Какое количество электроэнергии потребляет компьютер. Сколько электроэнергии потребляет ноутбук в час и в месяц

Весьма полезно знать, сколько электроэнергии потребляет компьютер. Во-первых, это знание обеспечит вам базу для расчета затрат на электроэнергию. Во-вторых, вы сможете регулировать «начинку» своего компьютера в целях экономии или повышения его производительности, если цена на кВт/час в вашем регионе не пугает вас своей однозначностью. Итак, попробуем разобраться, сколько электричества поглощает наш "железный друг".

Энергозатраты компьютера

Не всем известно, что количество потребляемой компьютером энергии зависит от его мощности, от комплектующих и даже от загруженности компьютера (по объему и по времени). Другими словами, разные компьютеры переводят ваше время в деньги по-разному. Так, чем мощнее компьютер, тем выше у него "аппетит".

Источники энергозатрат компьютера

  • Системный блок
  • Монитор
  • Периферия

Теперь по порядку.

Системный блок

Чтобы рассчитать, сколько электроэнергии потребляет компьютер за счет системного блока, узнайте мощность своего блока питания. Эту цифру можно узнать в документации или под крышкой системного блока (слева). В последнем случае лучше обратиться к специалисту, разбирать самому не стоит, это может быть опасно.

Так, для домашних компьютеров эта цифра варьируется в пределах от 300 до 450 Вт. Игровые платформы со множеством "прожорливых" компонентов обойдутся Вм в 600 - 1800 Вт.

Монитор

В целом монитор тоже относится к периферии, однако мы вынесли его в отдельный пункт, так как он все же есть у всех, в отличии, например, от сканера, принтера, аудиосистемы и т.д.

Потребление электроэнергии монитором в рабочем режиме может варьироваться в рамках от 5 Вт до 150 Вт. Все зависит от режима работы (ожидания), яркости монитора, его рабочей площади (диагонали) и конструктивных особенностей.

Периферия

Информацию об энергопотреблении периферийными устройствами также можно найти в документации, технических паспортах и т.д.

Расчет энергозатрат компьютера

Так как загруженность системы обычно не является 100%-ой, то сделаем усредненный расчет: пусть ваш компьютер потребляет электроэнергии в половину меньше максимальной. На деле будет еще немножко меньше для офисных решений и чуть больше – для игровых. Обусловлено это разной пропорциональностью соотношения времени бездействия / пиковой загрузки системы.

Сложив потребление системника с монитором и периферией, умножив на время работы вы получите те самые оплачиваемые ежемесячно киловатты – часы, потребляемые вашим компьютером.

Раньше производители комплектующих для компьютера задумывались об увеличении тактовых частот и количества ядер, при этом увеличивались затраты на электропотребление системы. Если заменялась видеокарта или процессор на более новый, то необходимо было приобретать другой блок питания, более мощный (порядка 750 Ватт). Теперь же акцент делается на уменьшение техпроцесса и, как следствие, это влияет на энергоэффективность. Поэтому сейчас отпадает необходимость в замене блока питания. Сейчас компьютер может потреблять электроэнергии меньше, чем самый современный телевизор. Сколько же это в цифрах?

Материнская плата – основа ПК

Главным фундаментом системы, на котором держится ее стабильность, является материнская плата. Для ее питания требуется порядка 20 – 40 Ватт – это зависит от функций, которые на нее возложены. Самые малофункциональные платы типа mini-ATX и microATX потребляют минимум электроэнергии, а для нормальной работы геймерских материнок необходимы гораздо большие энергозатраты. В первом случае можно взять с запасом цифру в 30 Ватт, во втором – 50 Ватт.

Сравнительно недавно в продаже появилась оперативная память типа DDR4, которая работает на низких напряжениях. Как следствие, это привело к 30% выигрышу в энергопотреблении, которое составляет менее 4 Ватт для двух планок памяти.

Энергоэффективность центрального процессора

На рынке же процессоров произошли значительные перемены. Лет 10 назад для питания среднего по производительности процессора необходимо было около 100 Ватт, более мощного – 150 Ватт. Нужен был и мощный кулер, который рассеивал бы это тепло. Теперь же для домашнего использования, для игр потребуется процессор с электропотреблением всего 65 Ватт. Это произошло благодаря разработке 14 нм техпроцесса. У компании Intel в этой категории является 4-х ядерный процессор i7-7700. Недавно компания AMD выпустила на рынок 6-ти ядерный процессор Ryzen 5 1600 с тем же тепловыделением 65 Ватт. Для энтузиастов, кому нужны 8-ми ядерные процессоры или процессоры с частотой, приближенной к 5 ГГц, подсчет затрат на электропотребление надо вести, начиная от 95 Ватт.

Кулер процессора потребляет до 5 Ватт электроэнергии.

Видеокарта – как самый энергозатратный элемент

Для нетребовательных пользователей есть варианты процессоров со встроенной видеокартой. При этом значительно снижаются общие затраты на энергопотребление, так как самым энергозатратным компонентом системы является внешняя видеокарта. Для малозатратных игр подойдет видеокарта GeForce GTX 1050Ti с потреблением в 80 Ватт, для игр же в разрешение 4к надо присматриваться к видеокарте не ниже GeForce GTX 1070 с затратами на электроэнергию порядка 150 Ватт. Тем более в режиме простоя или при воспроизведении видео, потребление будет гораздо меньше. Это большой шаг в энергоэффективности за последние годы.

Энергозатраты других периферийных устройств

Производители жестких дисков тоже идут на снижение энергопотребления. Энергозатраты в этом случае составляют 5 - 15 Ватт, а SSD потребляют и того меньше – до 3 Ватт.

Если в конфигурации системы есть отдельная звуковая карта, то она может потреблять до 50 Ватт дополнительной мощности.

В зависимости от режима работы DVD-привод может потреблять до 25 Ватт энергии.

Не забудем и про монитор, который тоже является элементом системы. Возьмем среднее потребление им энергии около 40 Ватт в зависимости от диагонали.

Компьютерные колонки могут быть самых разнообразных моделей – от саундбаров “все в одном” до домашнего кинотеатра. Поэтому их энергопотребление может варьироваться в широком диапазоне. Для средней громкости возьмем 20 – 50 Ватт.

Подсчет общего потребления электроэнергии

Выше приведены основные компоненты домашнего компьютера, по которым можно приблизительно рассчитать потребление им электроэнергии. Все зависит от режима работы и сложности устройств, входящих в систему.

Максимальные затраты электроэнергии будут у компьютера с 8-ми ядерным процессором или частота у которого приближена к 5 ГГц, с мощной внешней видеокартой. Если сюда добавить и отдельную звуковую карту, то они будут составлять порядка 450 Ватт в час.

Если же компьютер лишен внешней видеокарты и имеет энергоэффективный процессор, то потребление такой системы составит менее 200 Ватт в час, что сопоставимо с энергопотреблением телевизора большой диагонали.

При этом надо учитывать, что в режиме простоя или несложных задач, потребление энергии уменьшается благодаря функциям энергосбережения, встроенным в BIOS материнских плат или утилитам, функционирующим под системой Windows.

Поэтому за месяц при 8 часовой ежедневной работе компьютера будет “съедаться” от 50 до 100 кВатт электроэнергии в зависимости от конфигурации.

Сколько потребляет энергии компьютер?

    То сколько электроэнергии потребляет, накручивает ваш компьютер, зависит от самого компьютера. компьютеры мощнее потребляют больше. что бы узнать сколько именно ваш компьютер накручивает, посмотрите информацию на наклейке блока питания.

    Сколько же энергии потребляет компьютер? Это зависит от множества параметров. Вот если компьютеру уже больше 15 лет - наверняка это больше, чем полугодовалый компьютер. Имеет значение производитель и мощность самого компьютера.

    На блоке его питания есть надпись о его потреблении. Так что там можно посмотреть эту информацию. Если включено экономичное потребление, то меньше энергии.

    Также играет роль то, что именно вы делаете за компьютером.

    О энергопотреблении компьютера можно судить по мощности его блока питания. Раньше для компьютера было достаточно и 200 ватт, а сейчас популярны модели с блоками от 350 ватт и выше. Обычно при покупке новогожелеза в прайсе указывается мощность блока питания. Но это доступная мощность, а то сколько энергии будет потреблять ваш компьютер зависит также и от его начинки. К примеру, если поставить более мощную видеокарту вместо слабой старенькой, то и энергопотребление немного увеличится.

    Пару лет назад наше изобретательное начальство поручило нам выяснить то, о чем Вы спрашиваете. Так вот при помощи токоизмерительных клещей мы перемеряли все наши компьютеры и получили среднюю цифру: 0,35кВт.

    Это зависит от многих факторов. Во-первых, от мощности компьютера. Во-вторых, от того, насколько загружен он работой. Если вы смотрите фильмы, то потребление энергии снижается, если играете в активные игры, то потребление увеличивается.

    Все зависит от вашего блок питания на нем должен быть наклеен лейбл с фирмой производителя а так же мощность потребления. Мощность может варьироваться от 200 до 650 watt. Но не забывайте что у вас еще подключен монитор колонки или сабвуфер а так принтер сканер.Удачи вам!!!

    все зависит от вашего компьютера. но гадать совершенно не нужно! просто посмотрите на мощность своего блока питания, для этого снимите боковую крышку компьютера и посмотрите на блок питания. в среднем они потребляют 350-450 ватт.

    Разные компьютеры потребляют разную энергию. Переносные меньше, стационарные больше. Если вы не интересуетесь начинкой компьютера, а просто хотите знать, а сколько же он потребляет, то взгляните на бирку его блока питания. Там написана его мощность. Вот компьютер около этого и потребляет. Современный стационарный компьютер потребляет 300-400 ватт. Навороченный компьютер с мощным процессором, большим ОЗУ и мощной видеокартой с несколькими жесткими дисками может потреблять 500 и даже 600 ватт. Но это редко. А обычно ориентируйтесь на первых цифрах. Ну, еще добавьте туда ЖК монитор! Его мощность от 30 до 60ватт. Еще столько же потребляет звуковой усилитель и принтер, если он есть. Так что все вместе не более 500ватт.

    Сколько потребляет электроэнергии компьютер , зависит от его модели, когда он произведен, сколько времени он работает, в каком помещении находится, как вы используете ваш компьютер. Но если так в среднем говорить, то если ваш компьютер достаточно новый и имеет средние характеристики, то при работе на компьютере 2 часа в сутки, в месяц он может потреблять до 9 кВт.ч.

    Расход электричества возрастает особенно сильно, если вы любите играть в компьютерные игры, поскольку они требуют большой вычислительной нагрузки. А если вы просто читаете что-нибудь в инете, да еще у вас стоит экономичный режим, то расход будет меньше.

    Чем мощнее процессор компьютера, чем больше оперативная память и возможности видеокарты компьтютера, а так же чем больше диагональ монитора компьютера, тем больше электроэнергии он потребляет. Также следует учитывать подключены ли обычные колонки или мощный сабвуфер к компьютеру. Это тоже влияет на потребление электроэнергии. Поэтому надо индивидуально смотреть и спрашивать об энергопотреблении компьютера у продавца или системного администратора, так как каждый компьютер потребляет разное количество электроэнергии в час.

Практически в каждой семье есть персональный компьютер. При его покупке в первую очередь смотрят на производительность, но никто не задумывается, сколько электроэнергии он потребляет. Точные цифры зависят от конкретной системы и от того, когда комплектующие были произведены. Современные устройства расходуют значительно меньше энергии даже при гораздо большей производительности. Однако игровые системы или более старые компьютеры, особенно если используется несколько видеокарт для компенсации разницы с современными моделями, могут потреблять больше 100 кВт в месяц, а иногда и значительно больше. А это может заставить задуматься об экономии.

Основные потребители

Чтобы выяснить, сколько разберемся, какие элементы наиболее требовательны. Отметим, что мощность, на которую рассчитан блок питания, не является показателем. Она указывает максимум, на котором производитель рекомендует его использовать.

Больше всего электроэнергии потребляет процессор, видеокарта и монитор. Остальная система требует скромное количество энергии. Потребляемая величина напрямую зависит от самого устройства и его производительности.

Например, процессор i5 последних поколений с 4 ядрами даже под нагрузкой потребляет до 140 Ватт, не говоря уже про скромных 50 в простое. А вот более старые Intel Quad Core могут брать свыше 200 Ватт в момент пиковой нагрузки. А сколько электроэнергии потребляет компьютер со старыми игровыми видеокартами, и говорить страшно.

С видеокартой и монитором ситуация та же. Правда, мощные видеокарты потребляют намного больше электроэнергии, чем процессор. Потребление монитором будет зависеть от яркости экрана. Современные модели требую от 30 до 50 Ватт.

Расчет потребления

Для того чтобы узнать, сколько электроэнергии потребляет компьютер, можно произвести расчет на основе характеристик системы. Для этого необходимо знать, что за монитор используется, какой установлен процессор и видеокарта.

Зная эти данные, на сайте производителя можно посмотреть, сколько мощности требуется для комплектующих. Конечно, на работу материнской платы, оперативной памяти, жесткого диска также потребуется определенная энергия. Данное значение весьма низкое. У офисных машин оно может составлять около 30 Ватт, а у игровых систем с мощным охлаждением и массивом накопителей памяти даже до 200 Ватт.

Высокопроизводительная система

Чтобы рассчитать, сколько электроэнергии потребляет компьютер, начнем с монитора. Допустим, мы имеем широкоформатный 34-дюймовый монитор от LG, а именно 34UC99-W с огромным разрешением. Производитель дает информацию, что такой экран требует 50 Ватт.

Далее, считаем видеокарту. Например, у нас стоит современная Geforce GTX 1080 Ti. Или даже две. Стоит отметить, что, благодаря стараниям производителя и новому техпроцессу, потребление остается весьма скромным. 5 лет назад столько же потребляла бы видеокарта среднего уровня.

Из характеристик устройства получается 250 Ватт для одной карты и 500 Ватт, соответственно, для двух. Данные указаны для карты под нагрузкой. Среднее потребление при просмотре видео, легкой работе, использовании интернета будет около 100 Ватт для обеих.

Далее процессор. Для расчета, сколько потребляет электроэнергии компьютер, выбираем Intel i9. Он требует 140 Ватт. Это скромное значение, так как 4-ядерные процессоры 10-летней давности могли потреблять в два раза больше. Значение указано для работы под нагрузкой. В обычном режиме это до 70 Ватт.

Суммарно мы получаем потребление около 690 Ватт под нагрузкой. Если учесть остальную систему с мощным охлаждением, подсветкой и так далее, возьмем расход еще 80 Ватт под нагрузкой и 40 в обычном режиме.

Таким образом, получим 770 Ватт под нагрузкой и 230 при простом использовании. Сколько потребляет компьютер электроэнергии в час? Данные значения и будут результатом, однако необходимо учитывать КПД блока питания. Хорошие дорогие модели обеспечивают 90%. То есть 100% будет примерно 850 и 260 Ватт соответственно.

Бюджетная система

Для расчета используем тот же принцип, что и выше. Недорогой монитор на 22 дюйма от компании LG, обладающий разрешением FullHD и качественной IPS матрицей, требует всего 23 Ватт. Согласитесь, это скромные показатели, в сравнении с моделью выше.

Так как система бюджетная и, допустим, только для работы, видеокарту отдельно считать не будем, а возьмем в расчет встроенную в процессор. Например, выбираем Intel i3. Под нагрузкой он потребляет всего 65 Ватт, но если работает встроенное видео, потребление доходит до 120. В простое будет около 50 Ватт.

Таким образом, для бюджетной системы получаем значение в 170 Ватт под нагрузкой и 100 в простое. В расчет берется и примерный расход остальной системы. Недорогие блоки питания обеспечивают КПД около 80%, что дает нам потребляемую мощность в 195 и 120 Ватт соответственно.

Рассчет на месяц

Сколько электроэнергии потребляет компьютер в месяц посчитать очень тяжело, так как разница в потреблении между максимальной нагрузкой и легкой работой огромна. Однако можно высчитать примерное значение.

Например, игровая сборка используется в день 4 часа для игр и около 3 в легком режиме. Получается, что потребляет компьютер за это время 4120 Ватт или 4,12 кВт. За месяц такого использования набегает около 120 кВт. В выключенном состоянии, если не отключать от сети, система возьмет еще около 2 кВт.

Бюджетная модель, если в день использовать ее для сложных задач всего час и для игр часа 4, потребляет около 680 Ватт в день. За месяц в таком режиме расход составит 20 кВт.

Разница между двумя системами, как видим, огромна.

Находим потребление опытным путем

Есть еще несколько способов, как узнать, сколько компьютер. Менее точный находится экспериментальным путем. Для примера возьмем компьютер средней мощности, который отлично подходит для игр и работы, но без излишеств. При легкой нагрузке он может потреблять около 150 Ватт, а в играх до 400 Ватт.

Отключаем в квартире всю технику и оставляем одну или несколько ламп общей мощностью в 100 Ватт. Включаем их и смотрим, сколько оборотов сделает диск на счетчике. Далее проделываем то же самое, но с компьютером под сильной и умеренной нагрузкой. Сравниваем количество оборотов.

Например, если с включенным компьютером под нагрузкой диск сделал 300 оборотов, а с лампочками только 100, соответственно, и потребляемая мощность будет в три раза больше.

Точное измерение

Сколько электроэнергии потребляет стационарный компьютер, можно узнать и более надежным путем. Фактически, необходимо установить отдельный счетчик на компьютер. Это небольшой прибор, который вставляется в розетку, а через него подключается система.

Такой прибор точно покажет величину энергии, которая через него проходит. Его довольно легко можно найти в продаже. Насколько целесообразно использование такого прибора при относительно небольшом расходе среднестатистического компьютера, каждый должен решить для себя сам.

Сколько электроэнергии потребляет компьютер в спящем режиме

В спящем режиме или даже полностью выключенным компьютер потребляет электроэнергию. Например, экран, подключенный к сети, но в выключенном состоянии, расходует 0,3 Ватт, а в может потреблять до 1,3 Ватт. В месяц получится до 2 кВт только на экран.

Компьютер же возьмет до 20-40 Ватт в спящем режиме, в зависимости от мощности системы. Примерно до 10 Ватт в режиме гибернации. А в выключенном состоянии блок питания расходует до 5 Ватт. В месяц это может повысить расход на 2-15 кВт, в зависимости от режима

Как уменьшить потребляемую электроэнергию

Всегда выключайте компьютер и монитор из сети. Без лишней необходимости не оставляйте его в режиме сна. В вечернее время уменьшайте яркость монитора, что даст заметную экономию.

В режимах работы, когда не требуется полная производительность, например, просмотр видео, работа с документами, использование браузера и подобное, можно переключать режим энергопотребления на экономичный. Он ограничит систему и поможет снизить расход.

Если вашей системе 8 и более лет, пора задуматься о ее обновлении. Даже современные бюджетные модели покажут более высокую производительность при меньшем в несколько раз потреблении электроэнергии.

Сколько потребляет электроэнергии компьютер за сутки, зависит от системы и сценария использования. Разница между бюджетной моделью и игровым компьютером, между режимом с высокой и умеренной нагрузкой может быть очень большой. Рассчитать каждый из них можно несколькими способами, основываясь на знании системы, простом эксперименте или специальном приборе - ваттметре.

ВведениеВопрос выбора блока питания для конкретной конфигурации вечен - особенно когда конфигурация предполагается мощной, и становится понятно, что типовым 300- или 400-ваттником, поставляемым вместе с корпусом, можно и не обойтись. При этом и купить, не думая, что-нибудь ватт так на тысячу, не вариант - мало кому хочется впустую потратить несколько тысяч рублей. К сожалению, внятных данных по потребной для тех или иных компонентов мощности зачастую просто нет: производители видеокарт и процессоров перестраховываются, указывая в рекомендациях заведомо завышенные значения, всевозможные калькуляторы оперируют непонятно как полученными числами, а процесс измерения реального энергопотребления, хоть и освоен уже большинством околокомпьютерных изданий, зачастую оставляет желать лучшего.

Как правило, открыв раздел «Энергопотребление» в какой-либо статье, вы увидите результаты замера энергопотребления «от розетки» - то есть, какую мощность от сети 220 В (или 110 В, если дело происходит не в Европе) потребляет блок питания, в качестве нагрузки на который выступает тестируемый компьютер. Провести такие измерения очень просто: бытовые ваттметры, представляющие собой небольшой приборчик с одной розеткой, стоят буквально копейки - в Москве такой можно найти за 1200-1300 рублей, что на фоне серьёзных измерительных приборов очень мало.

Точность измерения у подобных приборчиков сравнительно неплоха, особенно если речь идёт о мощностях порядка сотен ватт, не пасуют они и перед нелинейной нагрузкой (а любой компьютерный блок питания является таковой, особенно если в нём нет активного PFC): внутри ваттметра стоит специализированный микроконтроллер, честно проводящий интегрирование тока и напряжения по времени, что позволяет рассчитывать активную мощность, потребляемую нагрузкой.

В результате, приборчики такие есть практически во всех редакциях околокомпьютерных изданий, занимающихся тестированием «железа».


У нас такой, как вы видите по фотографии, тоже есть - и, тем не менее, мы решили оставить его лишь для случаев, когда надо быстро прикинуть энергопотребление компьютера или иного устройства (в такой ситуации бытовой ваттметр крайне удобен, потому что не требует вообще никакой предварительной подготовки), но не для серьёзного тестирования.

Дело в том, что замер потребления от розетки, конечно, прост, но вот результат даёт очень для практического применения неудобный:


Не учитывается КПД блока питания: скажем, блок с КПД 80 % при нагрузке 500 Вт будет потреблять от розетки 500/0,8 = 625 Вт. Соответственно, если вы получаете в измерениях «от розетки» результат 625 Вт, не надо бежать за 650-Вт блоком питания - на самом деле 550-ваттный тоже справится. Конечно, эту поправку можно держать в уме, а то и, предварительно протестировав блок и измерив его КПД в зависимости от нагрузки, пересчитывать полученные ватты, но это неудобно, да и на точность результата влияет не лучшим образом.
Полученный в таких измерениях результат - среднее, а не максимальное значение. Современные процессоры и видеокарты могут очень быстро менять своё энергопотребление, однако отдельные короткие выбросы будут сглажены за счёт ёмкости конденсаторов блока питания, поэтому, измеряя потребляемый ток между блоком и розеткой, вы этих выбросов не увидите.
Измеряя потребление блока питания от розетки, мы не получаем ровным счётом никакой информации о распределении нагрузки по его шинам - сколько приходится на 5 В, сколько на 12 В, сколько на 3,3 В... А эта информация и важна, и интересна.
Наконец (и это самый главный пункт), при измерениях «от розетки» мы точно так же не можем узнать, сколько потребляет видеокарта, а сколько - процессор, мы видим только общее потребление системы. Тоже, конечно, информация полезная, но, тестируя процессоры или видеокарты, хотелось бы получать конкретную информацию именно о них.

Очевидная - хоть технически и более сложная - альтернатива заключается в измерении тока, потребляемого собственно нагрузкой от блока питания. Ничего невозможного в этом нет, например, мы даже тестировали блок питания Gigabyte Odin GT , в который такой измеритель был изначально встроен.

В принципе, в качестве законченной измерительной системы подошёл бы и Odin GT - кстати, трудно понять, почему другие издания не пользуются такими блоками именно для проведения измерений, а компания Gigabyte не пользуется такой возможностью порекламироваться - но мы решили сделать систему более универсальную и более гибкую с точки зрения возможных вариантов подключения нагрузки.

Измерительная система

Самый простейший способ - вставить в провода, идущие от блока, токоизмерительные шунты (низкоомные резисторы) - был отвергнут сразу: шунты, рассчитанные на большие токи, довольно громоздки, а падение напряжения на них составляет десятки милливольт, что, скажем, для 3,3-вольтовой шины является довольно чувствительной величиной.

К счастью для нас, компания Allegro Microsystems выпускает крайне удачные линейные датчики тока на эффекте Холла: в них измеряется и преобразуется в выходное напряжение магнитное поле, создаваемое текущим по проводнику током. Подобные датчики имеют сразу несколько преимуществ:

Сопротивление проводника, по которому протекает измеряемый ток, не превышает 1,2 мОм, таким образом, даже при токе 30 А падение напряжения на нём - всего лишь 36 мВ.
Датчик имеет линейную характеристику, то есть, его выходное напряжение пропорционально протекающему в цепи току - не требуется каких-либо сложных алгоритмов пересчёта.
Токоизмерительный проводник электрически изолирован от самого датчика, поэтому датчики могут использоваться для измерения тока в цепях с различными напряжениями, не требуя вообще никакого согласования.
Датчики выпускаются в компактных корпусах типа SOIC8, размером всего лишь около 5 мм.
Датчики могут подключаться напрямую на вход АЦП, ни согласования по уровням напряжений, ни гальванической развязки при этом не требуется.

Итак, в качестве токовых датчиков мы выбрали Allegro ACS713-30T , рассчитанные на ток до 30 А.

Выходное напряжение датчика прямо пропорционально протекающему через него току - соответственно, измерив это напряжение и умножив его на масштабный коэффициент, мы получим искомое число. Измерять напряжения можно мультиметром, но это не слишком удобно - во-первых, ручная фактически работа, во-вторых, распространённые мультиметры не отличаются высоким быстродействием, в-третьих, либо нам потребуются несколько мультиметров одновременно, либо измерять ток в разных каналах придётся по очереди.

Немного подумав, мы решили идти до конца - и сделать законченную систему сбора данных, добавив к токовым датчикам микроконтроллер и АЦП. В качестве последнего был выбран 8-битный Atmel ATmega168 , ресурсов которого нам более чем достаточно. Самый же важный для нас его ресурс - 8-канальный 10-битный аналогово-цифровой преобразователь, позволяющий без каких-либо дополнительных ухищрений подключить к одному микроконтроллеру до восьми токовых датчиков.

Что мы и сделали:


Кроме микроконтроллера и восьми ACS713, на плате также видна крупная (ладно, сравнительно крупная...) микросхема FTDI FT232RL - это контроллер USB-интерфейса, через который результаты измерений загружаются в компьютер.



Система получилась достаточно компактной - примерно 80x100 мм, если не считать USB-разъёма - для монтажа непосредственно на блок питания, более того, такой блок можно устанавливать в стандартные ATX-корпуса. Выше на снимке вы видите плату, подключённую к блоку питания PC Power & Cooling Turbo-Cool 1KW-SR .

После изготовления система калибруется - через каждый канал пропускается ток известной величины, после чего рассчитывается коэффициент пересчёта тока в выходное напряжение датчиков ACS713. Коэффициенты хранятся в ПЗУ микроконтроллера, так что они жёстко привязаны к конкретной плате. При необходимости плату можно в любой момент откалибровать заново, также записав новые коэффициенты в ПЗУ.

Плата по интерфейсу USB подключается к компьютеру, причём в роли такового может выступать та же система, измерение потребления которой проводится - никаких ограничений в этом вопросе нет. Впрочем, в некоторых случаях измерения лучше проводить на отдельном компьютере - тогда можно построить график энергопотребления прямо с момента нажатия кнопки питания.



Для работы с платой была написана специальная программа, позволяющая получать данные в реальном времени и отображать их на графике, а впоследствии - сохранять график в виде картинки или текстового файла. Программа позволяет выбирать название и цвет для каждого из восьми каналов, а по ходу измерений указывает минимальное, максимальное, среднее (за всё время измерений) и текущее значения. Подсчитывается также сумма токов в каналах с одинаковыми напряжениями и общая мощность - правда, так как собственно напряжения установка не измеряет, то мощность считается в предположении, что они точно равны 12,0 В, 5,0 В и 3,3 В.

В подсчёте максимальных нагрузок, кстати, есть один тонкий момент. Недостаточно измерить максимум потребления по каждой шине в отдельности, а потом сложить их - просто потому, что эти максимумы могли быть в разные моменты времени. Например, винчестер потреблял 3 А через 5 секунд после включения, при раскрутке шпинделя, а видеокарта - 10 А после запуска FurMark. Правильно ли будет сказать, что их суммарное максимальное потребление равно 13 А? Разумеется, нет. Поэтому программа считает мгновенное потребление для каждого момента времени, в течение которого проводятся измерения, а уже из этих данных выбирает максимальное значение.

Периодичность опроса измерительной платы равна 10 раз в секунду - хотя при необходимости это значение можно увеличить ещё раз в десять, как показала практика, существенной нужды в этом нет: данных становится очень много, а итоговый результат меняется незначительно.

Таким образом, мы получили очень удобную, гибкую (платы, предназначенные для разных наших авторов, будут иметь разную схему подключения к блоку питания), простую в подключении и использовании, достаточно высокоточную измерительную систему, позволяющую детально изучить энергопотребление как компьютера в целом, так и любых его компонентов в частности.

Что же, самое время перейти к практическим результатам. Чтобы не только продемонстрировать возможности новой измерительной системы, но и получить практическую пользу, мы взяли пять различных компьютеров - от недорогой «пищущей машинки» до мощнейшего игрового компьютера - и протестировали их все.

P.S. Кстати, если вас заинтересовала наша измерительная система, мы готовы обсудить возможность её продажи - пишите на адрес [email protected] .

Офисный компьютер

Первый компьютер: Flextron Optima Pro 2B , весьма недорогой, но при этом неплохой системный блок для офисной работы.

Конфигурация:

Процессор Intel Pentium Dual-Core E2220 (2,4 ГГц)
Кулер для процессора GlacialTech Igloo 5063 Silent (E) PP
Вентилятор
Материнская плата Gigabyte GA-73PVM-S2 (чипсет nForce 7100)
Модуль оперативной памяти
Жёсткий диск 160 ГБ Hitachi Deskstar 7K1000.B HDT721016SLA380

Картовод Sony MRW620
Корпус IN-WIN EMR-018 (350 Вт)



Начнём, собственно, с включения компьютера: загрузка Windows. Энергопотребление измерялось от включения компьютера и до окончания загрузки «рабочего стола».



Как вы видите, аппетиты у такой конфигурации крайне скромные: ни по одной из линий ток не достиг и трёх ампер. Занятно ведёт себя процессор: первые примерно 20 секунд (горизонтальная ось графика - в десятых долях секунды) его энергопотребление стабильно велико, а дальше внезапно снижается. Это загрузился драйвер ACPI, а с ним включились встроенные в процессор системы энергосбережения. В дальнейшем потребляемая процессором мощность увеличивается свыше 12-15 Вт только при какой-либо нагрузке на него.



3DMark’06


3DMark"06 явно «упирается» в видеокарту и не может полностью загрузить процессор - последний значительную часть времени пребывает в состоянии пониженного энергопотребления. В остальном немного вырастает потребление по +3,3 В и совсем чуть-чуть - по +5 В.



FurMark


Тяжелейший 3D-тест FurMark интегрированной в чипсет видеокарте даётся с лёгкостью - правда, только с точки зрения энергопотребления. Интересно, что потребление всех компонентов очень стабильно, хотя процессор нагружен явно не на максимум - в начале графика, что соответствует запуску теста, он показывает более высокое потребление, чем в середине.



Prime"95


Под Prime"95 («In-place large FFTs», самый тяжёлый тест в нём) процессор в некоторые моменты достигает рекордного энергопотребления - целых 3 ампера! Да, если в наших словах вам сейчас почудилась ирония - это неслучайно...



FurMark + Prime"95


Одновременный запуск FurMark и Prime"95 ничего не меняет: процессор загружен «до упора», а интегрированная видеокарта практически ничего и не потребляет.

Что ж, итоговый результат:



Очевидно, что для такого компьютера хватит любого блока питания - даже 120-ваттные блоки из mini-ITX корпусов обеспечивают двукратный запас мощности. Тип нагрузки на энергопотреблении сказывается слабо, так как в любом случае самым «прожорливым» компонентом оказывается процессор. Если бы мы поменяли 65-нм Pentium Dual Core E2220 на более новый 45-нм E5200, энергопотребление наверняка упало бы ещё ватт на десять.

Энергопотребление в «спячке» в режиме Suspend-to-RAM составляет всего 0,5 А (для сравнения, обычно источники +5Vsb на блоках питания обеспечивают до 2,5-3 А).

Домашний компьютер

Следующим у нас идёт Flextron Junior 3C , претендующий на роль сравнительно недорогого домашнего компьютера, на котором уже можно и в игры поиграть - правда, в игры нетребовательные, из-за слабой видеокарты.

Процессор

Вентилятор GlacialTech SilentBlade II GT9225-HDLA1
Материнская плата ASUS M3A78 (чипсет AMD 770)
Оперативная память 2x1 ГБ Samsung (PC6400, 800МГц, CL6)
Жёсткий диск
Видеокарта
Привод DVD±RW Optiarc AD-7201S
Корпус IN-WIN EAR-003 (400 Вт)

На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.



Вот они, системы энергосбережения в действии: в максимуме потребление процессора превышает 50 Вт, в минимуме проваливается ниже 10 Вт... Довольно заметно меняется и потребление по шине +5 В - на плюс-минус один ампер.

Обратите внимание также на голубую линию, показывающую потребление материнской платы и накопителей от +12 В: примерно в середине загрузки она заметно снижается. Это включаются системы энергосбережения видеокарты, которая в данной конфигурации запитывается через разъём PCI-E, то есть, от материнской платы.



3DMark’06


Ох, какой частокол - графики потребления видеокарты и процессора закрывают собой всё остальное. Оба устройства загружены не полностью (то видеокарта ждёт новой порции данных от процессора, то процессор ждёт, пока карта отрендерит очередной кадр), поэтому их энергопотребление постоянно меняется.

Измерение энергопотребления «от розетки» в таком случае показало бы только среднюю величину, сгладив все пики, мы же наблюдаем полную картину.



FurMark


FurMark очень ровно загружает и видеокарту, и процессор, но последний работает не на максимуме - его энергопотребление лишь изредка превышает 3 А.



Prime"95


Prime’95, наоборот, сильно нагружает процессор, но не трогает видеокарту - в результате энергопотребление процессора превышает 60 Вт. Также возрастает и потребление по +5 В.



FurMark + Prime"95


Одновременный запуск Prime"95 и FurMark позволяет равномерно нагрузить все компоненты, и самым «прожорливым» из них оказывается всё же процессор.



Впрочем, прожорливость эта весьма условна - на весь компьютер надо около 137 Вт в самом тяжёлом режиме.

Файловый сервер

Вечный вопрос, регулярно поднимаемый в форумах: ну ладно, с видеокартами всё понятно, а какой блок питания нужен, чтобы собрать RAID-массив? Чтобы ответить на него, мы взяли компьютер из предыдущего раздела и добавили к нему три диска Western Digital Raptor WD740GD, не слишком новых и не слишком экономичных. Диски были подключены к чипсетному контроллеру и объединены в RAID0.

Процессор AMD Athlon 64 X2 5000+ (2,60 ГГц)
Кулер для процессора TITAN DC-K8M925B/R
Вентилятор GlacialTech SilentBlade II GT9225-HDLA1
Материнская плата ASUS M3A78 (чипсет AMD 770)
Оперативная память 2x1 ГБ Samsung (PC6400, 800МГц, CL6)
Жёсткий диск 250 ГБ Seagate Barracuda 7200.10 ST3250410AS
Видеокарта 512 МБ Sapphire Radeon HD 4650
Привод DVD±RW Optiarc AD-7201S
Корпус IN-WIN EAR-003 (400 Вт)
Жёсткие диски 3x74 ГБ Western Digital Raptor WD740GD

На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.

Для создания нагрузки на диски использовалась утилита нашей собственной разработки - впрочем, написанная несколькими месяцами ранее и совершенно для других целей:


FC-Verify при работе занимается созданием и чтением заданного набора файлов, причём делает это в два совершенно независимых потока, в результате чего в один и тот же момент один поток может читать файлы, а другой - писать, что создаёт достаточно серьёзную нагрузку на диск. Для работы с файлами используются стандартные функции Windows API, кэширование файлов отключено, размер блока данных - 64 кбайта. Кроме того, утилита проверяет корректность чтения и записи файлов, но в данном случае нам это неважно. В каждом потоке между записью и чтением делается 10-секундная пауза, после каждого цикла «запись-чтение» файлы стираются - и цикл повторяется с начала.

В качестве нагрузки мы выбрали тысячу файлов по 256 кбайт в одном потоке и сто файлов по 10 Мбайт - в другом, как и показано на скриншоте. Измерение энергопотребления проводилось непрерывно в течение нескольких циклов записи-чтения.



Включение компьютера, 1 диск


Впрочем, начнём мы с загрузки компьютера и с одного диска - системного, отключив пока Raptor"ы. Ничего необычного мы на графике не видим, кроме очень длинного этапа до включения энергосбережения процессора - связано это с тем, что чипсетный RAID-контроллер долго раздумывал над обнаруженным диском и не обнаруженным массивом.



Включение компьютера, RAID-массив


Та же загрузка, но уже с RAID0-массивом на трёх Raptor WD740GD. Самый интересный момент - высокий пик в начале графика, соответствующий раскрутке шпинделей дисков. Суммарное потребление от шины +12 В (процессор, плата и диски) в этот момент превышает 11 А.



Работа с файлами, 1 диск


Занятно, что наиболее заметный рост потребления - по шине +5 В. Очевидно, свой вклад тут вносит как электроника винчестера, так и южный мост чипсета, в котором расположен RAID-контроллер.



Ещё занятнее, что на RAID-массиве также самая заметная нагрузка приходится на +5 В! В принципе, это можно понять - перемещение головки диска порождает узкий импульс тока по шине +12 В, но так как головками все три диска массива двигают не синхронно, на итоговом результате этим импульсы сказываются слабо - но куда нагляднее всё же увидеть на графике.



Итог исследования лишь отчасти неожиданный: самый тяжёлый для файлового сервера момент - включение, когда шпиндели всех дисков массива раскручиваются одновременно. При работе же хорошо заметна нагрузка на шину +5 В, создаваемая электроникой дисков, а вот на +12 В ничего особенного не происходит.

Тем не менее, на наш скромный трёхдисковый массив с не очень скромными винчестерами в нём более чем достаточно обычного 300-ваттного блока питания - включение компьютера он «вытянет» без проблем, а при работе и вовсе обеспечит трёхкратный запас мощности.

Если же обобщать результат, то можно сказать, что на один быстрый винчестер при старте требуются дополнительные 3,5 А по шине +12 В. В больших массивах, собираемых из подобных WD Raptor дисков, желателен «умный» RAID-контроллер, позволяющий при включении запускать винчестеры поочерёдно.

Игровой компьютер

Следующая система - игровой компьютер средней стоимости, весьма популярная среди покупателей модель. Такая система позволяет играть в большинство современных игр на неплохих настройках и стоит при этом вполне разумную сумму.

В качестве такого мы выбрали одну из несерийных конфигураций Flextron 3C :

Процессор Intel Core 2 Duo E8600 (3,33 ГГц)
Кулер для процессора GlacialTech Igloo 5063 PWM (E) PP
Материнская плата ASUS P5Q (чипсет iP45)
Оперативная память 2x2ГБ DDR2 SDRAM Kingston ValueRAM (PC6400, 800МГц, CL6)
Жёсткий диск 500 ГБ Seagate Barracuda 7200.12
Видеокарта PCI-E 512МБ Sapphire Radeon HD 4850
Привод DVD±RW Optiarc AD-5200S
Картовод Sony MRW620
Корпус IN-WIN IW-S627TAC

На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.



Как обычно, мы наблюдаем включение систем энергосбережения процессора (5-я секунда) и видеокарты (12-я секунда - компьютер хороший, грузится быстро). Таким образом, отсутствие нагрузки само по себе не означает тишину и экономичность - и видеокарта, и процессор зависят в этом вопросе от драйверов.

По сравнению с предыдущими конфигурациями, на графике добавилась ещё одна линия - это разъём дополнительного питания видеокарты.



3DMark’06


Энергопотребление видеокарты меняется очень быстро и очень сильно: ток через разъём дополнительного питания то падает ниже 4 А, то вырастает выше 7 А. Работа же процессора крайне проста - судя по графику энергопотребления, большую часть времени ему просто нечего делать.



FurMark


Занятно, что FurMark обеспечивает очень высокую среднюю нагрузку на видеокарту, но вот таких 7-амперных пиков, как под 3DMark, с ним не видно. Однако благодаря достаточно высокой загрузке процессора, суммарное потребление от шины +12 В под FurMark получается выше, чем под 3DMark"06.



Prime"95


Под Prime"95 видеокарта отдыхает - ток через дополнительный разъём питания падает ниже 1 А. Энергопотребление процессора, впрочем, тоже сравнительно невелико - даже в пиках оно не достигает и 50 Вт, а ведь в это число входят и потери на VRM (стабилизаторе питания процессора).



FurMark + Prime"95


При одновременном запуске FurMark и Prime"95 мы получаем максимальное энергопотребление - и при этом видеокарта заметно опережает процессор (особенно если учесть, что и от голубой линии графика пара ампер приходится на видеокарту: она питается и через разъём PCI-E материнской платы).



Тем не менее, общее энергопотребление сравнительно невелико: 189 Вт. Даже 300-ваттный блок питания обеспечит полуторакратный запас мощности, а уж брать под такой компьютер что-то больше 400 Вт просто нет никакого смысла.

Мощный игровой компьютер

Предпоследний компьютер в нашей сегодняшней статье - Flextron Quattro G2 , очень мощная и дорогая игровая система на представителе новейшего поколения процессоров Intel - Core i7.

Процессор Intel Core i7-920 (2,66 ГГц)
Материнская плата
Оперативная память 3x
Жёсткий диск
Видеокарта PCI-E 896МБ Leadtek WinFast GTX 260 Extreme+ W02G0686
Привод DVD±RW Optiarc AD-7201S
Корпус IN-WIN IW-J614TA F430 (550 Вт)

Если спросить в каком-нибудь форуме о потребностях такой конфигурации, значительная часть отвечающих будет советовать блок питания хотя бы на 750 Вт. А здесь - всего 550... Хватит ли? Сейчас увидим.

На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.



Ничего особенного здесь мы не видим, кроме того, что у Core i7 и GeForce GTX 260 тоже есть механизмы энергосбережния - но это трудно назвать неожиданным открытием.



3DMark’06


Какой бы процессор вы ни купили, а добротная видеокарта по энергопотреблению легко заткнёт его за пояс - что мы и наблюдаем. Энергопотребление и процессора, и видеокарты под 3DMark"06 сильно колеблется, скачки могут достигать нескольких ампер.



FurMark


Довольно занятно выглядит энергопотребление видеокарты под FurMark: оно меняется с периодом около 6-7 секунд. Мы затрудняемся объяснить этот эффект, вероятно, но он вызван особенностями теста. Процессор загружен равномерно, но не очень сильно: его потребление почти на всей протяжённости графика не превышает 3 А (36 Вт).



Prime"95


Совсем другое дело - Prime"95. Видеокарта тут отдыхает, зато потребление процессора вырастает с 20 Вт в простое до почти 120 Вт под нагрузкой! Мда, надо сказать большое спасибо инженерам Intel за столь эффективное управление питанием у современных процессоров - и одновременно высказать надежду, что грядущие 32-нм модели под нагрузкой будут более энергоэффективны, чем нынешние 45-нм.



FurMark + Prime"95


Одновременный запуск Prime"95 и FurMark приводит к неожиданному эффекту: процессор перегружен (Prime"95 запускался аж в 8 потоков - четыре физических ядра процессора плюс технология HyperThreading, обеспечивающая ещё четыре «виртуальных» ядра) и не успевает «кормить» данными видеокарту, из-за чего она, отрендерив один кадр, некоторое время простаивает - и сильно сбрасывает своё энергопотребление.

Здесь мы очень ярко наблюдаем эффект, когда измерение энергопотребления «от розетки» даст среднее значение, сильно отличающееся от полученного нами максимального. Конечно, можно подбирать число потоков Prime"95 с тем, чтобы обеспечить оптимальную работу FurMark и видеокарты, но всё-таки надёжнее и удобнее пользоваться правильными измерительными системами, дающими сразу и максимальные, и минимальные, и средние значения - и всё это на красивом разноцветном графике (напоминаем, что, обзаведясь такой же системой, цвета вы сможете выбирать по своему вкусу!).



Тем не менее, в целом аппетиты столь мощного компьютера относительно скромны - 371 Вт в максимуме. Даже выбирая блок питания с 50-% запасом, можно спокойно остановиться на 550-Вт моделях.

Занятно, что потребление от дежурного источника при включённом компьютере было практически равно нулю - в отличие от предыдущих систем. Зато в «спячке» при хранении данных в памяти (режим S3, он же Suspend-to-RAM) потребление от «дежурки» достигало 0,7 А.

Очень мощный игровой компьютер

И, наконец, самая серьёзная игровая система - в описанной в предыдущем разделе конфигурации меняем видеокарту на двухчипового монстра ASUS ENGTX295 (как нетрудно догадаться, GeForce GTX 295). Всё прочее остаётся прежним.

Процессор Intel Core i7-920 (2,66 ГГц)
Материнская плата Gigabyte GA-EX58-UD3R (чипсет iX58)
Оперативная память 3x1ГБ Samsung (PC3-10666, 1333МГц, CL9)
Жёсткий диск 1000 ГБ Seagate Barracuda 7200.11 ST31000333AS
Видеокарта PCI-E 1792МБ ASUS ENGTX295/2DI
Привод DVD±RW Optiarc AD-7201S
Корпус IN-WIN IW-J614TA F430

На компьютер устанавливалась операционная система Microsoft Windows Vista Home Premium SP1 (32-битная) и все необходимые драйвера.



Если момент загрузки ACPI-драйвера и включения энергосбережения процессора виден хорошо - примерно на 15-й секунде (отметка «150» по горизонтальной оси), то у видеокарты с этим как-то не сложилось. После 30-й секунды немного упало потребление по одному из разъёмов её питания, но одновременно выросло потребление от шины +3,3 В, и винить в этом можно только GTX 295 - предыдущая система, отличавшаяся только видеокартой, такой ступеньки на графике не имела. На 40-й же секунде увеличилось и энергопотребление по обеим разъёмами дополнительного питания карты. Растёт и энергопотребление материнской платы - и эту прибавку тоже получается списать лишь на видеокарту, подпитывающуюся от разъёма PCI-E.

Таким образом, надеяться, что хотя бы на рабочем столе Windows монстр GTX 295 будет по энергопотреблению сравним с одночиповыми картами, не стоит. Более детальное же рассмотрение этого вопроса мы оставим нашим авторам, занимающимся видеокартами.



3DMark’06


Обеспечить равномерно высокую загрузку современного игрового компьютера 3DMark"06 уже явно неспособен - энергопотребление и видеокарты, и процессора меняется очень сильно.



FurMark


Впрочем, если мы хотим посмотреть на красивый график, у нас всегда есть FurMark. Обратите внимание на рост энергопотребления в ходе теста - он объясняется нагревом GPU.



Prime"95


Prime’95 выводит процессор на привычные по предыдущему компьютеру сто с лишним ватт энергопотребления. Наклон графика опять объясняется нагревом: чем выше температура, тем выше энергопотребление микросхем.

Обратите внимание, что через дополнительные разъёмы видеокарта - которая в этом тесте нагружена только «рабочим столом» - потребляет около 3 А, и ещё около 5 А от шины +12 В потребляют материнская плата и накопители. Для сравнения, в предыдущей конфигурации, отличавшейся только видеокартой, эти числа составляли 2 А и 4 А, соответственно.



FurMark + Prime"95


Одновременно запущенные FurMark и Prime"95 дают знакомую картину: процессор перегружен и не успевает «кормить» видеокарту данными.

Чтобы оценить, насколько это скажется при измерениях «от розетки», мы взяли уже упоминавшийся во введении ваттметр PM-300 - в максимуме он показал 490 Вт, что, с учётом 90-% КПД блока питания, выливается в 441 Вт потребления от БП. Наша же система показала максимальное потребление немногим выше 500 Вт - согласитесь, существенная разница, возникшая из-за того, что при столь неровном энергопотреблении ваттметр показывает среднее, а не максимальное значение.

При этом, разумеется, наша система позволяет подсчитать и среднее значение, характеризующее тепловыделение системы и размер счёта за электричество. А вот чтобы подобрать блок питания - лучше всё-таки знать потребление максимальное.



По-прежнему остаётся неясным, кому и зачем нужны киловаттные блоки питания - даже для настолько мощной игровой системы более чем достаточно 750-Вт блока питания. «Киловаттник» здесь обеспечит уже двукратный запас по мощности, что явно избыточно.

Заключение

Подведение итогов мы начнём со сводной таблички, в которой приведём по два значения для каждого компьютера - максимальное (FurMark + Prime"95) и типичное (3DMark’06):



Что же, даже если брать за ориентир максимально возможное энергопотребление системы, ничего ужасного мы не видим. Конечно, 500 Вт - немаленькая мощность, четверть утюга, но блоки питания, её обеспечивающие, не только уже давно не редкость, но и денег стоят вполне разумных, особенно на фоне стоимости потребляющего столько компьютера. Если брать БП с 50-процентным запасом, то на Core i7-920 и GeForce GTX 295 достаточно 750-ваттной модели.

Остальные компьютеры и того скромнее. Стоит сменить видеокарточку на одночиповую - и потребности снижаются до 500-550 Вт (опять же, с учётом запаса «на всякий случай»), а более распространённые игровые компьютеры среднего класса прекрасно обойдутся недорогим 400-ваттным блоком питания.

И ведь это - энергопотребление под тяжёлыми тестами, а с тем же FurMark по способности нагружать видеокарту не сравнится ни одна реальная игра. Значит же это, что, взяв на самый мощный наш компьютер 750-ваттный блок питания, мы получим даже не полуторакратный, а ещё больший запас мощности.

Если же говорить о нашей новой измерительной системе, то очевидно, что она покрывает практически все наши нужды, позволяя измерять энергопотребление как компьютера в целом, так и любых его компонентов в любой момент, начиная с нажатия кнопки питания и даже до этого нажатия, автоматически регистрировать минимальные и максимальные значения токов, подсчитывать среднюю потребляемую мощность, вычислять максимальные значения мощности (с учётом, что просто сложить максимумы по разным шинам блока питания нельзя - они могли быть в разные моменты времени), смотреть распределение нагрузки по разным шинам блока питания и строить графики зависимости нагрузки от времени...

В ближайшем будущем большая часть тестов на энергопотребление компонентов и систем, производимых в нашей лаборатории, будет переведена на такие измерительные системы, причём у разных авторов системы будут сконфигурированы таким образом, чтобы лучшим образом отвечать именно их целям и задачам: например, если в данной статье потребление материнской платы и накопителей учитывалось вместе, то в статьях про видеокарты будет отдельно считаться не только потребление материнской платы, но и вовсе - ток, потребляемый видеокартой от PCI-E разъёма.

Наконец, чтобы сделать результаты тестирования блоков питания более наглядными, теперь мы будем наносить на графики кросс-нагрузочных характеристик реальные значения энергопотребления разных компьютеров. Подобный эксперимент мы уже однажды проводили , но тогда были сильно ограничены отсутствием удобного средства для быстрого и точного измерения энергопотребления различных систем.
  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то