Как правильно составить блок схему. Блок-схема: примеры, элементы, построение. Блок-схемы алгоритмов

Блок-схемой будем называть такое графическое представление алгоритма, когда отдельные действия (или команды) представляются в виде геометрических фигур – блоков . Внутри блоков указывается информация о действиях, подлежащих выполнению. Связь между блоками изображают с помощью линий, называемых линиями связи , обозначающих передачу управления.

Существует Государственный стандарт, определяющий правила создания блок-схем. Конфигурация блоков, а также порядок графического оформления блок-схем регламентированы ГОСТ 19.701-90 "Схемы алгоритмов и программ". В табл. 2.1 приведены обозначения некоторых элементов, которых будет вполне достаточно для изображения алгоритмов при выполнении студенческих работ.

Правила составления блок-схем:

    Каждая блок-схема должна иметь блок «Начало » и один блок «Конец ».

    «Начало » должно быть соединено с блоком «Конец » линиями потока по каждой из имеющихся на блок-схеме ветвей.

    В блок-схеме не должно быть блоков, кроме блока «Конец », из которых не выходит линия потока, равно как и блоков, из которых управление передается «в никуда».

    Блоки должны быть пронумерованы. Нумерация блоков осуществляется сверху вниз и слева направо, номер блока ставится вверху слева, в разрыве его начертания.

    Блоки связываются между собой линиями потока, определяющими последовательность выполнения блоков. Линии потоков должны идти параллельно границам листа. Если линии идут справа налево или снизу вверх , то стрелки в конце линии обязательны , в противном случае их можно не ставить.

    По отношению к блокам линии могут быть входящими и выходящими . Одна и та же линия потока является выходящей для одного блока и входящей для другого.

    От блока «Начало » в отличие от всех остальных блоков линия потока только выходит, так как этот блок – первый в блок-схеме.

    Блок «Конец » имеет только вход, так как это последний блок в блок-схеме.

    Для простоты чтения желательно, чтобы линия потока входила в блок «Процесс» сверху, а выходила снизу.

    Чтобы не загромождать блок-схему сложными пересекающимися линиями, линии потока можно разрывать. При этом в месте разрыва ставятся соединители , внутри которых указываются номера соединяемых блоков. В блок-схеме не должно быть разрывов, не помеченных соединителями.

    Чтобы не загромождать блок, можно информацию о данных, об обозначениях переменных и т.п. размещать в комментариях к блоку.

Название блока

Обозначение блока

Назначение блока

Терминатор

Начало/Конец программы или подпрограммы

Обработка данных (вычислительное действие или последовательность вычислительных действий)

Ветвление, выбор, проверка условия. В блоке указывается условие или вопрос, который определяет дальнейшее направление выполнения алгоритма

Подготовка

Заголовок счетного цикла

Предопределенный процесс

Обращение к процедуре

Ввод/Вывод данных


Типы алгоритмов

Тип алгоритма определяется характером решаемой в соответствии с его командами задачи. Различают три типа алгоритмов: линейные, разветвляющиеся, циклические.

Линейный алгоритм состоит из упорядоченной последовательности действий, не зависящей от значений исходных данных, при этом каждая команда выполняется только один раз строго после той команды, которая ей предшествует.

Таким, например, является алгоритм вычисления по простейшим безальтернативным формулам, не имеющий ограничений на значения входящих в эти формулы переменных. Как правило, линейные процессы являются составной частью более сложного алгоритма.

Разветвляющимися называются алгоритмы, в которых в зависимости от значения какого-то выражения или от выполнения некоторого логического условия дальнейшие действия могут производиться по одному из нескольких направлений.

Каждое из возможных направлений дальнейших действий называется ветвью .

В блок-схемах разветвление реализуется специальным блоком «Решение» . Этот блок предусматривает возможность двух выходов. В самом блоке «Решение» записывается логическое условие, от выполнения которого зависят дальнейшие действия.

Различают несколько видов разветвляющихся алгоритмов.

1. «Обход» – такое разветвление, когда одна из ветвей не содержит ни одного оператора, т.е. как бы обходит несколько действий другой ветви.

2. «Разветвление» – такой тип разветвления, когда в каждой из ветвей содержится некоторый набор действий.

3. «Множественный выбор» – особый тип разветвления, когда каждая из нескольких ветвей содержит некоторый набор действий. Выбор направления зависит от значения некоторого выражения.

Циклические алгоритмы применяются в тех случаях, когда требуется реализовать многократно повторяющиеся однотипные вычисления. Цикл – это последовательность действий, которая может выполняться многократно, т.е. более одного раза.

Различают:

      циклы с известным числом повторений (или со счетчиком);

      циклы с неизвестным числом повторений (циклы с предусловием и циклы с постусловием).

В любом цикле должна быть переменная, которая управляет выходом из цикла, т.е. определяет число повторений цикла.

Последовательность действий, которая должна выполняться на каждом шаге цикла (т.е. при каждом повторении цикла), называется телом цикла или рабочей частью цикла .

На этом уроке мы на практике разберём: как составлять алгоритмы различных типов , а также как «читать» алгоритм по готовой блок-схеме .

Возможны следующие ситуации: в тот момент, когда мы подошли к дороге горел красный или зелёный свет. Если горел зелёный свет, то можно переходить дорогу. Если же горел красный свет, то необходимо дождаться зелёного - и уже тогда переходить дорогу.

Таким образом, алгоритм имеет следующий вид:

  1. Подойти к светофору.
  2. Посмотреть на его свет.
  3. Если горит зелёный, то перейти дорогу.
  4. Если горит красный, то подождать, пока загорится зелёный, и уже тогда перейти дорогу.

Блок-схема данного алгоритма имеет вид:

Рис. 3. Блок-схема к примеру 2.

Составление циклических алгоритмов

Рассмотрим пример на составление циклического алгоритма. Мы уже несколько раз обсуждали перевод чисел из десятичной системы в двоичную. Теперь пришло время чётко сформулировать этот алгоритм.

Напомним, что его принцип состоит в делении числа на 2 и записей остатков, получающихся при делении.

Пример 3. Составить алгоритм перевода чисел из десятичной системы в двоичную.

То есть, алгоритм будет выглядеть так:

  1. Если число равно 0 или 1, то это и будет его двоичное представление.
  2. Если число больше 1, то мы делим его на 2.
  3. Полученный остаток от деления записываем в последний разряд двоичного представления числа.
  4. Если полученное частное равно 1, то его дописываем в первый разряд двоичного представления числа и прекращаем вычисления.
  5. Если же полученное частное больше 1, то мы заменяем исходное число на него и возвращаемся в пункт 2).

Блок-схема этого алгоритма выглядит следующим образом:

Рис. 4. Блок-схема к примеру 3.

Примечание: подумайте, можно ли как-то упростить приведенную блок-схему.

«Чтение» алгоритмов

Пример 4. По заданной блок-схеме выполнить действия алгоритма для числа 23.

Рис. 5. Блок-схема к примеру 4.

На этом уроке мы разобрали примеры составления алгоритмов, а также пример «чтения алгоритма» по готовой блок-схеме.

На следующем уроке мы обсудим игры и выигрышные стратегии.

Как убить Кощея?

Наверное, все помнят из детства сказку, в которой рассказывается о местонахождении смерти Кощея Бессмертного: «Смерть моя - на конце иглы, которая в яйце, яйцо - в утке, утка - в зайце, заяц в сундуке сидит, сундук на крепкий замок закрыт и закопан под самым большим дубом на острове Буяне, посреди моря-океяна …»

Рис. 6. Кощей Бессмертный и Василиса Премудрая ().

Предположим, вместо Ивана-царевича бороться с Кощеем был брошен Иван-дурак. Давайте поможем Василисе Премудрой составить такой алгоритм, чтобы даже Иван-дурак смог убить Кощея.

  1. Конечно же, сначала необходимо разыскать остров Буян (на такие вещи, будем считать, Иван-дурак способен).
  2. Поскольку сундук закопан под самым большим дубом, то сначала необходимо найти самый большой дуб на острове.
  3. Затем нужно выкопать сам сундук.
  4. Прежде чем доставать зайца, необходимо сломать крепкий замок.
  5. Теперь уже можно достать зайца.
  6. Из зайца нужно достать утку.
  7. Из утки достать яйцо.
  8. Разбить яйцо и достать иголку.
  9. Иголку поломать.

Это тоже линейный алгоритм, хотя и более длинный, чем алгоритм запуска программы Paint.

Его блок-схема выглядит так:

Рис. 7. Блок-схема.

На распутье…

И снова обратимся к сказочным персонажам в поисках примеров различных алгоритмов. Когда речь идёт об алгоритмах с ветвлениями, то, конечно, нельзя не вспомнить о богатыре, стоящем на распутье возле камня.

Рис. 8. Богатырь на распутье ().

На камне написано:

«Направо пойдёшь - коня потеряешь, себя спасёшь; налево пойдёшь - себя потеряешь, коня спасёшь; прямо пойдёшь - и себя и коня потеряешь».

Попробуем составить алгоритм действий, который составил автор надписи на камне для путников?

  1. Если мы пойдём направо, то потеряем коня. Если же мы не пойдём направо, то у нас остаётся два варианта (мы считаем, что назад возвращаться путник не будет): пойти прямо и налево.
  2. В случае, если мы пойдём налево, то потеряем себя, а коня спасём.
  3. Если же мы пойдём прямо, то потеряем и себя, и коня.

Блок-схема этого алгоритма выглядит так:

Рис. 9. Блок-схема.

Репка

Русские народные сказки не оставили нас и без циклического алгоритма. И, как ни странно, спрятался он в одной из самых незамысловатых сказок - «Репке».

Рис. 10. Репка.

Вспомним сюжет сказки: дед тянет-потянет - вытянуть не может. Затем на помощь к деду по очереди подходят новые персонажи - и так до тех пор, пока не приходит мышка.

Попытаемся составить алгоритм действий всех персонажей сказки для того, чтобы они всё-таки смогли вытянуть Репку.

  1. Изначально к Репке подошёл дед и попытался вытянуть.
  2. Поскольку вытянуть Репку не получилось, то понадобилась помощь следующего персонажа.
  3. И так происходит до тех пор, пока не появилась мышка (или, другими словами, до тех пор, пока Репку не вытащили).

В виде блок-схемы этот алгоритм выглядит следующим образом:

Рис. 11. Блок-схема.

  1. Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса. - М.: БИНОМ. Лаборатория знаний, 2012
  2. Босова Л.Л. Информатика: Рабочая тетрадь для 6 класса. - М.: БИНОМ. Лаборатория знаний, 2010.
  3. Босова Л.Л., Босова А.Ю. Уроки информатики в 5-6 классах: Методическое пособие. - М.: БИНОМ. Лаборатория знаний, 2010.
  1. Интернет портал «Сообщество взаимопомощи учителей» ().
  2. Интернет портал «Nsportal.ru» ().
  3. Интернет портал «Фестиваль педагогических идей» ().
  1. §3.3, 3.4 (Босова Л.Л. Информатика и ИКТ: Учебник для 6 класса);
  2. Постарайся самостоятельно составить линейный алгоритм из 5-6 фигур;
  3. Составь блок-схему циклического алгоритма выполнения домашнего задания;

Схема это абстракция какого-либо процесса или системы, наглядно отображающая наиболее значимые части . Схемы широко применяются с древних времен до настоящего времени — чертежи древних пирамид, карты земель, принципиальные электрические схемы. Очевидно, древние мореплаватели хотели обмениваться картами и поэтому выработали единую систему обозначений и правил их выполнения. Аналогичные соглашения выработаны для изображения схем-алгоритмов и закреплены ГОСТ и международными стандартами.

На территории Российской Федерации действует единая система программной документации (ЕСПД) , частью которой является Государственный стандарт — ГОСТ 19.701-90 «Схемы алгоритмов программ, данных и систем» . Не смотря на то, что описанные в стандарте обозначения могут использоваться для изображения схем ресурсов системы, схем взаимодействия программ и т.п., в настоящей статье описана лишь разработка схем алгоритмов программ.

Рассматриваемый ГОСТ практически полностью соответствует международному стандарту ISO 5807:1985 .

Элементы блок-схем алгоритмов

Блок-схема представляет собой совокупность символов, соответствующих этапам работы алгоритма и соединяющих их линий. Пунктирная линия используется для соединения символа с комментарием. Сплошная линия отражает зависимости по управлению между символами и может снабжаться стрелкой. Стрелку можно не указывать при направлении дуги слева направо и сверху вниз. Согласно п. 4.2.4, линии должны подходить к символу слева, либо сверху, а исходить снизу, либо справа.

Есть и другие типы линий, используемые, например, для изображения блок-схем параллельных алгоритмов, но в текущей статье они, как и ряд специфических символов, не рассматриваются. Рассмотрены лишь основные символы, которых всегда достаточно студентам.

Терминатор начала и конца работы функции

Терминатором начинается и заканчивается любая функция. Тип возвращаемого значения и аргументов функции обычно указывается в комментариях к блоку терминатора.

Операции ввода и вывода данных

В ГОСТ определено множество символов ввода/вывода, например вывод на магнитные ленты, дисплеи и т.п. Если источник данных не принципиален, обычно используется символ параллелограмма. Подробности ввода/вывода могут быть указаны в комментариях.

Выполнение операций над данными

В блоке операций обычно размещают одно или несколько (ГОСТ не запрещает) операций присваивания, не требующих вызова внешних функций.

Блок, иллюстрирующий ветвление алгоритма

Блок в виде ромба имеет один вход и несколько подписанных выходов. В случае, если блок имеет 2 выхода (соответствует оператору ветвления), на них подписывается результат сравнения — «да/нет». Если из блока выходит большее число линий (оператор выбора), внутри него записывается имя переменной, а на выходящих дугах — значения этой переменной.

Вызов внешней процедуры

Вызов внешних процедур и функций помещается в прямоугольник с дополнительными вертикальными линиями.

Начало и конец цикла

Символы начала и конца цикла содержат имя и условие. Условие может отсутствовать в одном из символов пары. Расположение условия, определяет тип оператора, соответствующего символам на языке высокого уровня — оператор с предусловием (while) или постусловием (do … while).

Подготовка данных

Символ «подготовка данных» в произвольной форме (в ГОСТ нет ни пояснений, ни примеров), задает входные значения. Используется обычно для задания циклов со счетчиком.

Соединитель

В случае, если блок-схема не умещается на лист, используется символ соединителя, отражающий переход потока управления между листами. Символ может использоваться и на одном листе, если по каким-либо причинам тянуть линию не удобно.

Комментарий

Комментарий может быть соединен как с одним блоком, так и группой. Группа блоков выделяется на схеме пунктирной линией.

Примеры блок-схем

В качестве примеров, построены блок-схемы очень простых алгоритмов сортировки, при этом акцент сделан на различные реализации циклов, т.к. у студенты делают наибольшее число ошибок именно в этой части.

Сортировка вставками

Массив в алгоритме сортировки вставками разделяется на отсортированную и еще не обработанную части. Изначально отсортированная часть состоит из одного элемента, и постепенно увеличивается.

На каждом шаге алгоритма выбирается первый элемент необработанной части массива и вставляется в отсортированную так, чтобы в ней сохранялся требуемый порядок следования элементов. Вставка может выполняться как в конец массива, так и в середину. При вставке в середину необходимо сдвинуть все элементы, расположенные «правее» позиции вставки на один элемент вправо. В алгоритме используется два цикла — в первом выбираются элементы необработанной части, а во втором осуществляется вставка.


Блок-схема алгоритма сортировки вставками

В приведенной блок-схеме для организации цикла используется символ ветвления. В главном цикле (i < n) перебираются элементы необработанной части массива. Если все элементы обработаны — алгоритм завершает работу, в противном случае выполняется поиск позиции для вставки i-того элемента. Искомая позиция будет сохранена в переменной j в результате выполнения внутреннего цикла, осуществляющем сдвиг элементов до тех пор, пока не будет найден элемент, значение которого меньше i-того .

На блок-схеме показано каким образом может использоваться символ перехода — его можно использовать не только для соединения частей схем, размещенных на разных листах, но и для сокращения количества линий. В ряде случаев это позволяет избежать пересечения линий и упрощает восприятие алгоритма.

Сортировка пузырьком

Сортировка пузырьком , как и сортировка вставками , использует два цикла. Во вложенном цикле выполняется попарное сравнение элементов и, в случае нарушения порядка их следования, перестановка. В результате выполнения одной итерации внутреннего цикла, максимальный элемент гарантированно будет смещен в конец массива. Внешний цикл выполняется до тех пор, пока весь массив не будет отсортирован.


Блок-схема алгоритма сортировки пузырьком

На блок-схеме показано использование символов начала и конца цикла. Условие внешнего цикла (А) проверяется в конце (с постусловием ), он работает до тех пор, пока переменная hasSwapped имеет значение true. Внутренний цикл использует предусловие для перебора пар сравниваемых элементов. В случае, если элементы расположены в неправильном порядке, выполняется их перестановка посредством вызова внешней процедуры (swap ). Для того, чтобы было понятно назначение внешней процедуры и порядок следования ее аргументов, необходимо писать комментарии. В случае, если функция возвращает значение, комментарий может быть написан к символу терминатору конца.

Сортировка выбором

В сортировке выбором массив разделяется на отсортированную и необработанную части. Изначально отсортированная часть пустая, но постепенно она увеличивается. Алгоритм производит поиск минимального элемента необработанной части и меняет его местами с первым элементом той же части, после чего считается, что первый элемент обработан (отсортированная часть увеличивается).


Блок-схема сортировки выбором

На блок-схеме приведен пример использования блока «подготовка», а также показано, что в ряде случаев можно описывать алгоритм более «укрупнённо» (не вдаваясь в детали). К сортировке выбором не имеют отношения детали реализации поиска индекса минимального элемента массива , поэтому они могут быть описаны символом вызова внешней процедуры. Если блок-схема алгоритма внешней процедуры отсутствует, не помешает написать к символу вызова комментарий, исключением могут быть функции с говорящими названиями типа swap, sort , … .

Для визуализации этапов любого процесса удобно использовать блок-схемы. Они позволяют представить логическую цепочку в виде отдельных графических элементов, объединенных в нужном порядке.

Отличным способом быстро сделать блок-схему является использование специальных онлайн программ. Как они работают и какими особенностями обладают рассмотрим на примере трех русскоязычных редакторов.

Как нарисовать красивую диаграмму в Canva

О сайте Canva мы уже много раз рассказывали в своих статьях. Этот идеально подходит для создания инфографики, презентаций, афиш, наружной рекламы и др. Сегодня поговорим о том, как Канва поможет построить блок-схему онлайн.

Для начала стоит сказать, что из всех сервисов, которые мы сегодня рассмотрим, это единственный ресурс, позволяющий не просто создать четкую и структурированную схему, но и красиво ее оформить. Сайт предназначен скорее для дизайнеров, нежели математиков или программистов, поэтому если вам нужно, например, создать красочную диаграмму для презентации проекта или маркетинг-плана, то Канва – однозначно лучший помощник.

Для начала выбираем понравившийся шаблон среди десятков различных вариантов.

Удобно, что большая часть макетов здесь предоставляется бесплатно


Настроить здесь можно абсолютно все: начиная от шрифта надписей и заканчивая структурой изображения


Кроме того, есть возможность добавить красивые диаграммы


В этом же разделе также есть функция вставки созданного изображения на ваш интернет-ресурс. Достаточно просто скопировать фрагмент кода с диаграммой и вписать его в свой блог или сайт

Когда работа над блок-схемой закончена, нажимаем «Скачать».


Выбираем формат файла

К большим преимуществам использования Canva можно отнести то, что картинка по итогу сохраняется без каких-либо водяных символов.

Удобное построение логических цепочек с Draw . io

Еще одним бесплатным онлайн-сервисом, достойным вашего внимания, является Draw.io . Он считается одним из самых известных сайтов для создания схем, диаграмм, графиков и структур. Здесь так же, как и в Canva, есть возможность подключить русскоязычный интерфейс, что существенно облегчает процесс.

Перед началом работы нам предлагают выбрать место для сохранения готового результата, а также определиться с макетом.


Спасибо Draw.io за удобное структурирование шаблонов – все они распределены по категориям, что позволяет выбирать нужный вариант максимально быстро

Переходим к редактированию. Для изменения элемента достаточно щелкнуть по нему кнопкой мыши, после чего справа отображаются характеристики стиля, текста и расположения.


По сравнению с предыдущим сервисом, настройки здесь кажутся немного примитивными, но тем не менее присутствуют все необходимые параметры

Чтобы заменить фигуру, выбираем подходящий объект на левой панели и перетаскиваем его на нужное место. Удобно, что при перемещении элементов все прикрепленные к ним стрелочки автоматически меняют свое положение.


Также есть возможность вставить в документ уже готовую схему или другое изображение, импортировав его с компьютера, облачного хранилища или интернет-ресурса

Для сохранения результата нажимаем «Файл» – «Сохранить как», после чего нам предлагают следующие варианты:

  • Google Drive;
  • OneDrive;
  • Dropbox;
  • GitHub;
  • Trello;
  • компьютер;
  • браузер.

Готовый файл скачивается в формате.xml.

Google chart – мощный инструмент для разработчиков

И наконец завершает наш список рекомендаций Google chart API . Он представляет собой библиотеку фрагментов кода, при встраивании которых на вашем сайте появляются красивые диаграммы, графики, структуры, таблицы и др.


Выбираем нужную категорию
На примере мы видим, как будет выглядеть схема, если не изменять основную суть кода

После копирования и вставки на свой сайт нам нужно ввести соответствующие данные вместо тех, что указаны в примере. Это несложно, учитывая, что в коде есть много полезных комментариев и уточнений.

Для опытных программистов Google chart API станет незаменимым помощником, ведь он предлагает широкий набор дополнительных инструментов для эффектных визуализаций. Если вы не слишком уверенный разработчик, то можете использовать стандартные варианты – они тоже смотрятся вполне достойно.

Все рассмотренные нами программы абсолютно разные, поэтому выделить из них самую удобную невозможно. Все зависит от ваших целей и пожеланий. Если вам необходимо получить красивый графический продукт, то лучше Canva с этим не справится ни один сайт. Если нужна минималистичная схема без особых изысков – на помощь придет Draw.io. Если хотите прописать код для своей диаграммы – используйте Google chart API.

В случае, если вам потребуется создать блок-схему без использования интернета, можете сделать это в Word 2016. Процесс будет не таким удобным и быстрым, как в случае с онлайн-программами, т.к. здесь нет никаких заготовок и шаблонов. Все элементы и связи между ними придется отрисовывать с нуля, так что запаситесь терпением.

Строго говоря, термина «блок-схема» не существует. Вместо этой фразы правильно говорить «схема алгоритма», но сейчас не об этом. Моя статья о том, можно ли быстро и удобно рисовать алгоритмы, при этом еще чтобы это было бесплатно. Было бы здорово, если бы существовал бесплатный аналог онлайн-редактора Gliffy, и он на наше счастье есть.

Алгоритмы в Pencil рисовать очень легко. Для этого имеется выделенная библиотека примитивов со стандартными блоками и соединителями. Выглядит это примерно так:

При рисовании блоков они привязываются автоматически к сетке, что позволяет легко их выравнивать. Нарисовав один блок, другой блок можно «примагнитить» к нему снизу или сбоку, всё при этом будет ровно.

Если навести на блок и кликнуть мышью один раз, будет режим изменения размера блока и перетаскивания. Если кликнуть второй раз, блок можно будет вращать (появятся круглые красные точки по краям).

Доступны основные базовые возможности, практически как в Visio: блоки можно объединять в группы, перетаскивать и копировать, располагать выше или ниже по слоям, магнитить коннекторы к центру и т.д.

Недостатки тоже присутствуют, например, не очень корректная работа углового соединителя: он иногда трансформируется в невообразимый зигзаг при попытке его выделить и перетащить. Но эти недостатки столь несущественны, что не помешали занять программе Pencil достойное место в моей коллекции повседневных инструментов разработчика.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то