCS\START2\text.doc

Она означает, что файл text.doc находится в подкаталоге START2, который находится в каталоге DOCS, а он в свою очередь находится в каталоге KLASS10 корневого каталога.

Над файлами можно производить следующие основные операции: копирование, перемещение, удаление, переименование и пр.

Каждый файл на диске имеет свой адрес. Чтобы понять принцип доступа к информации, хранящейся в файле, необходимо знать способ записи данных на носители информации.

Перед использованием диск размечается на дорожки и секторы (форматируется). С точки зрения оборудования разметка - это процесс записи на носитель служебной информации, отмечающей конец и начало каждого сектора. Обычный объем сектора - 512 байт. На одной стороне размещается 80 дорожек. Каждая дорожка содержит 18 секторов.

Названия «сектор», «дорожка» введены для дисковых носителей. Во многих современных носителях информации, использующих хранение данных в энергонезависимой памяти, эти понятия поддерживаются реализацией файловых систем для обеспечения общих принципов работы.

В одной из распространенных файловых систем, FAT, предусматривается, что все файлы перечислены в каталогах. Обязателен корневой каталог, размещенный в определенном месте диска. О каждом из перечисленных в ката­логе файлов помимо обычных данных известно местоположение (в виде номера) начала файла.

Для того, чтобы определить, какие именно секторы занимает файл, применяется второй обязательный элемент файловой системы - таблица FAT (размещения файлов). Таблица представляет собой массив ячеек. Размер ячейки фиксирован и отражается в номере файловой системы (12, 16, 32 бита). Каждый файл занимает некоторую последовательность секторов, не обязательно последовательно расположенных. При сохранении файла в ячейку записывается номер следующего сектора в цепочке.

Поскольку на современных дисках секторов существенно больше, чем можно записать номеров в таблице, то секторы объединяют в кластеры. Именно кластерами и распределяется пространство на дисках, в результате эта файловая система неэффективно работает с мелкими файлами.

Сделать эту проблему менее острой позволяет увеличение размера ячейки в FAT. Это позволяет уменьшить размер кластера и увеличить количество адресов (файлов) на диске. В операционных системах, начиная с Windows 98, реализована FAT-32.

Помимо этой файловой системы, существует большое количество других, разработанных для разных операционных систем и решаемых задач.

Для долговременного хранения информации, её накопления и передачи используются носители информации. Материальная природа носителей информации может быть различной: бумага, фото и кинопленки для аналоговых носителей, микросхемы памяти, магнитные и лазерные диски для информации в цифровой форме и т.д.

Носители информации характеризуются информационной ёмкостью. Современные микросхемы памяти могут хранить в 1см3 1010 битов информации, однако это во много раз меньше чем хранят молекулы ДНК. Однако если сравнивать с информационной емкостью традиционных носителей (книг), то прогресс очевиден.

Надежность и долговременность хранения информации

Надежность (устойчивость к повреждениям) достаточно высока у аналоговых носителей, повреждение которых приводит к потере информации только на поврежденном участке. Цифровые носители гораздо более чувствительны к повреждениям, т.к. потеря только одного байта может привести к невозможности прочитать весь файл. Именно поэтому необходимо соблюдать правила эксплуатации и хранения цифровых носителей информации.

Устройство компьютера

С точки зрения информатики компьютер -- это электронное устройство для ввода, хранения, обработки и передачи информации. Мы будем рассматривать только персональные компьютеры. В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Этот принцип опирается на шинный принцип обмена информацией между устройствами. Модульность позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию.

Шина представляет собой многопроводные линии, к которым подключаются процессор, оперативная память, а также периферийные устройства ввода, вывода и хранения информации. Эти устройства обмениваются через шину информацией в форме электрических импульсов, которые соответствуют последовательностям нулей и единиц машинного кода. Шина данных -- собственно, набор контактов, соединяющий различные компоненты компьютера для подвода к ним питания и обмена данными. По этой шине, например, прочитанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении. Выбор устройства или ячейки памяти, куда или откуда пересылаются данные по шине данных, производит процессор.

Существует понятие базовой конфигурации персонального компьютера, в которую входят:

  • · Системный блок;
  • · Монитор;
  • · Клавиатура;
  • · Мышь.

Рассмотрим элементы конфигурации персонального компьютера, точки зрения модульной структуры:

1. Системный блок

Системный блок представляет собой металлический корпус с блоком питания. В корпусе также располагается звуковой динамик. Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называются внутренними, а подключаемые снаружи -- внешними.

  • 1.1. Системная (материнская) плата (motherboard), на которой располагаются различные устройства, входящие в системный блок. Конструкция материнской платы позволяет каждому пользователю заменять вышедшие из строя или устаревшие элементы системного блока. На системной плате крепятся:
    • а) Процессор (CРU - Central Рrocessing Unit) -- большая интегральная схема на кристалле, которая называется большой по количеству включенных в нее элементов. Процессор выполняет логические и арифметические операции, осуществляет управление функционированием компьютера. Процессор характеризуется тактовой частотой. Такт -- это промежуток времени между началами двух последовательных импульсов, которые подаются специальной микросхемой -- генератором тактовой частоты, синхронизирующим работу узлов компьютера. Тактовая частота -- это количество тактов в секунду. На выполнение процессором каждой базовой операции отводится определенное число тактов. Ясно, что чем больше тактовая частота, тем больше операций в секунду выполняет компьютер. Тактовая частота определяет быстродействие процессора и измеряется в Герцах (1с). Современные процессоры настолько быстры, что их частоты удобно измерять в ГГц (Гигагерцах). Другой характеристикой процессора является его разрядность. Разрядность - означает количество двоичных разрядов, которые могут передаваться или обрабатываться процессором одновременно. Производительность процессора является его интегральной характеристикой, которая зависит от частоты процессора, его разрядности, а также особенностей архитектуры. Наиболее известными изготовителями процессоров являются компании Intel и AMD.
    • б) Контроллеры - микросхемы, отвечающие за работу различных устройств компьютера (клавиатуры, HDD, FDD, мыши и т.д.). Сюда же отнесем и микросхему ПЗУ (Постоянное Запоминающее Устройство) в которой хранится ROM-BIOS.
    • в) Слоты (шины) - разъемы (ISA, РCI, SCSI, AGР и т.д.) под различные устройства (оперативная память, видеокарта и т.п.).
    • г) Оперативное запоминающее устройство (ОЗУ, RAM - Random Access Memory -- микросхемы, служащие для кратковременного запоминания промежуточных команд, значений вычислений, производимых CРU, а также других данных. Там же для повышения быстродействия хранятся исполняемые программы. Оперативная память изготавливается в виде модулей памяти. Модули памяти представляют собой пластины с рядами контактов. Модули памяти различаются между собой по конструкции, быстродействию, информационной емкости и т.д. Важнейшей характеристикой является быстродействие. ОЗУ - быстродействующая память со временем регенерации 7·10-9 сек.
    • д) Видеокарта (видеоакселератор) - устройство, расширяющее возможности и ускоряющее работу с графикой. Видеокарта имеет свою видеопамять для хранения графической информации и графический процессор (GРU - Graрhic Рrocessor Unit), берущий на себя вычисления при работе с 3D графикой и видео. Может иметь выход на TV и видеовход.
    • е) Звуковая карта - устройство, расширяющее звуковые возможности компьютера. Звуки генерируются с помощью записанных в память образцов звуков разных тембров. Поддерживаются различные эффекты. Могут иметь линейный вход/выход, выход на наушники, микрофонный вход, (разъем для джойстика, аналоговый и цифровой вход CD аудио).
    • ж) Сетевая карта - устройство, отвечающее за подключение компьютера к сети для возможности обмена информацией.

Кроме материнской платы в системном блоке находятся:

Накопитель на жестком магнитном диске (винчестер, HDD - Hard Disk Drive) - герметично запаянный корпус с вращающимися магнитными дисками и магнитными головками. Жесткий магнитный диск представляет собой несколько десятков дисков, размещенных на одной оси и вращающихся с большой угловой скоростью. Основной функцией жесткого магнитного диска является долговременное хранение большого объема информации в виде файлов (программы, тексты, графика, фотография, музыка, видео). Жесткий диск -- это устройство, которое использует свойство сохранения намагниченности специальным магнитным веществом, нанесенным на поверхность диска. В процессе записи информации головки дисковода перемещаются вдоль поверхности диска, на которую нанесен слой этого магнитосодержащего вещества. В головки поступают импульсы (последовательность нулей и единиц), в результате намагничиваются или не намагничиваются элементы поверхности магнитного носителя.

При считывании информации головка движется вдоль поверхности носителя. Намагниченные участки вызывают в ней импульсы тока (явление электромагнитной индукции). Последовательности таких импульсов передаются в оперативную память компьютера. В отсутствии сильных магнитных полей и высоких температур элементы поверхности могут сохранять намагниченность достаточно долго.

CD/DVD-ROM (Comрact Disc Read Only Memory) - устройство, служащее для считывания/записи информации с CD/DVD дисков. Двоичная информация с поверхности CD считывается лучом лазера. В лазерных дисководах используется оптический принцип записи и считывания информации. Информация на лазерном диске записывается на спиралевидную дорожку, содержащую чередующиеся участки с различной отражающей способностью.

В процессе считывания информации луч лазера, установленный в дисководе, падает на поверхность вращающегося диска и отражается. Так как поверхность лазерного диска имеет участки с различными коэффициентами отражения, то отраженный луч меняет свою интенсивность (логические 0 или 1). Затем отраженные световые импульсы с помощью фотоэлементов преобразуются в электрические импульсы и по шине передаются в оперативную память.

Запись на CD/DVD основана на изменении отражающих свойств вещества подложки CD под действием луча лазера.

В состав ЭВМ кроме системного блока входят следующие устройства ввода-вывода информации.

  • 2. Монитор (дисплей) - устройство вывода графической информации. Есть электронно-лучевые (уже устаревшие) и LCD мониторы. На экране жидкокристаллического монитора изображения формируется в результате прохождения белого света лампы подсветки через ячейки, прозрачность которых зависит от приложенного электрического напряжения. Мониторы используют RGB систему образования цвета, т.е. цвет получается смешением 3-х основных цветов: красного (Red), зеленого (Green) и синего (Blue). Размеры по диагонали -- (14""), 15"", 17"", 19"", 21"", 24"". Размер пикселя - 0.2-0.3мм. Частота смены кадров - 77Гц при разрешении 1920x1200 пиксель, 85Гц при 1280x1024, 160Гц при 800x600. Количество цветов определяется количеством разрядов на один пиксель и может быть 256 (28, где 8 - количество разрядов), 65536 (216, режим High Color), 16 777 216 (224, режим True Color, может быть и 232).
  • 3. Клавиатура (keyboard) - клавишное устройство ввода команд и символьной информации (108 клавиш). Подключается к последовательному интерфейсу (COM порт) либо к USB порту. Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя. С помощью клавиатуры вводят команды управления, а с помощью монитора получают от нее отклик.
  • 4. Манипулятор типа мышь (mouse) - устройство ввода команд. Мышь подключается к компьютеру с помощью, так называемых портов (USB (Universal Serial Bus) или COM), которые передают электрические импульсы, несущие информацию, последовательно, один за другим. Аппаратно эти порты выведены на панель системного блока. Стандартной является 2-х кнопочная мышь с колесом прокрутки (scrolling). Перемещение мыши по плоской поверхности синхронизировано с перемещением графического объекта (указателя мыши) на экране монитора.
  • 5. Печатающее устройство (принтер) - устройство для вывода информации на бумагу, пленку или другую поверхность. Подключается к так называемому, параллельному интерфейсу (LРT порт) который передает одновременно 8 импульсов в машинном коде. Существуют конструкции, которые подключаются к USB (Universal Serial Bus) - универсальная последовательная шина, заменившая устаревшие COM и LРT порты).
  • а) Матричный. (уже устаревшая технология) Изображение формируется иголками, пробивающими красящую ленту.
  • б) Струйный. Изображение формируется выбрасываемыми из сопел (до 256) микрокаплями краски. Скорость движения капель до 40м/с.
  • в) Лазерный. Изображение на бумагу переносится со специального барабана, наэлектризованного лазером, к которому притягиваются частички краски (тонера).
  • 6. Сканер - устройство для ввода изображений в компьютер. Есть ручной, планшетный, барабанный.
  • 7. Модем (МОдулятор-ДЕМодулятор) - устройство, позволяющее обмениваться информацией между компьютерами через аналоговые или цифровые каналы. Модемы отличаются друг от друга максимальной скоростью передачи данных (2400, 9600, 14400, 19200, 28800, 33600, 56000 бит в секунду), поддерживаемыми протоколами связи. Бывают модемы внутренние и внешние.

Формат: doc

Дата создания: 01.10.1998

Размер: 106.37 KB

Скачать реферат

ТЕМА 7.3 (лекция)

Операционная система MS DOS.

Основные принципы хранения информации на магнитных дисках в MS DOS.

Файловая Система MS DOS(логические диски,каталоги,

файлы,устройства MS DOS).

Дополнительную информацию см. тема 3.2.

Терминология :

Флоппи-диск(дискета) - съемный гибкий магнитный диск.

Винчестер - не съемный жесткий магнитный диск(пакет дисков).

Дорожка - концентрические окружности на магнитной поверхности

диска, где располагается информация.Дорожки нумеруются с 0-ой

(дорожка с самым большим радиусом)

Цилиндр - объединение дорожек с одним и тем же номером, располо-

женных на разных поверхностях диска(для флоппи-диска под цилиндром

подразумевается 2 дорожки)

Сектор - каждая дорожка, размещенная на диске, делится на секторы.

Каждый сектор имеет размер = 512 байт (для MS DOS)

Кластер - это минимальная порция информации, которую MS DOS

считывает/записывает за одно обращение диску.Кластер “содержит”

только последовательно расположенные сектора(цель - увеличить ско

рость обмена с диском).

Размер Кластера = N*(РазмерСектора)= N * 512 байт,

где N = 2,4,8 и т.д.

FAT - Таблица размещения файлов

НАКОПИТЕЛИ НА МАГНИТНЫХ ДИСКАХ

Магнитные диски используются как запоминающие устройства ,позволя-

ющие хранить информацию долговременно, при отключенном питании.

Для работы с Магнитными Дисками используется устройство, называ-

емое накопителем на магнитных дисках(НМД) .

Обычно НМД состоит из следующих частей:

Контроллер дисковода,

Собственно дисковод,

Интерфейсные кабеля,

Магнитный диск

Контроллер дисковода управляет обменом информацией между CPU и ОЗУ ,

с одной стороны, и НМД - с другой.

Контроллер дисковода вставляется в один из свободных разъемов сис-

темной платы IBM PC (MotherBoard).

Дисковод содержит головки чтения/записи,механический привод пере-мещения головок и электронную схему для управления движением головок

и чтением/записью данных.

Магнитный диск представляет собой основу с магнитным покрытием ,

которая вращается внутри дисковода вокруг оси.

Магнитное покрытие используется в качестве запоминающего устройства .

Магнитные Диски : жесткие(Винчестер) и гибкие(Флоппи) .

Накопитель на жестких магнитных дисках - НЖМД(HDD).

Накопитель на гибких магнитных дисках - НГМД(FDD).

Винчестер(HDD) - накопитель на несъемном магнитном диске,созданный

на основе спец.технологии(винчестерская технология - отсюда название).

Магнитный диск Винчестера(на металлической основе) “имеет” большую

плотность записи и большое число дорожек. Винчестер может иметь

несколько Магнитных Дисков.

НЖМД типа Винчестер созданы в 1973 г.

Все магнитные диски Винчестера(объединенные в пакет Дисков ) - гермет-ически “упакованы” в общий кожух. Магнитные диски НЕ могут изыматься

из HDD и заменяться на аналогичные!!!

Магнитные головки объединены в единый блок(блок магнитных головок).

Этот блок по отношению к дискам перемещается радиально.

Во время работы PC Пакет Дисков все время вращается с постоянной

скоростью(3600 об/мин).При считывании/записи информации блок

магнитных головок перемещается(позиционируется) в заданную область,

где производиться посекторное считывание/запись информации.

В силу инерционности процесса обработки информации и большой ско-

рости вращения пакета дисков возможна ситуация, когда блок магнит-

проблемы используется метод чередования секторов(секторы нумеруются

не по порядку, а с пропусками). Например, вместо того,чтобы нумеро-

вать секторы по порядку: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... ,

их нумеруют так: 1 7 13 2 8 14 3 9 ...

В последнее время появились более скоростные SCSI-контроллеры,

которые обеспечивают достаточную скорость обработки информации,

и необходимость в чередовании секторов - отпадает.

Флоппи(FDD) (разработка фирмы IBM) - накопитель на съемном гибком

магнитном диске(флоппи). Флоппи-диск имеет пластиковую основу и

находится в спец.пластиковом кожухе.Флоппи-диск вставляется в FDD

вместе с кожухом.Флоппи-диск(в FDD) вращается внутри кожуха со ско-

ростью 300 об/мин.

На данный момент в IBM PC используются 2 типа FDD:

5.25" и 3.5"

Дискета 5.25" заключена в гибкий пластиковый кожух.

Дискета 3.5" заключена в жесткий пластиковый кожух.

HDD являются более скоростными устройствами, чем FDD.

МАГНИТНЫЕ ДИСКИ

Флоппи-диски(дискеты)

В качестве носителя информации используется магнитная поверхность

диска.Магнитная поверхность "разбита" на дорожки(концентрические

окружности, см. рис.1).Дорожки нумеруются начиная с 0-ой(макси-

мальный радиус). Магнитная поверхность "разбита" также на секторы

(см. Рис.1). Секторы нумеруются начиная с 1-го.

Принято, что каждая дорожка "разбита" на секторы. Размер каждого

сектора = 512 байт(для MS DOS).

Таким образом объем дискеты:

V = P * D * S * 512 (байт)

V - объем дискеты(байт),

P - кол-во поверхностей дискеты(1-а или 2-е),

D - кол-во дорожек на одной поверхности,

S - кол-во секторов на одной дорожке.

Если Дискета является системной, то ядро MS DOS размещается на-

чиная с 0-й дорожки,как более надежной(меньшая плотность записи).

Физический Адрес Сектора = Nповерхности + Nдорожки + Nсектора

Рис.1

Кол-во поверхностей "задается" при изготовлении Дискеты(может

быть 1-а или 2-е). Кол-во дорожек и кол-во секторов на дорожке

"задается" при форматировании дискеты. Форматирование дискет произ-

водится Пользователем с помощью спец.программ.

В табл.1 приведен перечень стандартных форматов флоппи-дисков,

применяемых в IBM PC.

Кол-во поверх-ностей

Кол-во дорожек на поверхности

Кол-во секторов на дорожке

Емкость диска,

На рис.2 представлено схематическое изображение дискеты 5.25" .

Рис.2

В зависимости от технологии изготовления дискеты 5.25" могут иметь

различные характеристики магнитной поверхности и,следовательно,

различные допустимые форматы.

Маркировка Дискет:

DS - Double Side (две стороны,поверхности),

DD - Double Density (удвоенная плотность)

HD - High Density (высокая плотность)

ED - Extra High Density (особо высокая плотность)

Если Дискета имеет маркировку DS/DD, то это значит - 360 Кб,

Если Дискета имеет маркировку DS/HD, то это значит - 1200 Кб,

Односторонние дискеты практически не встречаются.

В случае, если по каким-либо причинам маркировки нет на дискете,

то емкость дискеты можно определить косвенно по следующим приз-

1. магнитная поверхность дискет на 1200 Кб более темная, чем

у дискет на 360 Кб,

2. ободок на внутреннем центральном отверстии дискет на 360 Кб

более заметен, чем у дискет на 1200 Кб.

Важнейшими характеристиками дискеты являются:

Тип (5.25" или 3.5")

Формат(и,соответственно,емкость)

Винчестеры

Организация хранения информации на Винчестере, с точки зрения Поль-

зователя, не сильно отличается от Флоппи-дисков.

Разница лишь в том, что количество поверхностей,дорожек и секторов

значительно больше(соответственно больше и емкость).

Физический Адрес Сектора = Nцилиндра + Nдорожки + Nсектора

Важнейшими характеристиками Винчестера являются:

Емкость(от 10 Мб до 1.2 Гб),

Быстродействие(время произвольного доступа к информации,

чем меньше этот показатель, тем "быстрее" Винчестер)

(8-24 милисек)

Когда говорят (о Винчестере) 1 физический диск - имеется

в виду весь пакет дисков данного Винчестера.

С помощью спец.программ 1 физический диск Винчестера можно

"разбить" на несколько разделов (логических дисков ).

ФАЙЛОВАЯ СИСТЕМА MS DOS

Файл(по английски File) - папка,скоросшиватель.

Совокупность средств MS DOS, обеспечивающих доступ к информации

на внешних носителях называется системой управления файлами или

файловой системой .

Одно из понятий файловой системы MS DOS - логический диск.

Логические диски :

MS DOS, каждый логический диск это отдельный магнитный диск.

Каждый логический диск имеет свое уникальное имя .

В качестве имени логического диска используются буквы английского

алфавита от A до Z (включительно).

Кол-во логических дисков, таким образом, не более 26.

Буквы A и B - отведены строго под имеющиеся в IBM PC FDD .

Начиная с буквы C именуются логические диски (разделы) HDD .

Рис.3

В случае, если данный IBM PC имеет только один FDD, буква B

пропускается(см.рис.4).

Рис.4

Только логические диски A и C могут быть системными (см.тему 7.1)

Файловая структура логического диска :

Чтобы обратиться к информации на диске(находящейся в файле),

надо знать физический адрес первого сектора(Nповерхности+Nдо-

рожки+Nсектора), общее кол-во кластеров, занимаемое данным файлом,

адрес следующего кластера, если размер файла больше, чем размер

одного кластера и т.д. Все это очень туманно, трудно и не нужно.

MS DOS избавляет Пользователя от такой работы и ведет ее сама.

Для обеспечения доступа к файлам - файловая система MS DOS организует

и поддерживает на логическом диске определенную файловую структуру .

Элементы файловой структуры:

Стартовый сектор(сектор начальной загрузки,Boot-сектор ),

- таблица размещения файлов (FAT - File Allocation Table),

- корневой каталог (Root-Directory),

Область данных (оставшееся свободным дисковое пространство)

Эти элементы создаются спец.программами(в среде MS DOS) в процессе

инициализации диска.

Рис. 5

Стартовый сектор(сектор начальной загрузки, Boot-сектор ) :

Здесь записана информация, необходимая MS DOS для работы с диском:

- идентификатор OS (если диск системный),

- размер сектора диска,

- кол-во секторов в кластере ,

Кол-во резервных секторов в начале диска,

Кол-во копий FAT на диске(стандарт - две),

Кол-во элементов в каталоге,

Кол-во секторов на диске,

Тип формата диска,

Кол-во секторов в FAT,

Кол-во секторов на дорожку,

Кол-во поверхностей,

Блок начальной загрузки OS,

За стартовым сектором располагается FAT .

FAT(таблица размещения файлов) :

Область данных диска (см.выше) представлена в MS DOS как последо-

вательность пронумерованных кластеров.

FAT - это массив элементов, адресующих кластеры области данных диска .

Каждому кластеру области данных соответствует один элемент FAT.

Элементы FAT служат в качестве цепочки ссылок на кластеры файла

в области данных.

FAT - крайне важный элемент Файловой Структуры!!!

Нарушения в FAT могут привести к ПОЛНОЙ или ЧАСТИЧНОЙ потери ин-

формации на ВСЕМ логическом диске!!!

Именно поэтому, на диске хранится две копии FAT .

Существуют спец.программы, которые контролируют состояние FAT

и исправляют нарушения.

Корневой Каталог :

Это определенная область Диска,создаваемая в процессе инициализации

(форматировании) Диска, где содержится информация о файлах и ката-

логах, хранящихся на Диске. Корневой Каталог ВСЕГДА существует

на отформатированном Диске! На одном Диске ВСЕГДА бывает только

ОДИН Корневой Каталог. Размер Корневого Каталога для данного

Диска - величина фиксированная, поэтому максимальное кол-во

"привязанных" к нему файлов и других (дочерних) каталогов

(ПодКаталогов) - строго определенное.

Каталоги(ПодКаталоги) :

Каталог - это определенное место на диске(в области данных диска),

где содержится информация о файлах и ПодКаталогах, "привязанных"

к данному Каталогу.

MS DOS поддерживает иерархическую структуру каталогов(древообразную),

Рис.6

В отличие от Корневого Каталога, остальные каталоги(ПодКаталоги)

создаются с помощью спец.команд MS DOS(внутренних).

Основная цель такой структуры каталогов - организация эффективного

хранения большого кол-ва файлов на диске.

КАЖДЫЙ Каталог(кроме корневого) "имеет" "родителя", т.е. другой

Каталог, к которому "привязан" данный Каталог.

MS DOS рассматривает каждый Каталог(кроме корневого), как файл.

Термин "привязан" иногда заменяется термином "зарегистрирован".

Файлы :

Файл - это поименованная область памяти на каком-либо физическом

носителе, предназначенная для хранения информации.

Файл ВСЕГДА "привязан" к какому-либо Каталогу(в том числе,

может быть "привязан" и к корневому каталогу), см. рис. 7.

Рис.7

Идентификация Логических Дисков,Каталогов и Файлов :

Идентификация Логических дисков, Каталогов, Файлов

осуществляется на базе имен.

ВНИМАНИЕ!!!

Файловая система MS DOS НЕ допускает, чтобы были Логические

Диски,Каталоги,Файлы с одинаковыми ИДЕНТИФИКАТОРАМИ!!!.

В качестве имени логического диска используется одна из букв

латинского алфавита(A..Z ).

Каждый Файл или Каталог (кроме корневого) имеет ПОЛНОЕ имя.

ПОЛНОЕ Имя Файла(Каталога),кроме корневого,

состоит из следующих частей(рис.8) :

Имя логического диска(A..Z),

Символ-разделитель(двоеточие) “: ”,

Символ,идентифицирующий корневой каталог - "\ " (Слэш),

Перечень “родительских” каталогов(разделенных

символом "\ "),

Собственно имя файла(каталога),

Собственно имя файла(каталога) состоит из:

Символ-разделитель(точка) “. ”,

Расширение имени файла

“Имя логического диска”+ ”двоеточие”+ ”идентиф.корневого каталога”

+ ”весь перечень имен родительских каталогов” = маршрут доступа

к файлу (каталогу).

Максимальное кол-во символов в ПОЛНОМ имени файла = 78,

Максимальное кол-во символов в имени файла = 8,

Максимальное кол-во символов в расширении имени файла = 3,

Расширение НЕ обязательно т.е. может и НЕ присутствовать

(в этом случае точка тоже отсутствует).

Рис.8

Таким образом размер собственно имени файла НЕ превышает 12 символов!

В ПОЛНОМ имени файла разрешается использовать только следующие

A-Z 0-9 $ & # `~ () - % ! _ ^

В ПОЛНОМ имени файла запрещается использовать все остальные

символы!!!

ЗАПРЕЩАЕТСЯ В ПОЛНОМ имени файла использовать ПРОБЕЛ !!!

Примеры допустимых имен файлов:

Format.com Read.me MyFyle.txt 28-03-96.doc 123.45

Примеры НЕ допустимых имен файлов:

123456789.txt aa?.doc 35*.? It.F.doc .txt

Использование расширений:

Файлы,хранящиеся на диске, с точки зрения файловой системы

MS DOS,которая выступает в роли зав.складом(который ничего не

понимает в устройстве и назначении различных вещей,хранящихся

на складе),вообще говоря,представляют собой “некоторое сборище информации”.На самом деле файлы, в зависимости от информации

которая там хранится, могут иметь различное назначение:

данные, программы, драйверы, настроечные файлы и т.д.

Расширения имени файла - не обязательный, но очень важный

компонент. Он используется для разделения файлов по отдельным

В MS DOS есть перечень предопределенных(и наиболее часто встреча-

ющихся) расширений файлов.В Табл.2 приведен их НЕ полный перечень.

Табл. 2

Расширение

Назначение файла

Программы, созданные программистами, с по-мощью спец.языков программирования

Программы, созданные Пользователями, с по-мощью редакторов текстов

Драйверы устройств

Оверлейные файлы

Предыдущая копия файла

ASCII-файл (текстовый)

Файл-документ(чаще всего ASCII-файл, но мо-жет быть и другого формата)

Тексты программ на Pascal

Тексты программ на С

Тексты программ на Ассемблере

Графические образы

ASCII-файл описания чего-то

Файлы настроек и конфигураций

Устройства MS DOS :

В MS DOS имеется ряд имен файлов, которые зарезервированы

для внутреннего использования.Каждое такое имя отражает

какое-либо устройство.ЗАПРЕЩАЕТСЯ использование этих имен

НЕ по назначению! В Табл.3 приведен перечень этих имен.

С точки зрения Пользователя - эти устройства(табл.3) ничем

не отличаются от обычных файлов(с ними можно производить все

те же операции, что и с обычными файлами).

Символы подстановки в именах файлов :

Когда необходимо произвести какие-либо действия над файлами -

Пользователь вызывает определенные внутренние или внешние

команды MS DOS и “передает” им,в качестве параметров, имена

файлов. Очень часто приходится производить одни и те же действия

над многими файлами. Например, необходимо скопировать ВСЕ файлы

какого-либо каталога в другой каталог.Если файлов больше 200, то

ровно 200 раз необходимо произвести эту операцию для каждого файла

в отдельности.Это, как минимум, слегка огорчает Пользователя.

Для решения такого рода проблем существуют спец.средства, которые

помогают производить однотипные операции над целой группой файлов

за один “заход”.

Так называемые символы подстановки позволяют “фильтровать” файлы,

используя их имена. К ним относятся символы: ? и * .

Эти символы можно использовать в любом месте собственно имени

файла(имени и расширении).

Символ ? означает, что команда(при фильтрации файлов) “признает”

любой символ в имени или расширении файла, в позиции которого

находится символ ? .

Символ * означает, что команда(при фильтрации файлов) “признает”

все символы,в имени или расширении файла, начиная с позиции, где

находится символ * .

Символы ? и * действуют не зависимо друг от друга применительно

к имени или расширению.

ВЫПОЛНИТЬ ОПЕРАЦИЮ НАД СЛЕДУЮЩИМИ ГРУППАМИ ФАЙЛОВ:

*.* - все файлы, без исключения,

*.txt - файлы с любыми именами, но с расширением.txt,

II*.* - файлы,имена которых начинаются с цепочки символов

II и имеющие любое расширение,

YE??0198.* - файлы,имена которых начинаются с цепочки символов

YE, два следующих символа НЕ имеют значение,

следующие четыре символа должны быть 0198, расши-

рение НЕ имеет значение(применительно к расчетному

отделу: все результаты расчетов по работнику

с табельным номером 0198),

Атрибуты файлов :

Каждый Файл(Каталог) имеет атрибут, который указывает на то,

что этот файл является именно файлом;или на то, что он является

Каталогом.

Файлы, в зависимости от атрибута, могут быть скрытыми,архивными

системными, только для чтения.(Скрытые файлы MS DOS “не видит”).

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Справочное Руководство по IBM PC. Методические

материалы.Часть 2. ТПП “СФЕРА”. М. 1991 г.

2. Савельев А.Я., Сазонов Б.А., Лукьянов С.Э. "Персо-

нальный компьютер для всех". Книга 1.

М., ВЫСШАЯ ШКОЛА, 1991 г.

3. Брябрин В.М. “Программное обеспечение персональных

ЭВМ”. М. “НАУКА”, 1990 г.

4. Фигурнов В.Э. “IBM PC для Пользователя”

г.Уфа, НПО “Информатика и Компьютеры”, 1993 г.

3. Система хранения данных

Ключевой задачей файлового сервера является хранение больших объемов информации. Эффективность и возможности системы хранения данных сервера определяются совокупностью и согласованностью аппаратных средств хранения данных и возможностями операционной системы.

3.1 Аппаратные средства хранения данных

К аппаратным средствам системы хранения данных относятся собственно накопители с носителями информации и контроллеры их интерфейсов. Устройства хранения классифицируются по различным признакам:

Метод доступа:

  • Устройства произвольного доступа (Random-Access Devices) — накопители на гибких, жестких, магнитных, оптических, магнитооптических дисках.
  • Устройства последовательного доступа, обычно ленточные (Tape Devices) — стримеры, кассетные или бобинные. Для них характерна большая емкость относительно недорогих сменных носителей и большое время доступа.

Тип доступа:

  • Чтение/запись (Read/Write) — дисковые устройства оперативного доступа, для которых характерно небольшое время выполнения операций как считывания, так и записи.
  • Только чтение (Read Only) — CD-ROM или магнитные диски с защитой от записи.
  • Устройства с быстрым чтением и относительно долгим процессом записи — например, магнитооптические устройства, требующие предварительного стирания информации.
  • Устройства с последовательной записью — многие типы стримеров позволяют дописывать информацию только в конец занятой области носителя (ранее записанная информация, расположенная за текущей областью записи, становится недоступной).

Сменяемость носителя:

  • Фиксированный диск — винчестер, не предполагающий оперативной смены.
  • Накопители со сменными носителями — CD-ROM, стримеры, магнитооптические устройства и тому подобные. Смена носителя может быть как ручной, так и автоматизированной (устройства Jukebox).

Данные на сервере хранятся в виде файлов, для которых характерен большой разброс частоты использования, размеров и требований по ограничениям на время ожидания доступа. По совокупности этих признаков можно выделить три основные категории устройств хранения файлов:

  • On-line — "всегда готов", устройства хранения часто используемых файлов на фиксированных дисках. Объем хранимых данных ограничен возможностями подключения дисков (внутренних и внешних) к серверу.
  • Off-line — устройства хранения файлов на магнитных лентах или сменных дисках, которые могут быть установлены и смонтированы оператором по требованию клиента. Объем хранимых данных практически неограничен, но главный недостаток — необходимость присутствия оператора и большое время ожидания доступа.
  • Near-line — "всегда поблизости", устройства хранения на автоматически сменяемых и монтируемых носителях (ленточные карусели, Jukebox и прочие), занимающие среднее положение по времени доступа и объему (довольно дорогое решение).

Хорошая сетевая операционная система должна иметь возможности для обеспечения автоматической миграции данных (Data Migration) с устройств On-line на Off-line или Near-line и обратно с учетом их объема и частоты использования.

Novell публикует следующие стандарты на хранение и миграцию файлов:

Real Time Data Migration (RTDM): — автоматическая миграция данных с жестких дисков On-line на системы Near-line.

High-Capacity Storage System (HCSS): — поддержка оптических Jukeboxes.

Mass Storage Services (MSS): — координация распределенных иерархических систем хранения.

Противоречащие друг другу требования к объему хранимой информации, скорости доступа, надежности и цене могут удовлетворяться сочетанием различных классов устройств.

Интерфейсы

Из существующих интерфейсов внешних устройств ST506/412, ESDI, SCSI и IDE, в настоящее время интерес представляют только два последних.

SCSI

SCSI (Small Computer System Interface, произносится "скази") — стандартный интерфейс шины системного уровня. Он используется для подключения различных периферийных устройств — винчестеров, CD-ROM, стримеров, магнитооптических и других, внутреннего и внешнего исполнения — к компьютерам с различной архитектурой. Первоначальная 8-битная версия SCSI сменилась более эффективным интерфейсом SCSI-2, включающем 16/32-битные расширения (WIDE SCSI-2), скоростные (в FAST SCSI-2 пропускная способность шины поднята с 4 до 10 Мбайт/с, менее популярный ULTRA — 20 Мбайт/с) и их комбинации (FAST-WIDE SCSI-2 с максимальной пропускной способностью 20/40 Мбайт/с и ULTRA-WIDE — 40/80 Мбайт/с). Внедряется и SCSI-3 с параллельным, последовательным и оптоволоконным интерфейсами, обеспечивающий высокие скорости обмена и широкие функциональные возможности. В настоящее время наиболее популярны контроллеры и устройства 8- и 16-битного SCSI-2, и в дальнейшем речь пойдет именно о них. В принципе, эти устройства совместимы и со старым SCSI-1, но их совместное использование на одной шине неэффективно.
Дисковая подсистема с интерфейсом SCSI состоит из хост-адаптера, связывающего шину SCSI с системной или локальной шиной компьютера, и SCSI-устройств, соединенных с хост-адаптером кабельным шлейфом. В сервере может быть установлено до четырех хост-адаптеров. На каждой шине SCSI может присутствовать до 8 устройств, считая и хост-адаптер. Каждое устройство имеет уникальный идентификатор (SCSI ID 0-7): хост-адаптер обычно имеет ID7, первый (загрузочный) жесткий диск — ID0. Сложные устройства могут иметь до восьми подустройств со своими номерами LUN (Logical Unit Number).
SCSI-устройства выпускаются как внутреннего, так и внешнего исполнения. Внутренние устройства соединяются с хост-адаптером 50-проводным (Wide SCSI — 68-проводным) плоским кабелем, внешние — экранированным кабелем с 50-контактным разъемом "CENTRONICS" для 8-битного или 68-контактным миниатюрным разъемом для 8/16-битного SCSI-2. Существует две версии SCSI, различающиеся по типу электрических сигналов: линейные (Single ended) — обычные для PC-техники — и дифференциальные (Differential) — малораспространенные, допускающие большую суммарную длину шлейфа. Их кабели и разъемы внешне одинаковы, но взаимной совместимости устройств нет.
Обычно внутренний и внешний шлейфы адаптера являются двумя частями одной SCSI-шины.На крайних устройствах шины (и только на них) должны быть установлены и включены терминаторы (внутренние или внешние), в противном случае работа устройств будет неустойчивой. На хост-адаптере терминаторы должны включаться при использовании только одного (внутреннего или внешнего) шлейфа, современные адаптеры обычно имеют автоматическое управление терминаторами.
SCSI-2 предусматривает возможность самостоятельной работы устройств: полученные цепочки команд они могу выполнять в предварительно оптимизированном порядке, отключившись от шины, используя собственные внутренние буферы. Два устройства на одной SCSI-шине могут обмениваться массивами данных без загрузки системной шины и процессора.
Все SCSI-устройства должны предварительно конфигурироваться. Параметры конфигурирования включают:

  • SCSI ID — адрес 0-7, уникальный для каждого устройства на шине.
  • SCSI Parity — контроль паритета: если хоть одно устройство на шине его не поддерживает, следует отключить на всех устройствах.
  • Termination — включение терминаторов (только на крайних устройствах шлейфа).
  • Terminator Power — питание активных терминаторов, должно быть включено хотя бы на одном устройстве.
  • SCSI Synchronous Negotiation — согласование скорости синхронного обмена, обеспечивающего более высокую производительность. Если хоть одно устройство на шине не поддерживает синхронный обмен, на хост-адаптере согласование необходимо запретить. При этом, если обмен будет инициирован синхронным устройством, хост-адаптер поддержит этот режим.
  • Start on Command (Delayed Start) — разрешение запуска двигателя только по команде от хост-адаптера. Позволяет снизить пик нагрузки блока питания, поскольку устройства будут запускаться последовательно.
  • Enable Disconnection — позволяет устройствам отключаться от шины при неготовности данных, освобождая ее для других операций (используется при нескольких периферийных устройствах на шине).
Современные хост-адаптеры являются интеллектуальными устройствами, способными разгрузить центральный процессор от рутинных операций. Они обычно используют прямой доступ к памяти (DMA) и управление шиной (Bus Mastering). Тип системной шины адаптера определяет его пропускную способность и разрядность шины адреса, используемой в режиме Bus-Master. Для ISA-адаптеров 20-битное ограничение адреса не позволяет адресовать память свыше 16 Мбайт, что для сервера не так уж и много. Хорошим решением является использование шин PCI, EISA, MCA; VLB используется редко. На некоторых системных платах имеются встроенные SCSI-адаптеры, реализующие преимущества локального подключения.
Плата дискового сопроцессора Disk Coprocessor Board (DCB) разработки Novell является одним из первых интеллектуальных хост-адаптеров. Для разгрузки центрального процессора в DCB использовался собственный процессор 80188. Современные адаптеры превосходят его по производительности, но в дань уважения Novell продолжает программно поддерживать этот раритет.

IDE (Integrated Device Electronics) — интерфейс устройств со встроенным контроллером, используется для подключения устройств внутреннего исполнения: дисковых накопителей и CD-ROM. Наибольшее распространение получила 16-битная версия, называемая также ATA (AT Attachment) или AT-Bus. Новые версии — EIDE (Enhanced IDE), Fast ATA , Fast ATA-2 допускают более высокие скорости обмена (свыше 10 Мбайт.с) и отодвигают ограничение на максимальный объем диска с 504 Мбайт до 7.88 Гбайт.
Малораспространные варианты: XT-IDE — 8-битный интерфейс с 40-проводным шлейфом, с ATA несовместим; MCA IDE — 72-проводной интерфейс для 16-битной шины MCA.
К одной шине IDE может подключаться не более двух устройств, одно из которых с помощью переключателей (джамперов) назначается ведущим (Master), другое — ведомым (Slave). В отличие от SCSI, устройства на одной шине могут работать только поочередно. В системе может быть до двух шин IDE, доступных для подключения жестких дисков. Дополнительный IDE-интерфейс, имеющийся на звуковых картах, обычно может использоваться только для подключения CD-ROM (жесткие диски BIOS на нем искать не будет, хотя возможно настроить драйвер NetWare и на его использование; целесообразность установки звуковой карты на выделенном сервере весьма сомнительна).
Скорость передачи данных по шине может ограничиваться как накопителем, так и контроллером. Для обмена обычно используется PIO (Programming Input/Output). PIO Mode 3 допускает скорость до 11.1 Мбайт/с, PIO Mode 4 — 16.6 Мбайт/с. Для сервера желательна поддержка высокоскоростных режимов.
Контроллер IDE в современных платформах обычно встраивается в системную плату и подключается к высокопроизводительной локальной шине. Существуют также и контроллеры для шин ISA, EISA, VLB, PCI, некоторые модели имеют аппаратный кэш и средства дублирования (отражения) дисков. Применение ISA-адаптеров для сервера нежелательно по причине их низкой пропускной способности.
Делая выбор между интерфейсами дисковой системы SCSI и IDE, следует принимать во внимание следующие факторы:

  • цена SCSI-диска теперь несущественно превышает цену аналогичного IDE-устройства, однако надо учитывать внушительную цену SCSI-контроллера (хост-адаптера);
  • производительность одиночных устройств IDE и SCSI практически одинакова, но при одновременном использовании нескольких устройств суммарная производительность SCSI-системы существенно выше;
  • высокая эффективность дисковой системы в сервере (как в многозадачной системе) обеспечивается использованием DMA (и Bus Mastering) и интеллектуальностью адаптера, что типично для SCSI и редко встречается в IDE-системах;
  • ассортимент устройств IDE ограничен жесткими дисками и накопителями CD-ROM, только внутреннего исполнения и только для IBM PC-совместимых компьютеров. Интерфейс SCSI имеют винчестеры, стримеры, магнитооптические устройства, CD-ROM, дисковые массивы и другие устройства как внутреннего, так и внешнего исполнения, производимые для компьютеров любых архитектур;
  • наращиваемость системы с IDE ограничена четырьмя жесткими дисками, вместе с CD-ROM число устройств не может превышать шести. Для SCSI возможно подключение до 4x7=28 устройств, в число которых могут входить и сложные устройства с подустройствами;
  • теоретически возможно сосуществование SCSI и IDE в одном сервере, но при этом вероятны и некоторые сюрпризы несовместимости (конфликты) конкретных моделей контроллеров.

Устройства хранения информации

Накопители на жестких магнитных дисках

Накопители на жестких магнитных дисках (Hard Disk Drive, HDD) являются основными устройствами оперативного хранения информации. Для современных одиночных накопителей характерны объемы от сотен мегабайт до нескольких гигабайт при времени доступа 5-15 мс и скорости передачи данных 1-10 Мбайт/с.
Относительно корпуса сервера различают внутренние и внешние накопители.
Внутренние накопители существенно дешевле, но их максимальное количество ограничивается числом свободных отсеков корпуса, мощностью и количеством соответствующих разъемов блока питания сервера. Установка и замена обычных внутренних накопителей требует выключения сервера, что в некоторых случаях недопустимо.
Внутренние накопители с возможностью "горячей" замены (Hot Swap) представляют собой обычные винчестеры, установленные в специальные кассеты с разъемами. Кассеты обычно вставляются в специальные отсеки со стороны лицевой панели корпуса, конструкция позволяет вынимать и вставлять дисководы при включенном питании сервера. Для стандартных корпусов существуют недорогие приспособления (Mobile Rack), обеспечивающие оперативную съемность стандартных винчестеров.
Внешние накопители имеют собственные корпуса и блоки питания, их максимальное количество определяется возможностями интерфейса. Обслуживание внешних накопителей может производиться и при работающем сервере, хотя может требовать прекращения доступа к части дисков сервера.
Для больших объемов хранимых данных применяются блоки внешних накопителей — дисковые массивы и стойки, представляющие собой сложные устройства с собственными интеллектуальными контроллерами, обеспечивающими, кроме обычных режимов работы, диагностику и тестирование своих накопителей.
Более сложными и надежными устройствами хранения являются RAID-массивы (Redundant Array of Inexpensive Disks — избыточный массив недорогих дисков). Для пользователя RAID представляет собой один (обычно SCSI) диск, в котором производится одновременная распределенная избыточная запись (считывание) данных на несколько физических накопителей (типично 4-5) по правилам, определяемым уровнем реализации (0-10). Например, RAID Level 5 позволяет при считывании исправлять ошибки и осуществлять замену любого диска без остановки обращения к данным.

CD-ROM

Устройства считывания компакт-дисков CD-ROM расширяют возможности системы хранения данных NetWare. Существующие накопители обеспечивают скорость считывания от 150 кбайт/с до 300/600/900/1500 Кбайт/c для 2-,4-,6- и 10-скоростных моделей при времени доступа 200-500 мс. NetWare позволяет монтировать компакт-диск как сетевой том, доступный пользователям для чтения. Объем тома может достигать 682 Мбайт (780 Мбайт для Mode 2).
Устройства CD-ROM выпускаются с различными интерфейсами, как специфическими (Sony, Panasonic, Mitsumi), так и общего применения: IDE и SCSI. Сервер NetWare обслуживает только CD-ROM с интерфейсами SCSI, новые драйверы существуют и для IDE; устройства со специфическими интерфейсами могут использоваться только в DOS для инсталляции системы. С точки зрения повышения производительности предпочтительнее использование CD-ROM SCSI, однако они существенно дороже аналогичных IDE-устройств. В сервере с дисками SCSI применение CD-ROM с интерфейсом IDE может оказаться невозможным из-за конфликтов адаптеров.

Во избежание зависания процесса инсталляции сервера с CD, его привод нежелательно подключать к тому же контроллеру, который будет обслуживать диск с системным томом SYS:. CD-ROM внутреннего исполнения не рекомендуется устанавливать непосредственно над жестким диском из-за сильного магнитного поля, способного разрушить данные на винчестере, которое возникает при считывании CD.

Стримеры

Устройства хранения данных на магнитной ленте (Tape Drive) — стримеры — являются распространенными средствами архивации данных. Они относятся к категории устройств хранения Off-Line, для них характерно очень большое время доступа, обусловленное последовательным методом доступа, средняя скорость обмена и большая емкость носителя — от сотен мегабайт до нескольких гигабайт. Носителем информации обычно являются картриджи с лентой шириной 1/4 дюйма (6.25 мм) — Quarter-Inch Cartridge, QIC. Широко распространены стандарты QIC 40 и QIC 80, имеющие продольную плотность записи 10000 бит/дюйм на 20 дорожках и 14700 бит/дюм на 28 дорожках соответственно, позволяющие хранить сотни Мбайт на одной ленте. Большие объемы обеспечивают стандарты QIC 1350 и QIC 2100 — 1.35 и 2.1 Гбайт соответственно. Девятидорожечные ленты шириной 1/2 дюйма (12,7 мм) типичны для накопителей мини- и больших (Mainframe) компьютеров.
Стримеры могут иметь специфические интерфейсы, требующие специальных адаптеров; некоторые дешевые модели подключаются к стандартному контроллеру накопителей на гибких дисках вместе с дисководами; существуют устройства, подключаемые к паралельному порту. NetWare поддерживает только стримеры с интерфейсом SCSI, что объясняется его преимуществом в производительности системы в целом. Использование стримеров с другими интерфейсами может оказаться невозможным из-за отсутствия соответствующих драйверов.
NetWare поддерживает ленточные устройства как средства архивирования и востановления данных, на их использование ориентирована серверная утилита SBACKUP.
Ленточные устройства имеют существенный недостаток — большие затраты времени на обслуживание:

  • подготовка картриджа к использованию — тестирование поверхности и форматирование ленточных томов — весьма длительная процедура, занимающая время, исчисляемое часами. Приобретение предварительно отформатированных картриджей (Preformatted) позволяет экономить время (конечно, при условии совпадения форматов);
  • процесс записи и считывания длителен из-за последовательного доступа и невысоких скоростей движения носителя;
  • при длительном хранении ленты требуют периодической перемотки для снятия внутренних напряжений. Кроме того, при хранении необходимо выдерживать нормальные условия по температуре и влажности;
  • основное преимущество стримеров — низкая удельная стоимость хранения больших массивов информации.

Магнитооптические устройства

Магнитооптические устройства — Magneto-Optical Drives, MOD, — используют лазерный луч для записи информации на сменный магнитный носитель, весьма устойчивый к воздействию внешних магнитных полей и некритичный к температуре и влажности. Емкость одного носителя составляет от сотен мегабайт до нескольких гигабайт. Устройства обеспечивают скорость считывания и время доступа, приближающиеся к параметрам винчестера, но существенно более длительный процесс записи. Магнитооптические устройства могут монтироваться как сменяемый том или использоваться в качестве устройств архивации (альтернатива стримерам) или миграции данных (HCSS). Приводы с автоматической сменой носителя (Jukebox) являются примером устройств хранения класса Near-Line и могут с успехом использоваться для создания массивов данных с объемом, достигающим терабайта, а также для автоматизированного резервного архивирования сетевых дисков. Общепринятым интерфейсом MOD для серверов является SCSI, применение устройств, подключаемых к параллельным портам для сервера нежелательно из-за большой загрузки процессора при обмене с ними и может оказаться невозможным из-за отсутствия драйверов NetWare.

3.2 Дисковая подсистема сервера NetWare

NetWare использует собственные методы организации дисков, создавая на них разделы, отличающиеся от разделов DOS. ОС имеет специальные средства для повышения надежности хранения и суммарной эффективности параллельного обслуживания множества запросов клиентов, приложений и внутренних процессов системы.

Средства повышения надежности хранения.

Надежность хранения информации на физическом уровне обеспечивается контрольным считыванием после записи (Read after Write Verify) в сочетании с "горячим резервированием" (Hot Fix) и дублирование дисков.
  • Контрольное считывание может быть реализовано аппаратно (средствами дискового контроллера) или программно. Аппаратный контроль с точки зрения производительности предпочтительнее, однако при этом остается уязвимым тракт память — контроллер. Для специальных дисков, реализующих верификацию аппаратно на уровне устройства, включение системной верификации обычно излишне.
  • Горячее резервирование использует область Hot Fix Area, определяемую при создании раздела NetWare. Дефектные участки поверхности носителя, выявленные по возникновении ошибки при считывании или верификации после записи, переназначаются в резервную область и в дальнейшем до переформатирования диска не используются.
  • Дублирование дисков, точнее — разделов одинакового размера, подразделяется на отражение (Disk Mirroring) и дуплексирование (Disk Duplexing). При использовании дублирования запись производится одновременно на два и более (максимум — 8) физических накопителя, подключенных в случае отражения к одному контроллеру, в случае дуплексирования — к различным контроллерам. При чтении запросы распределяются между отраженными дисками, что попутно сокращает время доступа к данным. Согласованность данных (синхронность) на дублированных носителях проверяется при монтировании их томов. B NetWare 4.x синхронность дисков проверяется еще и периодически во время обычной работы сервера. Отражение спасает данные только в случае отказа самого накопителя, дуплексирование резервирует весь дисковый тракт. Дуплексированные диски работают производительнее отраженных за счет параллельной работы каналов при записи. Для оператора консоли оба вида дублирования дисков называются отражением.
  • Применение накопителей RAID разгружает процессор сервера от задач повышения надежности хранения информации, во многих случаях снимая актуальность применения отражения дисков (RAID Level 1 эквивалентен отражению двух дисков).
Обеспечение надежности на физическом уровне дополняется средствами диагностики и восстановления логической структуры томов (утилита VREPAIR.NLM) и резервного копирования.

Средства повышения эффективности доступа.

Высокая эффективность файл-сервера NetWare обеспечивается системой кэширования файлов и каталогов, автоматического индексирования больших файлов, хэширования каталогов и лифтового поиска при обслуживании групп запросов к дискам. Система ориентирована на повышение суммарной эффективности удовлетворения множества запросов множества клиентов с оптимизацией операций с физическими устройствами.
  • Для ускорения доступа к файлам и каталогам в оперативной памяти сервера отводится пул кэш-буферов, в которые помещаются данные, считанные с диска или предназначенные для записи на диск. Большой объем пула обеспечивает достаточно высокую вероятность нахождения требуемых данных в кэш-буфере при весьма вероятном повторном обращении. При последовательном чтении соседних блоков файлов система может выполнять упреждающее считывание (Read Ahead), помещая в кэш данные "про запас". Менеджер кэша следит за использованием буферов, освобождая блоки, к которым давно не было обращений, управляет записью данных из модифицированных кэш-буферов (Dirty Cache Buffers) на диск, передает запросы на обращения к дискам в лифтовую систему поиска.
  • Для ускорения доступа к большим файлам ОС автоматически индексирует любой файл прямого доступа, имеющий более 64 элементов в таблице размещения, строя индекс турбо-FAT. Поскольку это построение занимает определенное время, а турбо-FAT может впоследствии пригодиться для нового доступа к тому же файлу, существует время жизни индекса после закрытия индексированного файла, по исчерпании которого занимаемая им память может быть выделена для другого файла.
  • Для ускорения поиска файла в каталоге применяется хеширование каталогов (Directory Hashing) — метод индексирования каталога, позволяющий находить требуемое вхождение с первой попытки с вероятностью 0.95 (в отличие от обычного последовательного перебора таблицы вхождений каталога).
  • Лифтовый поиск (Elevator Seeking) минимизирует затраты времени на перемещение головок дисковода, вносящие наибольшую задержку в суммарное время доступа к данным. Запросы к диску от множества процессов, обслуживаемых сервером, выстраиваются в очередь и обслуживаются по мере приближения головок к требуемым участкам, подобно лифту, подбирающему и выпускающему пассажиров по пути на разных этажах.

Организация дисковой системы

ОС NetWare взаимодействует с устройствами внешней памяти через собственные драйверы, специальные для каждого типа устройств и интерфейса. Традиционные драйверы (.DSK-файлы) в NetWare 4.1x постепенно заменяются на драйверы архитектуры NPA, NWPA (NetWare Peripherial Architecture). В них функции обеспечения интерфейсов связи NetWare с хост-адаптером и собственно драйверы конкретных подключенных к ним устройств разделены на модули HAM (Host Adapter Module) и CDM (Custom Device Module) соответственно. Такое разбиение позволяет экономить ресурсы памяти и процессора, поскольку загружаются только фактически необходимые модули. Модульность архитектуры облегчает изменение конфигурации аппаратуры сервера, требуя перезагрузки только одного (HAM или CDM) драйвера. Novell планирует в следующих версиях произвести полный переход на NPA, но пока обеспечивается ее сосуществование с распространенными традиционными.DSK-драйверами.
Для всех установленных и используемых дисковых контроллеров должны загружаться соответствующие им драйверы. В комплект поставки NetWare включены несколько типов дисковых драйверов.
Драйвер DCB.DSK предназначен для платы дискового сопроцессора — SCSI хост-адаптера фирмы NOVELL.
Драйвер IDE.DSK работает с IDE-дисками минуя BIOS через собственные процедуры.
Драйвер ISADISK.DSK работает с дисками IDE (и ST-506/ST-412) через BIOS компьютера, его использование позволяет обойти трудности, связанные с неоднозначностью обслуживания IDE-дисков емкостью свыше 504 Мбайт различными версиями BIOS.
Драйверы SCSI-дисков специфичны для каждого варианта хост-адаптера и должны включаться в комплект поставки SCSI-адаптера.
ОС работает со своими разделами (NetWare Partition), создаваемыми на дисках утилитой INSTALL. На одном физическом диске может присутствовать только один раздел NetWare, сосуществуя с разделами других операционных систем. Каждый раздел NetWare имеет резервную область (Hot Fix Area), на которую переназначаются данные с дефектных блоков по мере их обнаружения. Разделы (и логические диски) DOS используются для начальной загрузки компьютера, при работе NetWare они могут быть доступными только для загрузки модулей ОС. С рабочих станций весьма урезанный доступ к дискам DOS сервера имеет только оператор удаленной консоли.
Файловая система сервера в качестве самого крупного элемента организации использует категорию том (VOLume). Том может состоять из одного или нескольких (до 32) сегментов, расположенных в одном или нескольких логических разделах NetWare; каждый раздел может содержать до 8 сегментов, принадлежащих любым томам. Размещение одного тома на нескольких дисках дает возможность физически одновременного обслуживания нескольких обращений к его данным. Размер тома (минимальный — 1 Мбайт) можно увеличивать в процессе эксплуатации без разрушения уже записанных данных, добавляя к нему дополнительные сегменты. Удаление сегмента приводит к потере данных всего тома.
Том становится доступным для использования после его монтирования командой MOUNT, том SYS, необходимый для работы системы, монтируется автоматически по загрузке драйвера (драйверов), обеспечивающего доступ к дискам, несущим все его сегменты. Смонтированный том занимает в оперативной памяти объем, зависящий от его размера. Неиспользуемые тома можно размонтировать командой DISMOUNT.
Каждый том NetWare имеет древовидную структуру каталогов (аналогично логическому диску DOS). Полная спецификация файла имеет следующую структуру:

fname[.ext]

где server_name и vol_name — имена сервера и тома, dir_n — имена каталогов и подкаталогов, fname и ext — имя и расширение файла. В качестве разделителя элементов имени обычно допускается равноправное использование символов / и \ (в файлах процедур регистрации символ \ используется как управляющий).
По умолчанию том поддерживает только имена файлов, удовлетворяющие соглашениям DOS. Для поддержки пространства имен других систем (Macintosh, OS/2, UNIX и FTAM) предусмотрена загрузка дополнительных модулей MAC.NAM, OS2.NAM, NFS.NAM и FTAM.NAM соответственно.
Информация о размещении данных на томе хранится в таблицах каталогов (DET) и размещения файлов (FAT), которые всегда дублируются на разных участках диска. В случае разрушения основной копии таблицы восстанавливаются с резервной. Проверка обеих копий производится каждый раз во время монтирования тома при загрузке, "легкие" ошибки исправляются автоматически.
Для устранения более серьезных проблем монтирования используется утилита VREPAIR.NLM, позволяющая проверять и восстанавливать предварительно размонтированные тома, а также удалять дополнительное пространство имен. Копию VREPAIR.NLM полезно иметь в загрузочном каталоге диска DOS (если возникнут проблемы с томом SYS:).
В корневом каталоге каждого тома система создает ASCII-файл VOL$LOG.ERR, в который записывается диагностическая информация о работе тома. При нормальной работе системы в нем присутствуют только сообщения о монтировании и размонтировании.


Дисковое пространство выделяется под файлы и каталоги блоками. Размер блока может принимать значения 4, 8, 16, 32 или 64 кбайт, он определяется при создании тома и одинаков для всех его сегментов. Бо"льшие размеры блока экономят память сервера, используемую для кэширования таблиц каталогов и размещения файлов, но при большом количестве маленьких файлов увеличивают расход дисковой памяти, поскольку под каждый файл выделяется хотя бы один блок.
В NetWare 4.x эффективность использования дискового пространства повышается при использовании подразделения блоков (Block Suballocations) на субблоки с размером, кратным 512 байт. При этом файл всегда начинается с границы целого блока, а неиспользуемые остаточные субблоки могут использоваться в качестве "довесков" в других файлах. Выигрыш в использовании дискового пространства, естественно, оплачивается некоторым снижением производительности. Подразделение блоков (по умолчанию предлагается разрешить) может быть установлено для тома в любое время, однако отменить его уже нельзя до переформатирования тома. Подразделение может быть запрещено для конкретных файлов установкой атрибута Ds (Don"t Suballocate), что особенно полезно для часто изменяемых файлов, например, баз данных.
Для повышения эффективности использования дисковой памяти в случае разрозненных (sparce) файлов большого размера (у которых был заявлен большой размер, но реальная запись в средние блоки не производилась) под незаписанную часть файла блоки не выделяются, при чтении этой области система генерирует поток нулей. Cвойство разрозненности может сохраняться и при копировании файлов сетевыми утилитами.
ОС следит за наличием свободного пространства томов и при уменьшении его до критического размера выдает сообщения на консоль и станции сети.
В NetWare 4.x дополнительную экономию дискового пространства обеспечивает применение компрессии файлов (File Compression): ОС выявляет файл, к которому не было обращений в течении нескольких дней, и пытается выполнить его сжатие во временный файл. Если компрессия успешно завершилась и сжатый файл стал существенно меньше оригинала, исходный файл замещается сжатым. При обращении к этому файлу он автоматически распаковывается в свободное пространство диска. Компрессия, как и подразделение, для всего тома может только включаться, но может запрещаться атрибутами для файлов и каталогов. Параметры компрессии задаются командами SET и атрибутами файлов и каталогов. "Расплатой" за экономию дискового пространства являются следующие негативные явления:
  • скорость доступа: декомпрессия файла, в зависимости от его размера и производительности процессора, может занимать от десятков секунд до десятков минут;
  • архивация: системные архивы (Backup) томов с разрешенной компрессией могут восстанавливаться только на тома с разрешенной компрессией. Вдобавок, файлы восстанавливаются в декомпрессированном виде и будут автоматически сжаты только через несколько дней. Следовательно, размер тома для восстановления архива может потребоваться существенно большим, чем размер архивированного тома;
  • производительность сервера: компрессия и декомпрессия требуют ресурсов процессора, однако поиск файлов-кандидатов и их компрессию можно запретить на время большой активности пользователей в сети.
При наличии устройств массовой памяти (HCSS) возможно применение миграции файлов на внешние устройства класса Near-Line. При заполнении пространства тома до определенного порога система ищет файлы с самым давним временем последнего доступа, и если прошедший срок превышает заданный порог, файлы автоматически перемещаются на внешнее устройство, позволяющее системе обеспечить его автоматический же возврат по первому запросу доступа. Миграция разрешается или запрещается для всего тома, для каждого файла может запрещаться установкой атрибута Dm (Don"t Migrate).

Управление доступом к файлам и каталогам

Конечной задачей файл-сервера является предоставление пользователям доступа к файлам и каталогам, расположенным в системе хранения данных сервера. NetWare предоставляет возможность доступа клиентов сети к конкретным файлам и каталогам, а также возможность отображения любого каталога на логический диск рабочей станции — так называемое планирование драйвов (Drive Mapping), осуществляемое сервером по командам MAP или через протокольные вызовы NCP.
NetWare как многопользовательская и многозадачная ОС обеспечивает управление доступом к файлам и каталогам в следующих аспектах:
  • предоставление определенных прав доступа конкретным пользователям и группам;
  • задание свойств файлов и каталогов их атрибутами;
  • реализация разделяемого доступа к файлам, механизма захвата (блокировки) файлов и записей при множественном доступе;
  • восстановление и очистка удаленных файлов;
  • контроль завершенности транзакций.
Потенциально возможные действия любого пользователя с файлами и каталогами определяются его правами доступа в данном файле или каталоге. Права могут задаваться непосредственными опекунскими назначениями (Trustee Assignments) или наследоваться от прав, доверенных в родительском каталоге. Наследование прав регулируется фильтром наследуемых прав (Inherited Rights Filter, IRF), который до версий NetWare 4.x не очень выразительно назывался маской (IRM). Опекунские назначения и фильтры (маски) используют один и тот же набор прав. Таблица 3.1. Права доступа к файлам и каталогам
Право Обозначение Действие для каталогов и файлов
Read R Право открытия и чтения файла (запуск программ).
Write W Право открытия и изменения содержимого существующего файла.
Create C Для каталога — право создания (но не чтения) файлов и подкаталогов. Для файла — право восстановления удаленного (неочищенного).
Erase E Право удаления файла или каталога и очистки удаленного файла.
Modify M Право модификации атрибутов и имени (но не содержимого)
File Scan F Право сканирования (обеспечивает видимость имен файлов и подкаталогов)
Access Control A Право управления доступом — позволяет изменять маску и предоставлять (модифицировать) все права (кроме прав супервизора) любым пользователям.
Supervisory S Право супервизора — автоматически включает все вышеперечисленные права, а также позволяет предоставлять право супервизора в этом каталоге или файле другим пользователям. Применительно к каталогу распространяется на все файлы и нижестоящие подкаталоги и не может отменяться на нижестоящих уровнях каталогов или файлов (игнорирует фильтры и опекунские назначения).

Эффективные права пользователя складываются из всех прав, доверенных ему лично и как члену групп, а также из прав пользователей и групп, которым он имеет эквивалентность по защите. Если права доверены только в вышестоящем каталоге, то по пути к данному каталогу они проходят через фильтры наследуемых прав доверенного и промежуточных каталогов, а для файла — еще и через его IRF. При наследовании, естественно, права могут только ограничиваться (за исключением права супервизора). Непосредственное опекунское назначение отменяет наследование прав.

При просмотре каталогов пользователь увидит дерево каталогов от самого корня тома, но только те ветви, которые ведут в доверенные ему каталоги и только те файлы, в которых он имеет эффективное право сканирования (F).

Установкой опекунских назначений можно предоставить любой набор прав (или, наоборот, ограничить доступ) в любом фрагменте дерева каталогов и файлов.

Атрибуты каталогов и файлов предназначены для ограничения действий пользователей, разрешенных их эффективными правами, а также задания некоторых свойств, учитываемых системой при обслуживании. Изменение атрибутов разрешается пользователям, обладающим правом модификации.

Таблица 3.2 Атрибуты файлов и каталогов
Атрибут файла (F) каталога (D) Net Ware 2.x-3.x Net Ware 4.x Назначение атрибута
Archive needed (F) A A Необходимость архивации файла (модифицирован со времени последней архивации)
Copy inhibit (F) C Ci Запрет копирования файлов для Macintosh
Delete inhibit (F,D) D Di Запрет удаления файла или каталога
Hidden (F,D) H H Невидимый командой DOS DIR (NDIR этот атрибут игнорирует)
Indexed (F) I I Индексируемый файл (активизирует построение Turbo-FAT для ускорения доступа)
Purge (F,D) P P Немедленно очищаемый при удалении (невосстанавливаемый утилитой SALVAGE)
Read Only (F) Ro Ro Только чтение: запрет записи, переименования и удаления (автоматически устанавливает атрибуты Ri и Di и снимает Rw)
Read Write (F) Rw Rw Чтение и запись (при установке снимает Ro)
Rename inhibit (F,D) R Ri Запрет переименования
Shareable (F) S S Разделяемый файл (допускает одновременное обращение от нескольких пользователей)
System (F,D) Sy Sy Системный: скрытый с запретом удаления (комбинация H и Ro)
Transactional (F) T T Транзактируемый файл, защищаемый TTS (также запрещает удаление и переименование)
eXecute only (F) X X Файл только для исполнения (.COM или.EXE). Запрет модификации, удаления, переименования и копирования. Однажды установленный атрибут невозможно снять; не все программы могут с ним работать
(Normal) N N Фиктивный "атрибут" для установки атрибутов по умолчанию (Rw)
Can"t Compress (F) - Cc Невозможна существенная компрессия (устанавливается системой после неэффективной попытки сжатия)
Don"t Compress (F,D) - Dc Запрет компрессии
Immediate Compress (F,D) - Ic Немедленная компрессия (сразу после записи)
Don"t Migrate (F,D) - Dm Запрет миграции на HCSS
Migrated (F) - M Файл мигрировал на HCSS
Don"t Suballocate (F) - Ds Запрет подразделения блоков

Атрибуты I, Cc, M устанавливаются операционной системой.

При копирование файлов сетевыми утилитами (NCOPY) между сетевыми каталогами файл сохраняет все атрибуты, кроме P (немедленно очищаемый). Копирование файла на локальный диск, а также любое копирование средствами DOS, сохраняет только атрибуты S и Ro.

При разделяемом доступе к файлам целостность данных при одновременном доступе с нескольких станций обеспечивается механизмом захвата файлов и физических записей. Множественный доступ разрешается только к файлам, имеющим атрибут разделяемости (S). Прикладная программа может потребовать захвата файла или физической записи — области файла. При попытке другого клиента обратиться к захваченному файлу или записи система блокирует эту операцию.

ОС имеет средства восстановления удаленных файлов: при удалении файла сначала делается только пометка в его описателе, содержимое файла и занимаемое пространство на томе сохраняется до его необратимой очистки (Purge), выполняемой системой автоматически через некоторое время, или пользователем, имеющем в удаленных файлах право удаления D, с помощью утилиты PURGE. Файлы с атрибутом P очищаются немедленно.

Система позволяет сохранять удаленные файлы даже с совпадающими именами. Неочищенный (восстановимый) файл из удаленного каталога переносится в скрытый каталог DELETED.SAV, автоматически создающийся в корневом каталоге каждого тома. Для обслуживания восстановимых файлов служит утилита SALVAGE.EXE, которая имеет средства для поиска и выбора восстановимых файлов, в том числе и из удаленных каталогов.

Система отслеживания транзакций TTS защищает файлы баз данных с установленным атрибутом транзакционности (T). Система следит за тем, чтобы каждая транзакция — цепочка захвата, модификации и освобождения записи — выполнялась до конца.

Если по внешним причинам, связанным с сервером, сетью или станцией, транзакция прервалась, то TTS произведет откат транзакции — вернет файл в состояние, в котором он был до ее начала. В корневом каталоге тома SYS: система создает текстовый файл TTS$LOG.ERR, в котором накапливается отчет о работе TTS. Подключение сервера к системе бесперебойного питания позволяет повысить надежность TTS.

Наряду с программным обеспечением в памяти компьютера хранится различная информация. Единицей ее хранения является файл. Это совокупность данных одного типа (текст, изображение, видеофильм и т.д.) произвольного размера, обладающая уникальным собственным именем. Имя может состоять из букв русского или латинского алфавита, содержать цифры, пробелы и некоторые другие символы. Кроме того, в имя файла входит расширение, отделенное точкой и состоящее из трех букв латинского алфавита. В большинстве случаев расширение присваивается автоматически программой, в которой создан файл и обозначает тип данных в нем содержащихся. Например, article.doc, реферат по хирургии.doc, рис_15.jpg . Для удобства поиска файлы можно объединять в папки, которые в свою очередь могут быть вложены в папки более высокого уровня. Папкам присваиваются имена по тем же правилам, что и файлам, но без расширений. Совокупность папок и файлов образует файловую систему.

ЗАДАНИЕ №1

Ознакомьтесь с аппаратными средствами персонального компьютера.

Порядок выполнения задания

1. Убедитесь в том, что компьютер обесточен.

2. Познакомьтесь с внутренним устройством системного блока:

- найдите материнскую плату,

- установите местоположение на ней процессора, оперативной памяти, постоянного запоминающего устройства,

- обратите внимание на видеоадаптер, звуковую карту и другие устройства, установленные в разъемах материнской платы,

- найдите жесткий диск, CD-ROM, дисковод для дискет 3,5 дюйма.

- найдите блок питания.

3. Осмотрите переднюю стенку системного блока:

- найдите кнопки «Power» и «Reset»,

- найдите индикаторы «Power» и «H.D.D.»,

- обратите внимание на передние панели устройств, для работы со съемными носителями информации, и расположенные на них кнопки и индикаторы.

4. Осмотрите заднюю стенку системного блока, обратите внимание на то, как подключены различные внешние устройства.

5. Установите, какие внешние устройства подключены к компьютеру:

- обратите внимание на клавиатуру, познакомьтесь с расположением на ней клавиш и индикаторов (см. приложение 1.),

- осмотрите мышь, найдите ее органы управления,

- обратите внимание на устройства вывода информации, их органы управления и индикаторы.

ЗАДАНИЕ №2

Ознакомьтесь с операционной системой Windows XP и освойте основные приемы работы в ней.

Порядок выполнения задания

1. Включите компьютер.

Операционная система Windows запускается автоматически после включения компьютера. После загрузки появляется стартовый экран, называемый Рабочим столом . В его нижней части находится Панель задач . Она содержит кнопку Пуск , которая предназначена для активизации Главного меню системы. На поле Рабочего стола располагаются значки (объекты Windows): Мой компьютер, Мои документы, Корзина и ярлыки (указатели на различные объекты: программы, документы, диски). Отличительной чертой ярлыка является стрелка в нижнем левом углу.

Основным средством управления в Windows является мышь, отображаемая на экране указателем в виде стрелки или определенной пиктограммы в зависимости от состояния системы и выполняемого действия (например, в виде песочных часов во время ожидания выполнения операции). К основным приемам работы мышью относятся:

Наведение указателя на объект;

Щелчок – нажатие и быстрое отпускание левой кнопки;

Двойной щелчок – два щелчка, выполненные с коротким интервалом;

Перетаскивание – перемещение мыши при нажатой левой кнопке;

Щелчок правой кнопкой;

Зависание – наведение указателя на значок объекта с задержкой на нем на некоторое время.

2. Освойте технику выделения и перемещения объектов.

Выделите любой из значков или ярлыков на Рабочем столе щелчком мыши. Затем уберите выделение, щелкнув мышью на свободном месте рабочего стола. Выделите несколько объектов для чего, поместив указатель мыши около одного из них, нажмите левую кнопку и, удерживая ее, выделите появившейся рамочкой необходимое количество объектов. Поместив мышь на выделение, перетащите выделенные объекты по полю Рабочего стола . Снимите выделение.

3. Восстановите правильный порядок объектов на Рабочем столе.

Щелкните правой кнопкой на свободном месте Рабочего стола . Щелчок правой кнопкой мыши здесь и в иных местах вызывает контекстное меню, соответствующее обстоятельствам. Наведите указатель мыши на команду Упорядочить значки . В раскрывшемся подменю выберите вариант По имени и щелкните на нем.

4. Откройте папку Мой компьютер .

Воспользуйтесь двойным щелчком на соответствующем значке.Любая папка в Windows открывается в рабочем окне. Оно содержит строку заголовка с названием папки, за эту строку его можно перетаскивать на рабочем столе. В правой стороне строки заголовка расположены кнопки управления размером окна. Левая предназначена для сворачивания окна в кнопку на Панели задач (щелчок на этой кнопке разворачивает окно до прежнего размера). Средняя кнопка может находиться в двух состояниях: в одном она растягивает окно на весь экран – «разворачивает» его, в другом - восстанавливает прежние размеры – «сворачивает в окно». Правая кнопка служит для завершения работы с окном. Окно окружено рамкой. При наведении на нее указателя мыши он принимает вид двусторонней стрелки. При этом можно перетягивать сторону или угол окна, изменяя его размеры (если окно растянуто, этот прием невозможен).

 - увеличить размеры окна до размеров экрана (развернуть),
 - вернуть окну размеры, которые оно имело до максимизации (восстановить),
- свернуть окно до размеров кнопки на панели задач,
 - закрыть окно.

Под заголовком располагается Строка меню , а под ней Панель инструментов . Если содержимое окна превышает его размеры, справа и внизу появляются Полосы прокрутки , каждая из которых содержит движок и две концевые кнопки. С их помощью просматривают все содержимое окна.

5. Сверните окно и вновь разверните его. Измените размеры окна, перемещая стороны и углы. Растяните его с помощью соответствующей кнопки.

Одновременно можно открыть любое количество окон. При этом активным будет лишь одно. Любое из открытых окон можно активировать щелчком мыши на нем или на соответствующей ему кнопке на Панели задач .

6. Откройте папку Мои документы . Разместите оба окна на экране.

Папка Мой компьютер является системной и содержит значки устройств, входящих в состав компьютера: диск А (дисковод 3,5), диск D (CD-ROM), диск С (жесткий диск). Возможно наличие и других устройств, а также иные их буквенные обозначения. Папка Мои документы предназначена для хранения информации пользователя.

7. Закройте папку Мой компьютер .

8. В папке Мои документы откройте папку Студент и создайте в ней папку. В качестве имени папки введите номер группы и фамилию.

Выберете в Строке меню команду Файл , в выпадающем меню – Создать , а в развернувшемся списке – Папку . Введите имя папки с клавиатуры.

Большинство действий в Windows можно выполнить различными способами. Например, создать папку можно щелкнув правой кнопкой мыши на свободном месте в рабочем поле папки или на Рабочем столе и выбрав в контекстном меню команды Создать >Папку .

9. Откройте созданную Вами папку и создайте в ней новую папку с именем Учебная.

10. Удалите ее.

Выделите папку и нажмите клавишу Delete . На вопрос в диалоговом окне ответьте Да . Существует еще несколько способов удаления объектов. Команда Удалить имеется в контекстном меню, вызываемом щелчком правой кнопки мыши на удаляемом объекте. Также можно перетащить ненужный объект на значок Корзина .

11. Откройте папку Задания в папке Студент .

Для возврата к папке Студент щелкните на кнопке Вверх, расположенной на Панели инструментов .

12. Скопируйте файл Занятие1 в свою папку.

Выберите файл Занятие1 и щелкните на команде Копировать на Панели инструментов или в контекстном меню. Вернитесь в созданную Вами папку (можно воспользоваться кнопкой Назад на Панели инструментов ), щелкните на кнопке Вставить . Убедитесь в появлении скопированного файла в папке.

Наряду с копированием возможно перемещение объектов из папки в папку путем перетаскивания значка.

Важно отметить, что при удалении, копировании и перемещении ярлыка никаких изменений с файлом, с которым он связан, не происходит.

13. Откройте файл Занятие1 .

Дважды щелкните на соответствующем значке. Так как файл Занятие1 содержит графическую информацию, он открывается при помощи специальной программы Просмотр изображений .

14. Закройте все окна и щелкните на кнопке Пуск .

Ознакомьтесь с открывшимся Главным меню. С его помощью могут быть реализованы все возможности операционной системы Windows. В частности оно используется для запуска приложений. Список программ, установленных на компьютере, открывается при щелчке на пункте Все программы . Выбор пункта Завершение работы позволяет корректно завершить работу с операционной системой: выключить компьютер, перезагрузить или переключить в ждущий режим.

15. Выберите в главном меню пункт Программы>Стандартные >Микро­каль­кулятор . Познакомьтесь с его работой, вводя значения и символы математических операций с клавиатуры с помощью мыши. Закройте окно программы.


ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. Расскажите об отличии больших, мини-, микро-ЭВМ и персональных компьютеров.

2. Как можно классифицировать современные персональные компьютеры.

3. В чем Вы видите диалектический характер связи между аппаратными и программными средствами.

4. Перечислите внутренние устройства современного компьютера.

5. Поясните предназначение основных внутренних устройств компьютера.

6. Назовите устройства вывода информации.

7. Назовите устройства ввода информации.

8. Поясните предназначение манипулятора «мышь».

9. Назовите устройства, необходимые для сетевой работы компьютера, чем они различаются.

10. Перечислите четыре уровня программного обеспечения. Каков порядок их взаимодействия.

11. К какому классу относятся программные средства, встроенные в электронный термометр, современный электрокардиограф, автоматический тонометр.

12. Укажите предназначение операционной системы.

13. Для чего используются программы служебного уровня.

14. Перечислите известные Вам прикладные программы.

15. Какие Вы знаете медицинские прикладные программы.

16. Что такое файл, папка, файловая система.

17. По каким правилам файлу присваивается имя.


ТЕМА №2

Многофункциональный текстовый процессор Microsoft Word: базовые средства обработки текстовой информации

Необходимо знать: основные характеристики элементов текстового документа (шрифта, абзаца, страницы); устройство окна текстового редактора Microsoft Word; основные приемы работы с документами; технику ввода и редактирования текста; способы форматирования страницы, символа, абзаца; создание списка.

Необходимо уметь: запускать редактор Microsoft Word; создавать, открывать и сохранять документы; вводить текст с клавиатуры; изменять масштаб отображения документа на мониторе, просматривать документ с помощью функции «Предварительный просмотр»; перемещать курсор по тексту, выделять фрагменты последнего, копировать и перемещать их; устанавливать размер и ориентацию страницы, ширину полей, гарнитуру, размер, начертание шрифта, положение абзаца на странице, межстрочный интервал, интервалы перед и после абзаца, красную строку; размещать текст в колонках и устанавливать их параметры, создавать и редактировать колонтитулы, изменять регистр фрагментов текста, пользоваться функциями «Автоматическая расстановка переносов» и «Проверка правописания», создавать маркированные и нумерованные списки; иллюстрировать текст.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то