Какие показатели характеризуют скорость работы диска. Пути повышения производительности винчестера. Самые важные критерии выбора

Скорость и производительность работы компьютера определяется множеством факторов. Невозможно добиться ощутимого повышения производительности за счёт улучшения характеристик какого-либо одного устройства, например, за счёт повышения тактовой частоты процессора. Только тщательно подобрав и сбалансировав все компоненты компьютера можно добиться существенного повышения производительности работы компьютера.

Следует помнить, что компьютер не может работать быстрее, чем самое медленное из устройств, задействованных для выполнения этой задачи.

Тактовая частота процессора

Наиболее важный параметр производительности компьютера - скорость процессора , или, как её называют, тактовая частота , которая влияет на скорость выполнения операций в самом процессоре . Тактовой частотой называют рабочую частоту ядра процессора (т. е. той части, которая выполняет основные вычисления) при максимальной загрузке. Отметим, что другие компоненты компьютера могут работать на частотах, отличных от частоты процессора.

Измеряется тактовая частота в мегагерцах (MHz) и гигагерцах (GHz) . Количество тактов в секунду, выполняемых процессором, не совпадает с количеством операций, выполняемых процессором за секунду, поскольку для реализации многих математических операций требуется несколько тактов. Понятно, что в одинаковых условиях процессор с более высокой тактовой частотой должен работать эффективнее, чем процессор с более низкой тактовой частотой.

С увеличением тактовой частоты процессора увеличивается и число операций, совершаемых компьютером за одну секунду, а следовательно, возрастает и скорость работы компьютера.

Объем оперативной памяти

Важным фактором, влияющим на производительность компьютера, является объем оперативной памяти и её быстродействие (время доступа, измеряется в наносекундах). Тип и объем оперативной памяти оказывает большое влияние на скорость работы компьютера.


Самым быстро работающим устройством в компьютере является процессор . Вторым по скорости работы устройством компьютера является оперативная память, однако, оперативная память значительно уступает процессору по скорости.

Чтобы сравнить скорость работы процессора и оперативной памяти, достаточно привести только один факт: почти половину времени процессор простаивает в. ожидании ответа от оперативной памяти. Поэтому чем меньше время доступа к оперативной памяти (т. е. чем она быстрее), тем меньше постаивает процессор, и тем быстрее работает компьютер.

Чтение и запись информации из оперативной памяти осуществляется значительно быстрее, чем с любого другого устройства для хранения информации, например, с винчестера, поэтому увеличение объёма оперативной памяти и установка более быстрой памяти приводит к увеличению производительности компьютера при работе с приложениями.

Объем жёсткого диска и скорость работы жёсткого диска

На производительность компьютера влияет скорость связи шины жёсткого диска и свободный объем дискового пространства.


Объем жёсткого диска, как правило, влияет на количество программ, которые вы можете установить на компьютер, и на количество хранимых данных. Ёмкость накопителей для жёстких дисков измеряется, как правило, десятками и сотнями гигабайт.

Жёсткий диск работает медленнее, чем оперативная память . Так как скорость обмена данными для жёстких дисков Ultra DMA 100 не превышает 100 мегабайт в секунду (133 Мбайт/сек для Ultra DMA 133). Ещё медленнее происходит обмен данными в DVD и CD-приводах.

Важными характеристиками винчестера, влияющими на Скорость работы компьютера, являются:

  • Скорость вращения шпинделя;
  • Среднее время поиска данных;
  • Максимальная скорость передачи данных.

Размер свободного места на жёстком диске

При нехватке места в оперативной памяти компьютера Windows и многие прикладные программы вынуждены размещать часть данных, необходимых для текущей работы, на жёстком диске, создавая так называемые временные файлы (swap files) или файлы подкачки .

Поэтому важно, чтобы на диске было достаточно свободного места для записи временных файлов. При недостатке свободного места на диске многие приложения просто не могут корректно работать или их скорость работы значительно падает.

После завершения работы приложения все временные файлы, как правило, автоматически удаляются с диска, освобождая место на винчестере. Если размер оперативной памяти достаточен для работы (не менее нескольких Гб), то размер файла подкачки для персонального компьютера не так существенно влияет на быстродействие компьютера и может быть установлен минимальным.

Дефрагментация файлов

Операции удаления и изменения файлов на диске приводят к фрагментации файлов, выражающейся в том, что файл занимает не соседние области на диске, а разбивается на несколько частей, хранящихся в разных областях диска. Фрагментация файлов приводит к дополнительным затратам на поиск всех частей открываемого файла, что замедляет доступ к диску и уменьшает (как правило, не существенно) общее быстродействие диска.

Например, для выполнения дефрагментации в операционной системе Windows 7 щёлкните по кнопке Пуск и в раскрывшемся главном меню выберите последовательно команды Все программы, Стандартные, Служебные, Дефрагментация диска .

Количество одновременно работающих приложений

Windows - многозадачная операционная система , которая позволяет одновременно работать сразу с несколькими приложениями. Но чем больше приложений одновременно работают, тем сильнее возрастает нагрузка на процессор, оперативную память, жёсткий диск, и тем самым замедляется скорость работы всего компьютера, всех приложений.

Поэтому те приложения, которые не используются в данный момент, лучше закрыть, освобождая ресурсы компьютера для оставшихся приложений.

Собираем компьютер" url="http://putevodytel.com/view_it_news.php?art=vibor_HDD">

Жесткий диск (винчестер, HDD) – перезаписываемое постоянное запоминающее устройство (ПЗУ) - основной носитель информации в компьютере. На нем хранятся, данные: как операционной системы, так и файлы пользователя (программы, игры, фильмы, музыка, изображения…). Память жесткого диска не является энергозависимой, что объясняет возможность хранения данных, без подачи электричества на устройство.

Винчестер представляет собой набор из одной или нескольких герметизированных пластин в форме дисков, покрытых слоем ферромагнитного материала и считывающих головок в одном корпусе. Пластины приводятся в движение при помощи шпинделя (вращающегося вала). Соленоидный привод позиционирует головку для проведения операций чтения\записи данных.

Считывающее головки не касаются поверхности диска как во время чтения\записи данных (из-за прослойки набегающего потока воздуха в 5 – 10 нм, которая образуется при очень быстром вращении), так и во время простоя диска (головки отводятся к шпинделю или за пределы пластин). Благодаря отсутствию контакта, жесткий диск можно перезаписать в среднем 100 тысяч раз. Также на продолжительность работы диска влияет герметический корпус (гермозона), благодаря которому внутри корпуса HDD создается пространство, очищенное от пыли и влаги.

Основные характеристики жесткого диска: интерфейс, ёмкость, объем буфера, физический размер (форм-фактор), время произвольного доступа, скорость передачи данных, количество операций ввода-вывода в секунду, скорость вращения шпинделя, уровень шума.

Первое, на что следует обратить внимание при выборе жесткого диска – интерфейс - устройство, преобразующее и передающее сигналы между HDD и компьютером. Наиболее распространёнными интерфейсами сейчас являются: SCSI , SAS , ATA (IDE , PATA ), Serial ATA (SATA ), eSATA и USB .

Интерфейс SCSI имеет скорость 640МБ/с, используется, в основном, на серверах; SAS – его более высокоскоростной аналог (12 Гбит/с), обратно совместимый с интерфейсом SATA .

ATA (IDE , PATA ) – предшественник SATA , сейчас он уже не актуален из-за своей небольшой скорости в 150МБ/с.

eSATA и USB – интерфейсы для внешних винчестеров.

Serial ATA (SATA) - это самый распространённый интерфейс жестких дисков. Именно на него следует ориентироваться при выборе винчестера. На данный момент существует несколько вариаций SATA . С физической точки зрения они не отличаются (интерфейсы совместимы), различия только в скорости: (SATA-I - 150 Мбайт/с, SATA-II - 300 Мбайт/c, SATA-III - 600 Мбайт/с.).

Что касается емкости: тут все просто. Чем она больше, тем лучше, так как больше информации можно будет записать. Данная характеристика никак не влияет на производительность винчестера. Определяется пользователем исходя из потребности в месте для хранения файлов. В таблице ниже приведены средние значения размера основных типов файлов, на которые стоит обратить внимание при выборе HDD .

Объём буфера (кэша) . Буфер (кэш) - встроенная в жёсткий диск энергозависимая память (подобная оперативной памяти), предназначенная для сглаживания различий скорости чтения/записи, а также хранения данных, обращение к которым происходит наиболее часто. Чем больше кэш – тем лучше. Показатель варьируется от 8 до 64 Мб. Наиболее оптимальным считается значение 32 Мб.

Существуют два основных форм-фактора для жестких дисков: 3.5 дюйма и 2.5 дюйма. Первый в основном используется в настольных компьютерах, второй – в ноутбуках.

Время произвольного доступа . Данная характеристика показывает среднее время, за которое винчестер выполняет операцию позиционирования головки чтения/записи на произвольный участок магнитного диска. Параметр колеблется в пределах - от 2,5 до 16 милисекунд. Естественно, чем меньше значение – тем лучше.

Скорость передачи данных. Современные жесткие диски имеют скорость 50-75 Мб/с (для внутренней зоны HDD) и 65-115 Мб/с (для внешней зоны).

Количество операций ввода-вывода в секунду. Данная характеристика колеблется в пределах от 50 до 100 операций в секунду в зависимости от размещения информации на диске.

Последние три параметра стоит рассматривать в иерархической последовательности, в зависимости от назначения винчестера. Если вы чаще пользуетесь громоздкими приложениями, играми, нередко смотрите фильмы в HD качестве, их следует подбирать в такой последовательности: скорость передачи данных > количество операций ввода-вывода в секунду > время произвольного доступа. Если же в вашем арсенале много маленьких, часто запускаемых приложений, то иерархия будет выглядеть так: время произвольного доступа > количество операций ввода-вывода в секунду > скорость передачи данных.

Скорость вращения шпинделя - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. Наиболее распространенными являются скорости вращения: 5400, 5900, 7200, 10000 и 15000 об/мин. Оптимальной для ПК является скорость в 7200 об/мин.

Уровень шума жесткого диска состоит из шума вращения шпинделя и шума позиционирования. Измеряется в децибелах. На данную характеристику следует обратить внимание из убеждений комфорта.

RAID . Если вы располагаете средствами на покупку двух или более HDD , вам необходимо обратить внимание на технологию RAID (redundant array of independent disks) – массив дисков. Данная технология позволяет с одной стороны в разы увеличить скорость обмена данными с винчестерами (подобно многоканальному режиму, для ОЗУ), с другой – обезопасить себя от потери важных данных.

Итог. В первую очередь следует задуматься о предназначении диска, исходя из этого, определится с объемом, форм-фактором. Исходя из характеристик вашей материнской платы, подобрать интерфейс (скорее всего это будет SATA ). Далее следует отобрать диски с приемлемым объемом буфера, и определится со скоростью вращения шпинделя. Параметры скорости передачи данных, количества операций ввода-вывода в секунду, времени произвольного доступа выбираем по ситуации, в зависимости от потребности. Обращаем внимание на уровень шума, если нужен комфорт.

Огромное разнообразие моделей винчестеров затрудняет выбор подходящего. Кроме нужной емкости, очень важна и производительность, которая определяется в основном его физическими характеристиками. Такими характеристиками являются среднее время поиска, скорость вращения, внутренние и внешние скорости передачи, объем кэш-памяти.

q Среднее время поиска

Жесткий диск затрачивает какое-то время для того, чтобы переместить магнитную головку из текущего положения в новое, требуемое для считывания очередной порции информации. В каждой конкретной ситуации это время разное, в зависимости от расстояния, на которое должна переместиться головка. Обычно в спецификациях приводятся только усредненные значения, причем применяемые разными фирмами алгоритмы усреднения в общем случае различаются, так что прямое сравнение затруднено. Так, фирмы Fujitsu, Western Digital проводят усреднение по всем возможным парам дорожек, фирмы Maxtor и Quantum применяют метод случайного доступа. Получаемый результат может дополнительно корректироваться. Значения времени поиска для записи часто несколько выше, чем для чтения. Некоторые производители в своих спецификациях приводят только меньшее значение (для чтения). В любом случае кроме средних значений полезно учитывать и максимальное (через весь диск), и минимальное (то есть с дорожки на дорожку) время поиска.

q Скорость вращения

С точки зрения быстроты доступа к нужному фрагменту записи скорость вращения оказывает влияние на величину так называемого скрытого времени, которое требуется для того, чтобы диск повернулся к магнитной головке нужным сектором. Среднее значение этого времени соответствует половине оборота диска и составляет 8,33 мс при 3600 об/мин, 6,67 мс при 4500 об/мин, 5,56 мс при 5400 об/мин и 4,17 мс при 7200 об/мин. Значение скрытого времени сопоставимо со средним временем поиска, так что в некоторых режимах оно может оказывать такое же, если не большее, влияние на производительность.

q Внутренняя скорость передачи

Скорость, с которой данные записываются на диск или считываются с диска. Из-за зонной записи она имеет переменное значение - выше на внешних дорожках и ниже на внутренних. При работе с длинными файлами во многих случаях именно этот параметр ограничивает скорость передачи.

q Внешняя скорость передачи

Скорость (пиковая), с которой данные передаются через интерфейс. Она зависит от типа интерфейса и имеет чаще всего фиксированные значения: 8,3; 11,1; 16,7 Мбайт/с для Enhanced IDE режимов (РЮ Mode 2, 3,4); 33,3 и 66,6 для Ultra DMA; 5, 10, 20,40, 80 Мбайт/с для синхронных SCSI, Fast SCSI-2, Fasti/Vide SCSI-2 Ultra SCSI, Ultra SCSI (16 разрядов) соответственно.

q Объем cache-памяти (дисковой буфер)

Объем и организация cache-памяти (внутреннего буфера) может заметно влиять на производительность жесткого диска. Также как и для обычной cache-памяти, прирост производительности по достижении некоторого объема резко замедляется. Сегментированная cache.-память большого объема актуальна для производительных SCSI-дисков, используемых в многозадачных средах.

Контроллеры

Контроллер - плата, управляющая работой периферийного устройства (дисководом, винчестером, монитором и т.д.) и обеспечивающая их связь с основной платой.

Отметим, что на всех современных материнских платах уже присутствуют (входят в их состав) контроллеры дисководов, винчестеров (с интерфейсом IDE), принтера и "мыши" (параллельный и последовательный порт). Мы упоминаем об этом, т.к. ранее на 286, 386 и части 486 платах (с VLB-шиной) они не устанавливались и выпускались в виде отдельной платы (так называемой "мультикарты" - multi IDE HDD/FDD), которую необходимо было вставлять в свободный слот (разъем) на материнской плате.

К платам, расширяющим возможности компьютера, относятся: плата модема или факс-модема, видеоввода, звуковая и другие платы специального назначения (например, плата АЦП - аналого-цифровой преобразователь на несколько входов для измерений и т.д.).

Видеоконтроллером является графическая плата SVGA. Платы SVGA, впрочем как и модемные, звуковые и др., выпускаются огромным количеством различных фирм в большом ассортименте (различаются по своим возможностям и цене), поэтому мы подробно рассмотрим их в последующих главах. Здесь же лишь упомянем, что слоты (разъемы) расширения на материнской плате, куда вставляются подобные платы, бывают нескольких вариантов (как по своей внутренней организации, так и по конструктивному исполнению): ISA, VESA (по-другому VLB), PCI и AGP. Подробно эти стандарты шин расширения будут описаны далее. Скажем только, что контроллеры изготавливаются с расчетом их подсоединения к ISA или VESA или PCI или AGP и имеют соответствующий одному из перечисленных разъем, а на материнских платах обычно расположены несколько таких разъемов одновременно. Например, материнская плата GA-6BXC оснащена тремя разъемами ISA, четырьмя PCI и одним AGP.

Скорость передачи данных по шине дискового интерфейса — это далеко не единственный параметр, влияющий на быстродействие винчестера в целом. Наоборот, производительность жестких дисков с одинаковым типом интерфейса иногда очень существенно различается. В чем же причина?

Дело в том, что жесткий диск является совокупностью большого количества разнообразных электронных и электромеханических устройств. Быстродействие же механических компонентов винчестера существенно уступает быстродействию электроники, в состав которой входит и шинный интерфейс. Общая производительность диска, к сожалению, определяется по скорости работы самых медленных компонентов. «Горлышком бутылки» при передаче данных между накопителем и компьютером является именно внутренняя скорость передачи — параметр, определяемый быстродействием механики винчестера, что является одной из причин ремонта ноутбуков . Поэтому в самых современных режимах обмена PIO 4 и UltraDMA максимально возможная пропускная способность интерфейса в ходе реальной работы с накопителем почти никогда не достигается. Для определения быстродействия механических компонентов, а также всего накопителя необходимо знать следующие параметры.

Частота вращения дисков — количество оборотов, совершаемых пластинами (отдельными дисками) винчестера в минуту. Чем выше частота вращения, тем быстрее происходит запись или считывание данных. Типичное значение этого параметра для большинства современных EIDE-дисков — 5400 об/мин. В некоторых новейших накопителях диски вращаются с частотой 7200 об/мин. Технический предел, достигнутый на сегодняшний день, — 10000 об/мин — реализован в SCSI-накопителях серии Seagate Cheetah.

Среднее время поиска — среднестатистическое время, необходимое для позиционирования блока головок из произвольного положения на заданную дорожку для чтения или записи данных. Типичное значение этого параметра для новых винчестеров составляет от 10 до 18 мс, причем хорошим можно считать время доступа 11-13 мс. В наиболее быстродействующих SCSI-моделях значение времени доступа — меньше 10 мс.

Среднее время доступа — среднестатистический отрезок времени от выдачи команды на операцию с диском до начала обмена данными. Это — составной параметр, включающий в себя среднее время поиска, а также половину периода вращения диска (с учетом того, что данные могут находиться в произвольном секторе на нужной дорожке). Параметр определяет величину задержки до начала считывания нужного блока данных, а также общую производительность при работе с большим количеством мелких файлов.

Внутренняя скорость передачи-скорость обмена данными между интерфейсом диска и носителями (пластинами). Значения этого параметра существенно различаются для чтения и записи. Они определяются частотой вращения дисков, плотностью записи, характеристиками механизма позиционирования и другими параметрами накопителя. Именно эта скорость имеет решающее влияние на быстродействие накопителя в установившемся режиме (при чтении большого цельного блока данных). Превышение общей скорости передачи над внутренней достигается только при обмене данными между интерфейсом и кэш-памятью винчестера без немедленного обращения к пластинам. Поэтому на быстродействие накопителя влияет еще один параметр, а именно…

…объем кэш-памяти. Кэш-память — обычное электронное ОЗУ, установленное на винчестере. Данные после считывания с винчестера одновременно с передачей их в память компьютера попадают и в кэш-память. Если эти данные потребуются снова, они будут считаны не с пластин, а из кэш-буфера. Это позволяет значительно ускорить обмен данными. Для повышения эффективности кэш-памяти разработаны специальные алгоритмы, выявляющие наиболее часто используемые данные и помещающие в кэш именно их, что повышает вероятность того, что при следующем обращении будут затребованы данные именно из электронного ОЗУ — произойдет так называемое «попадание в кэш». Естественно, чем больше объем кэш-памяти, тем быстрее обычно работает диск.

Плата электроники современного накопителя на жестких магнитных дисках представляет собой самостоятельный микрокомпьютер с собственным процессором, памятью, устройствами ввода/вывода и прочими традиционными атрибутами присущими компьютеру. На плате могут располагаться множество переключателей и перемычек.

Все накопители соответствуют стандартам, определяемым либо независимыми комитетами и группами стандартизации, либо самими производителями. Среди множества технических характеристик отличающих одну модель от другой можно выделить некоторые, наиболее важные с точки зрения пользователей и производителей.

Диаметр дисков (disk diameter) - параметр довольно свободный. Наиболее распространены накопители с диаметром дисков 2.2,2.3,3.14 и 5.25 дюймов. Диаметр дисков определяет плотность записи на дюйм магнитного покрытия. Накопители большего диаметра содержат большее число дорожек, и в них, как правило используются более простые технологии изготовления носителей, предназначенных для меньшей плотности записи. Они медленнее и имеют меньшее число дисков, но более надежны. Накопители с меньшим диаметром больших объемов имеют более высокотехнологичные поверхности и высокие плотности записи информации, а также большее число дисков.

Число поверхностей (sides number) - определяет количество физических дисков нанизанных на шпиндель. Выпускаются накопители с числом поверхностей от 1 до 8 и более. Однако, наиболее распространены устройства с числом поверхностей от 2 до 5. Число поверхностей прямо определяет физический объем накопителя и скорость обработки операций на одном цилиндре. Так как операции на поверхностях цилиндра выполняются всеми головками синхронно, то при равных всех остальных условиях, более быстрыми окажутся накопители с большим числом поверхностей.

Число цилиндров (cylinders number) - определяет сколько дорожек (треков) будет располагаться на одной поверхности. В настоящее время все накопители емкостью более 1 Гигабайта имеют число цилиндров более 1024, вследствие чего, для распространенных ОС применяются унифицированные режимы доступа с пересчетом и эмуляцией и виртуализацией числа головок, цилиндров и секторов (LBA и Large) .

Число секторов (sectors count) - общее число секторов на всех дорожках всех поверхностей накопителя. Определяет физический неформатированный объем устройства.

Число секторов на дорожке (sectors per track) - общее число секторов на одной дорожке. Часто, для современных накопителей показатель условный, т.к. они имеют неравное число секторов на внешних и внутренних дорожках, скрытое от системы и пользователя интерфейсом устройства.

Частота вращения шпинделя (rotational speed или spindle speed) - определяет, сколько времени будет затрачено на последовательное считывание одной дорожки или цилиндра. Частота вращения измеряется в оборотах в минуту (rpm) . Для дисков емкостью до 1 гигабайта она обычно равна 5,400 оборотов в минуту, а у более вместительных достигает 7,200 и 10000 rpm.

Время перехода от одной дорожки к другой (track-to-track seek time) обычно составляет от 3.5 до 5 миллисекунд, а у самых быстрых моделей может быть от 0.6 до 1 миллисекунды. Переход с дорожки на дорожку является самым длительным процессом в серии процессов произвольного чтения/записи на дисковом устройстве. Показатель используется для условной оценки производительности при сравнении накопителей разных моделей и производителей.

Время успокоения головок (head latency time) - время, проходящее с момента окончания позиционирования головок на требуемую дорожку до момента начала операции чтения/записи. Является внутренним техническим показателем, входящим в показатель - время перехода с дорожки на дорожку.

Время установки или время поиска (seek time) - время, затрачиваемое устройством на перемещение головок чтения/записи к нужному цилиндру из произвольного положения.

Среднее время установки или поиска (average seek time) - усредненный результат большого числа операций позиционирования на разные цилиндры, часто называют средним временем позиционирования. Среднее время поиска имеет тенденцию уменьшаться с увеличением емкости накопителя, т. к повышается плотность записи и увеличивается число поверхностей. Для 540-мегабайтных дисков наиболее типичны величины от 10 до 13, а для дисков свыше гигабайта - от 7 до 10 миллисекунд. Среднее время поиска является одним из важнейших показателей оценки производительности накопителей, используемых при их сравнении.

Время ожидания (latency) - время, необходимое для прохода нужного сектора к головке, усредненный показатель - среднее время ожидания (average latency) , получаемое как среднее от многочисленных тестовых проходов. После успокоения головок на требуемом цилиндре контроллер ищет нужный сектор. При этом, последовательно считываются адресные идентификаторы каждого проходящего под головкой сектора на дорожке. В идеальном, с точки зрения производительности случае, под головкой сразу окажется нужный сектор, в плохом - окажется, что этот сектор только что "прошел" под головкой, и, до окончания процесса успокоения необходимо будет ждать полный оборот диска для завершения операции чтения/записи. Это время у накопителей объемом от 540 мегабайт до 1 гигабайта составляет примерно 5.6, а у дисков свыше гигабайта - 4.2 миллисекунды и менее.

Время доступа (access time) - суммарное время, затрачиваемое на установку головок и ожидание сектора. Причем, наиболее долгим является промежуток времени установки головок.

Среднее время доступа к данным (average access time) - время, проходящее с момента получения запроса на операцию чтения/записи от контроллера до физического осуществления операции - результат сложения среднего время поиска и среднего времени ожидания. Среднее время доступа зависит от того, как организовано хранение данных и насколько быстро позиционируются головки чтения записи на требуемую дорожку. Среднее время доступа - усредненный показатель от многочисленных тестовых проходов, и обычно, оно составляет от 10 до 18 миллисекунд и используется как базовый показатель при сравнительной оценке скорости накопителей различных производителей.

Скорость передачи данных (data transfer rate) , называемая также пропускной способностью (throughput) , определяет скорость, с которой данные считываются или записываются на диск после того, как головки займут необходимое положение. Измеряется в мегабайтах в секунду (MBps) или мегабитах в секунду (Mbps) и является характеристикой контроллера и интерфейса. Различают две разновидности скорости передачи - внешняя и внутренняя. Скорость передачи данных, также является одним из основных показателей производительности накопителя и используется для ее оценки и сравнения накопителей различных моделей и производителей.

Внешняя скорость передачи данных (external data transfer rate или burst data transfer rate) показывает, с какой скоростью данные считываются из буфера, расположенного на накопителе в оперативную память компьютера. В настоящее время, накопители с интерфейсами EIDE или Fast ATA, обычно, имеют внешнюю скорость передачи данных от 11.1 до 16.6 мегабайта в секунду, а для накопителей с интерфейсами SCSI-2 - этот параметр находится в пределах от 10 до 40 мегабайт в секунду.

Внутренняя скорость передачи данных (internal transfer rate или sustained transfer rate) отражает скорость передачи данных между головками и контроллером накопителя и определяет общую скорость передачи данных в тех случаях, когда буфер не используется или не влияет (например, когда загружается большой графический или видеофайл) . Внутренняя скорость передачи данных очень сильно зависит от частоты вращения шпинделя.

Размер кеш-буфера контроллера (internal cash size) . Встроенный в накопитель буфер выполняет функцию упреждающего кэширования и призван сгладить громадную разницу в быстродействии между дисковой и оперативной памятью компьютера. Выпускаются накопители с 128,256 и 512 килобайтным буфером. Чем больше объем буфера, тем потенциально выше производительность при произвольном "длинном" чтении/записи. Также, более емкий буфер обеспечивает рост производительности дисковой подсистемы, во-первых, при работе с объемными упорядоченными (записанными на диски последовательно) данными, а во-вторых - при одновременном обращении к диску множества приложений или пользователей, как это происходит в многозадачных сетевых ОС.

Средняя потребляемая мощность (capacity) . При сборке мощных настольных компьютеров учитывается мощность, потребляемая всеми его устройствами. Современные накопители на ЖД потребляют от 5 до 15 Ватт, что является достаточно приемлемым, хотя, при всех остальных равных условиях, накопители с меньшей потребляемой мощностью выглядат более привлекательно. Это относится не только к экономии электроэнергии, но и надежности, т.к. более мощные накопители рассеивают избыток энергии в виде тепла и сильно нагреваются. А как известно, проблемы, связанные с изменением свойств магнитных носителей напрямую зависят от их температуры и коэффициента расширения/сжатия материала.

Уровень шума (noise level) , разумеется, является эргономическим показателем. Однако, он также, является и некоторым показателем сбалансированности механической конструкции, т.к. шум в виде треска - есть не что иное как звук ударов позиционера шагового или линейного механизма, а, даже микро- удары и вибрация так не желательны для накопителей и приводят к более быстрому их износу.

Физический и логический объем накопителей. Носители жестких дисков, в отличие от гибких, имеют постоянное число дорожек и секторов, изменить которое невозможно. Эти числа определяются типом модели и производителем устройства. Поэтому, физический объем жестких дисков определен изначально и состоит из объема, занятого служебной информацией (разметка диска на дорожки и сектора) и объема, доступного пользовательским данным. Физический объем жесткого диска, также, зависит от типа интерфейса, метода кодирования данных, используемого физического формата и др. Производители накопителей указывают объемы дисков в миллионах байт, предполагая исходя из десятичной системы исчисления, что в одном мегабайте 1000000 байт. Однако, ПО оперирует не десятичной, а двоичной системами, полагая, что в одном килобайте не 1000 байт, а 1024. Такие несложные разногласия в системах исчисления приводят к несоответствиям при оценке объема накопителей, данном в описании и - выдаваемом различными программными тестами.

Одним из возможных, но не желательных способов повышения физической емкости, для производителей, является увеличение емкости сектора. В настоящее время, стандартной емкостью сектора для IBM-совместимых компьютеров является 512 байт. Многие адаптеры позволяют, в процессе физического форматирования, программным путем, изменять емкость сектора, например, до 1024 байт. При этом, соотношение пользовательских данных и служебной информации для сектора улучшается, но снижается надежность хранения данных, т.к. тот же полином ECC будет использоваться для коррекции большего объема данных.

Логический объем зависит от того, как операционная система или программа записывает информацию в сектора. В случае использования программ и операционных систем с программной компрессией данных, можно повысить объем носителя на величину, зависящую от степени сжатия данных. Для оптимального использования поверхности дисков применяется так называемая зонная запись (Zoned Bit Recording - ZBR) , принцип которой состоит в том, что на внешних дорожках, имеющих большую длину (а следовательно - и потенциальную информационную емкость на единицу площади), информация записывается с большей плотностью, чем на внутренних.

Таких зон с постоянной плотностью записи в пределах всей поверхности образуется до десятка и более; соответственно, скорость чтения и записи на внешних зонах выше, чем на внутренних. Благодаря этому файлы, расположенные на дорожках с большим диаметром, в целом будут обрабатываться быстрее файлов, расположенных на дорожках с меньшим диаметром, т.к. для них будет производится меньшее число позиционирований с дорожки на дорожку.

В ЖД последнего поколения используются технологии PRML (Partial Response, Maximum Likelihood - максимальное правдоподобие при неполном отклике) и S. M. A. R. T. (Self Monitoring Analysis and Report Technology - технология самостоятельного слежения анализа и отчетности).

Первая разработана по причине того, что при существующих плотностях записи уже невозможно четко и однозначно считывать сигнал с поверхности диска - уровень помех и искажений очень велик. Вместо прямого преобразования сигнала используется его сравнение с набором образцов, и на основании максимальной похожести (правдоподобия) делается заключение о приеме того или иного машинного слова.

Накопитель, в котором реализована технология S. M. A. R. T., ведет статистику своих рабочих параметров (количество стартов/остановок и наработанных часов, время разгона шпинделя, обнаруженные/исправленные физические ошибки и т.п.), которая регулярно сохраняется в перепрограммируемом ПЗУ или служебных зонах диска.

Эта информация накапливается в течение всего периода эксплуатации и может быть в любой момент затребована программами анализа. По ней можно судить о состоянии механики, условиях эксплуатации или примерной вероятности выхода из строя.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то