Компилируемые и интерпретируемые языки программирования. Разбор понятий. Компилируемые и интерпретируемые языки

Языки программирования могут быть разделены на компилируемые и интерпретируемые.

Программа на компилируемом языке при помощи специальной программы компилятора преобразуется в набор инструкций для данного типа процессора и далее записывается в исполнимый модуль, который может быть запущен на выполнение как отдельная программа.

Интерпретируемые языки обладают некоторыми специфическими дополнительными возможностями, кроме того, программы на них можно запускать сразу же после изменения, что облегчает разработку. Программа на интерпретируемом языке может быть зачастую запущена на разных типах машин и операционных систем без дополнительных усилий.

Некоторые языки, например, Java и C#, находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код. Далее байт-код выполняется виртуальной машиной.

Язык программирования служит двум связанным между собой целям: он дает программисту аппарат для задания действий, которые должны быть выполнены, и формирует концепции, которыми пользуется программист, размышляя о том, что делать.

Первой цели идеально отвечает язык, который настолько "близок к машине", что всеми основными машинными аспектами можно легко и просто оперировать достаточно очевидным для программиста образом.

Второй цели идеально отвечает язык, который настолько "близок к решаемой задаче", чтобы концепции ее решения можно было выражать прямо и коротко.

Классификация языков программирования

Машинно – ориентированные языки

Машинно – ориентированные языки – это языки, наборы операторов и изобразительные средства которых существенно зависят от особенностей ЭВМ (внутреннего языка, структуры памяти и т.д.).

Машинно-ориентированные языки по степени автоматического программирования подразделяются на классы:

1. Машинный язык

2. Языки Символического Кодирования

3. Автокоды

Машинно – независимые языки

Машинно – независимые языки – это средство описания алгоритмов решения задач и информации, подлежащей обработке. Они удобны в использовании для широкого круга пользователей и не требуют от них знания особенностей организации функционирования ЭВМ и ВС.

Подобные языки получили название высокоуровневых языков программирования. Программы, составляемые на таких языках, представляют собой последовательности операторов, структурированные согласно правилам рассматривания языка(задачи, сегменты, блоки и т.д.). Операторы языка описывают действия, которые должна выполнять система после трансляции программы на машинном языке.

Машинно-независимые языки подразделяются на классы:

1. Проблемно-ориентированные языки

2. Универсальные языки

3. Диалоговые языки

4. Непроцедурные языки

18.Обзор языков программирования

Языки программирования компьютеров делятся на 2 основные группы:

1) языки низкого уровня;

2) языки высокого уровня.

К языкам низкого уровня относятся языки Ассемблера. Свое название они получили от имени системной программы Ассемблер, которая преобразует исходные программы, написанные на таких языках, непосредственно в коды машинных команд.

Частями здесь служат операторы, а результатом сборки последовательность машинных команд. Язык Ассемблера объединяет в себе достоинства языка машинных команд и некоторые черты языков высокого уровня.

Ассемблер позволяет также гибко и полно использовать технические возможности компьютера, как и язык машинных команд. Транслятор исходных программ в Ассемблере проще транслятора, требующегося для языка программирования высокого уровня. На Ассемблере можно написать столь же эффективную по размеру и времени выполнения программу, как и программу на языке машинных команд.

Фортран

Фортран самый первый из языков высокого уровня (разработан Бэкусом в начале 1950-х годов) и широко распространенный язык, особенно среди пользователей, которые занимаются численным моделированием. Это объясняется несколькими причинами:

1. существованием огромных фондов прикладных программ на Фортране, накопленных за эти годы, а также наличием огромного количества программистов, эффективно использующих этот язык;

2. наличием эффективных трансляторов Фортрана на всех типах ЭВМ, причем версии для различных машин достаточно стандартизированы и перенос программ с машины на машину обычно не составляет больших трудностей;

3. изначальной направленностью Фортрана на физико-математические и технические приложения; в частности, это проявилось в том, что в течение долгого времени он оставался единственным языком со встроенным комплексным типом переменных и большим набором встроенных функций для работы с такими переменными.

БЕЙСИК

Бейсик (BASIC - Beginner’s All-Purpose Symbolic Instruction Code – “универсальный символический код инструкций для начинающих”). Прямой потомок Фортрана и до сих пор самый популярный язык программирования для персональных компьютеров.

Появился Бейсик в 1963 году. Как и любые преимущества, простота Бейсика оборачивалась, особенно в ранних версиях трудностями структурирования; кроме того, Бейсик не допускал рекурсию – интересный прием, позволяющий составлять эффективные и в то же время короткие программы.

Кобол

Кобол - это один из первых языков программирования, появившийся в 1959, разработанный прежде всего для исследований в экономической сфере.

Язык позволяет эффективно работать с большим количеством данных, он насыщен разнообразными возможностями поиска, сортировки и распределения.

О программах на Коболе, основанных на широком использовании английского языка, говорят, что они понятны даже тем, кто не владеет Коболом, поскольку тексты на этом языке программирования не нуждаются в каких-либо специальных комментариях. Подобные программы принято называть самодокументирующимися.

Паскаль

Язык программирования Паскаль был разработан профессором кафедры вычислительной техники Швейцарского Федерального института технологии Николасом Виртом в 1968 году как альтернатива существующим и все усложняющимся языкам программирования, таким, как PL/1, Algol, Fortran.

Основные причины популярности Паскаля заключаются в следующем:

1. простота языка позволяет быстро его освоить и создавать алгоритмически сложные программы

2. развитые средства представления структур данных обеспечивают удобство работы как с числовой, так и с символьной и битовой информацией

3. наличие специальных методик создания трансляторов с Паскаля упростило их разработку и способствовало широкому распространению языка

4. оптимизирующие свойства трансляторов с Паскаля позволяют создавать эффективные программы. Это послужило одной из причин использования Паскаля в качестве языка системного программирования

5. в языке Паскаль реализуются идеи структурного программирования, что делает программу наглядной и дает хорошие возможности для разработки и отладки

Сотрудник фирмы Bell Labs Денис Ритчи создал язык Си в 1972 году во время совместной работы с Кеном Томпсоном, как инструментальное средство для реализации операционной системы Unix, однако популярность этого языка быстро переросла рамки конкретной операционной системы и конкретных задач системного программирования.

В настоящее время любая инструментальная и операционная система не может считаться полной если в ее состав не входит компилятор языка Си.

Си является орудием системного программиста и позволяет глубоко влезать в самые тонкие механизмы обработки информации на ЭВМ. Хотя язык требует от программиста высокой дисциплины, он не строг в формальных претензиях и допускает краткие формулировки.

Си – современный язык. Он включает в себя те управляющие конструкции, которые рекомендованы теорией и практикой программирования. Его структура побуждает программиста использовать в своей работе нисходящее проектирование, структурное программирование и пошаговую разработку модулей.

Си – мощный и гибкий язык. Большая часть операционной системы Unix, компиляторы и интерпретаторы языков Фортран, Паскаль, Лисп, и Бейсик написаны именно с его помощью.

Язык C++ появился в начале 80-х годов. Созданный Бьерном Страуструпом с первоначальной целью избавить себя и своих друзей от программирования на ассемблере, Си или различных других языках высокого уровня.

По мнению автора языка, различие между идеологией Си и C++ заключается примерно в следующем: программа на Си отражает “способ мышления” процессора, а C++ - способ мышления программиста. Отвечая требованиям современного программирования, C++ делает акцент на разработке новых типов данных наиболее полно соответствующих концепциям выбранной области знаний и задачам приложения. Класс является ключевым понятием C++.

Язык С++ является средством объектного программирования, новейшей методики проектирования и реализации программ, которая в текущем десятилетии, скорее всего, заменит традиционное процедурное программирование.

Язык создан в основном в 1975 - 1980 годах в результате грандиозного проекта, предпринятого Министерством Обороны США с целью разработать единый язык программирования для так называемых встроенных систем (т. е. систем управления автоматизированными комплексами, работающими в реальном времени).

PL/1 разработан в 1964-1965 годах фирмой IBM. PL/1 относится к числу универсальных языков, т. е. позволяет решать задачи из разных областей: численные расчеты, текстовая обработка, экономические задачи и т. д.

PL/1 содержит все основные конструкции, характерные для так называемых языков высокого уровня, а также ряд специфичных средств, удобных для практического программирования. Язык напоминает конструктор с большим числом деталей – пользователю достаточно освоить только те части языка, которые ему практически необходимы. Его операторы довольно емки, что часто позволяет получить запись программы более компактную, чем на других языках. Знающий PL/1 программист без труда осваивает любой другой язык того же или близкого класса.

Модула

Можно считать, что история языка Модула начинается в 1980 году, когда Никлаус Вирт, один из выдающихся специалистов по теории информации, известный большинству специалистов по вычислительной технике в основном как создатель языка Паскаль, опубликовал описание нового языка программирования, названного им Модула.

В отличие от Паскаля, который был по замыслу языком для обучения программирования, Модула с самого начала представлял собой язык для профессиональных системных программистов, продолжая лучшие традиции своего предшественника и обогащая их новыми идеями, соответствующих таким требованиям к языкам программирования, как структурность, модульность и способность к расширению.

Лисп

Язык Лисп был предложен Дж. Маккарти в работе в 1960 году и ориентирован на разработку программ для решения задач не численного характера. Английское название этого языка – LISP является аббревиатурой выражения LISt Processing (обработка списков) и хорошо подчеркивает основную область его применения. Понятие “список” оказалось очень емким. В виде списков удобно представлять алгебраические выражения, графы, элементы конечных групп, множества, правила вывода и многие другие сложные объекты.

После появления Лиспа различными авторами был предложен целый ряд других алгоритмических языков ориентированных на решение задач в области искусственного интеллекта, среди которых можно отметить Плэнер, Снобол, Рефал, Пролог. Однако это не помешало Лиспу остаться наиболее популярным языком для решения таких задач. На протяжении почти сорокалетней истории его существования появился ряд диалектов этого языка: Common LISP, Mac LISP, Inter LISP, Standard LISP и др.

Язык программирования Лисп предназначен в первую очередь для обработки символьной информации. Поэтому естественно, что в мире Лиспа числа играют далеко не главную роль. Основные типы данных в Лиспе называются “атом” и “точечная пара”.

19.Описание линейного процесса обработки данных с помощью блок-схем

Схе́ма - графическое представление определения, анализа или метода решения задачи, в котором используются символы для отображения операций, данных, потока, оборудования и т. д.

Блок-схема - распространенный тип схем (графических моделей), описывающих алгоритмы или процессы, в которых отдельные шаги изображаются в виде блоков различной формы, соединенных между собой линиями, указывающими направление последовательности.

Основные элементы схем алгоритма:

Наименование Обозначение Функция
Блок начало-конец (пуск-остановка) Элемент отображает вход из внешней среды или выход из неё (наиболее частое применение − начало и конец программы). Внутри фигуры записывается соответствующее действие.
Блок вычислений (вычислительный блок) Выполнение одной или нескольких операций, обработка данных любого вида (изменение значения данных, формы представления, расположения). Внутри фигуры записывают непосредственно сами операции, например, операцию присваивания: a = 10*b + c.
Логический блок (блок условия) Отображает решение или функцию переключательного типа с одним входом и двумя или более альтернативными выходами, из которых только один может быть выбран после вычисления условий, определенных внутри этого элемента. Вход в элемент обозначается линией, входящей обычно в верхнюю вершину элемента. Если выходов два или три, то обычно каждый выход обозначается линией, выходящей из оставшихся вершин (боковых и нижней). Если выходов больше трех, то их следует показывать одной линией, выходящей из вершины (чаще нижней) элемента, которая затем разветвляется. Соответствующие результаты вычислений могут записываться рядом с линиями, отображающими эти пути. Примеры решения: в общем случае − сравнение (три выхода: >, <, =); в программировании − условные операторы if (два выхода: true, false) и case (множество выходов).
Предопределённый процесс Символ отображает выполнение процесса, состоящего из одной или нескольких операций, который определен в другом месте программы (в подпрограмме, модуле). Внутри символа записывается название процесса и передаваемые в него данные. Например, в программировании − вызов процедуры или функции.
Данные (ввод-вывод) Преобразование данных в форму, пригодную для обработки (ввод) или отображения результатов обработки (вывод). Данный символ не определяет носителя данных (для указания типа носителя данных используются специфические символы).
Граница цикла Символ состоит из двух частей − соответственно, начало и конец цикла − операции, выполняемые внутри цикла, размещаются между ними. Условия цикла и приращения записываются внутри символа начала или конца цикла − в зависимости от типа организации цикла. Часто для изображения на блок-схеме цикла вместо данного символа используют символ условия, указывая в нём решение, а одну из линий выхода замыкают выше в блок-схеме (перед операциями цикла).
Соединитель Символ отображает вход в часть схемы и выход из другой части этой схемы. Используется для обрыва линии и продолжения её в другом месте (для избежания излишних пересечений или слишком длинных линий, а также, если схема состоит из нескольких страниц). Соответствующие соединительные символы должны иметь одинаковое (при том уникальное) обозначение.

Желающие освоить язык программирования сталкиваются с такими понятиями, как компилятор и интерпретатор. Компиляция и интерпретация — это основа работы языков программирования.

Языки программирования в общем подходе делятся на два класса — компилируемые и интерпретируемые. Стоит отметить, что эта классификация языков программирования на компилируемые и интерпретируемые, является весьма условной, поскольку для любого языка программирования может быть создан как компилятор, так и интерпретатор. Кроме того бывают языки программирования смешанного типа.

Мы полагаемся на такие инструменты, как компиляция и интерпретация, чтобы преобразовать наш код в форму, понятную компьютеру. Код может быть исполнен нативно, в операционной системе после конвертации в машинный (путём компиляции) или же исполняться построчно другой программой, которая делает это вместо ОС (интерпретатор).

Компилируемые языки

Программа на компилируемом языке при помощи специальной программы компилятора преобразуется (компилируется) в набор инструкций для данного типа процессора (машинный код) и далее записывается в исполняемый файл, который может быть запущен на выполнение как отдельная программа. Другими словами, компилятор переводит программу с языка высокого уровня на низкоуровневый язык, понятный процессору сразу и целиком, создавая при этом отдельную программу

Как правило, скомпилированные программы выполняются быстрее и не требуют для выполнения дополнительных программ, так как уже переведены на машинный язык. Вместе с тем при каждом изменении текста программы требуется ее перекомпиляция, что создает трудности при разработке. Кроме того, скомпилированная программа может выполняться только на том же типе компьютеров и, как правило, под той же операционной системой, на которую был рассчитан компилятор. Чтобы создать исполняемый файл для машины другого типа, требуется новая компиляция.

Компилируемые языки обычно позволяют получить более быструю и, возможно, более компактную программу, и поэтому применяются для создания часто используемых программ.

Примерами компилируемых языков являются Pascal, C, C++, Erlang, Haskell, Rust, Go, Ada.

Интерпретируемые языки

Если программа написана на интерпретируемом языке, то интерпретатор непосредственно выполняет (интерпретирует) ее текст без предварительного перевода. При этом программа остается на исходном языке и не может быть запущена без интерпретатора. Можно сказать, что процессор компьютера — это интерпретатор машинного кода. Кратко говоря, интерпретатор переводит на машинный язык прямо во время исполнения программы.

Программы на интерпретируемых языках можно запускать сразу же после изменения, что облегчает разработку. Программа на интерпретируемом языке может быть зачастую запущена на разных типах машин и операционных систем без дополнительных усилий. Однако интерпретируемые программы выполняются заметно медленнее, чем компилируемые, кроме того, они не могут выполняться без дополнительной программы-интерпретатора.

Примерами интерпретируемых языков являются PHP, Perl, Ruby, Python, JavaScript. К интерпретируемым языкам также можно отнести все скриптовые языки.

Многие языки в наши дни имеют как компилируемые, так и интерпретируемые реализации, сводя разницу между ними к минимуму. Некоторые языки, например, Java и C#, находятся между компилируемыми и интерпретируемыми. А именно, программа компилируется не в машинный язык, а в машинно-независимый код низкого уровня, байт-код. Далее байт-код выполняется виртуальной машиной. Для выполнения байт-кода обычно используется интерпретация, хотя отдельные его части для ускорения работы программы могут быть транслированы в машинный код непосредственно во время выполнения программы по технологии компиляции «на лету». Для Java байт-код исполняется виртуальной машиной Java (Java Virtual Machine, JVM), для C# — Common Language Runtime.

Перепечатка статьи допускается только при указании активной ссылки на сайт сайт

Хочешь получать новые статьи первым? Вступай в сообщества ITmentor

До сих пор мы говорили о том, что программу, написанную на высокоуровневом языке, перед выполнением следует откомпилировать, т. е. перевести на машинный язык, состоящий из двух знаков, соответствующих двум устойчивым состояниям. Компилятор – это тоже компьютерная программа, на вход которой подается файл с исходным текстом, написанным на языке высокого уровня. Этот файл во многих операционных системах называется исходным модулем (source module) . Компилятор переводит программу на машинный язык и записывает ее в другой файл, называемый объектным модулем (object module) .

Содержимое объектного модуля в самых простых случаях можно загрузить в оперативную память и выполнить. Но чаще всего объектный модуль перед выполнением необходимо еще скомпоновать (link) с другими объектными модулями, содержащие дополнительные модули программы, системные функции, служебные сведения и прочие данные, необходимые для выполнения программы.

Компоновку выполняет специальная программа, так и называемая «компоновщиком» (linker) или редактором связей. На ее вход подаются файлы с объектными модулями, а на выходе получается исполнимый модуль (executable module) – файл с полностью готовой к выполнению программой. Этот файл загружается в оперативную память и выполняется.

Очень часто компиляцию и компоновку объединяют в одно действие. Для этого компилятору дается специальное указание, и он сразу же после своей работы сам вызывает компоновщик. Программисту все это представляется единым процессом, только на экране дисплея появляются сообщения об окончании компиляции и начале компоновки.

Все описанное выше характерно для компилируемых языков программирования. Другой класс языков, составляющих интерпретируемые языки программирования, не требующие компиляции и компоновки. Это тоже языки высокого уровня, поэтому программы, написанные на них, часто называемые скриптами (script) или сценариями , требуют перевода на машинный язык. Для этого создается программа-интерпретатор операторов , записанных в программе. В отличие от компилятора программа-интерпретатор переводит на машинный язык не весь текст целиком, а каждый оператор по отдельности, и тут же выполняет полученный машинный код.

Интерпретация программы происходит медленнее, чем выполнение исполнимого модуля, из-за того, что каждый оператор сначала преобразуется в машинные коды. Кроме того, в процессе интерпретации могут неожиданно возникнуть ошибки, ведь исходный текст не просматривается заранее в поисках ошибок.

Тем не менее, интерпретируемые языки широко распространены из-за удобства создания программ с их помощью. Программу можно написать и сразу выполнять без предварительных преобразований. Если работа программы кажется неудовлетворительной, то ее текст можно изменить и тут же выполнить программу заново без всякой перекомпиляции.

В современном программировании разница между компилируемыми и интерпретируемыми языками стирается. Это слияние происходит по двум направлениям. С одной стороны, для интерпретируемых языков создаются компиляторы. Классическим интерпретируемым языком всегда считался язык BASIC , но сейчас для него написано много компиляторов. У программиста есть выбор. Программу, написанную на BASIC , можно интерпретировать и сразу выполнить, а можно предварительно откомпилировать в исполнимый модуль и выполнить в другое, более удобное время.

С другой стороны, интерпретаторы научились сохранять машинный код уже проинтерпретированных и выполненных операторов. При повторном выполнении этих операторов, например, в циклах, интерпретатор использует готовые машинные команды, что значительно ускоряет работу. Такие интерпретаторы называются JIT-интерпретаторами (Just-In-Time) . Они работают значительно быстрее классических интерпретаторов и поэтому приобретают все большее распространение.

Cтраница 1


Интерпретируемые языки часто используют в качестве учебных. Для освоения компилирующих языков нужны недели и месяцы подготовки, а писать простые программы на интерпретируемом языке можно уже на первый-второй день после начала занятий. Простейшим интерпретируемым языком программирования считается язык BASIC, с основами которого мы познакомимся в нашей книге.  

Интерпретируемый язык (interpretive language) - язык программирования, программы на котором компьютер считывает, транслирует и исполняет немедленно, строка за строкой; примером служит интерпретируемый Бейсик.  

Геделева нумерующая позволяет рассматривать интерпретируемые языки не только как языки, описывающие натуральные числа (т.е. имеющие множество натуральных чисел в качестве области их предполагаемой интерпретации), но и как относящиеся к нумерованным выражениям. При этом возникает возможность того, что некоторые предложения, очевидным образом относящиеся к некоторым числам, имея в виду геделеву нумерующую, можно считать относящимися к некоторым выражениям, идентичным самим этим предложениям. Описываемое положение дел не просто возможно: доказательство леммы о диагонализации выявляет, как подобная ситуация возникает, а последующие теоремы показывают, как ее можно использовать.  

Лисп является в первую очередь интерпретируемым языком. Пользователь может просто попробовать новые идеи н получить непосредственный отклик об их плодотворности. Программы не нужно транслировать, и их можно исправлять в процессе исполнения. Оглаженную функцию можно передать на трансляцию, тогда она выполняется быстрее. В одной и той же программе могут быть транслированные и интерпретируемые функции. Оттранслированную один раз функцию не нужно транслировать вновь из-за ошибок в других функциях. Транслирование по частям (incremental compiling) экономит усилия программиста и время вычислительной машины.  

В программу, написанную на интерпретируемом языке, можно внести изменения в любой момент, даже во время ее работы, а в машинный код откомпилированной программы, не имея исходного текста, внести изменения крайне трудно - это законченный продукт.  

После обсуждения реализаций типичного компилируемого языка и типичного интерпретируемого языка станет яснее взаимосвязь трансляции и моделирования, типичная для всех реализаций вообще. Фортран - простейший из компилируемых языков, рассматриваемых во второй части книги, и при реализации на традиционной вычислительной машине процесс трансляции этого языка может быть выполнен максимально глубоко.  

Существует еще один подход, при котором программу, написанную на интерпретируемом языке, можно рассматривать как последовательность вызовов подпрограмм. Такую программу можно фактически расширить в длинную цепочку обращений к подпрограммам, и, наоборот, такую цепочку можно обычно упаковать в кодированной форме, которая пригодна для интерпретации. К преимуществам методов интерпретации относятся компактность представления, машинная независимость и лучшие диагностические возможности. Интерпретатор можно обычно написать так, что время, затрачиваемое собственно на интерпретацию кода и на переход к соответствующей подпрограмме, незначительно.  

Язык представления, подобный тому, что используется в STRIPS, с точки зрения программной реализации является интерпретируемым языком, т.е. трансляция с этого языка выполняется интерпретатором, программой, которая способна распознавать в операторах языка формулы, подобные ризЬ (ящик1, комнатаБ, комнатаА), и выразить заложенный в формулах смысл в терминах выполняемых процедур.  

Еше одно преимущество компилируемых языков программирования, таких как C, состоит в том, что полученные программы могут выполняться на компьютерах без компилятора. При работе же с интерпретируемыми языками для выполнения готовой программы нужно обязательно иметь соответствующую программу-интерпретатор.  

Если базовый язык является языком пакетной обработки, дополненным графическими подпрограммами, то нужно лишь идентифицировать команду и сделать вызов соответствующей подпрограммы с заданными параметрами. Если базовый язык является интерпретируемым языком, то в основном схема остается той же, но опускается компиляция. Следует также отметить, что программа, обрабатывающая команды, записывается обычно не в виде одной монолитной программы, а в виде модульной системы. Такой метод имеет некоторые преимущества. Во-первых, экран не перегружается световыми кнопками; высвечиваются лишь кнопки, относящиеся к текущему модулю. Во-вторых, и для небольших систем это очень важно, при реализации системы могут использоваться обычные структуры с перекрытием, что позволяет держать в памяти только те модули, которые нужны в данный момент. Вряд ли стоит упоминать преимущества модульности, связанные с написанием, тестированием, отладкой и эксплуатацией программы.  

Итак, без циклов все-таки обойтись не удается, но при необходимости их использования следует обратить внимание еще на один аспект - выделение памяти для хранения переменных. Язык программирования MATLAB, являясь интерпретируемым языком сверхвысокого уровня, скрывает от пользователя операции, связанные с выделением и освобождением памяти. В результате мы чаще всего даже не задумываемся над тем, что в действительности происходит при выполнении простейшего (с точки зрения пользователя) оператора присваивания.  

Как известно, существуют две обширные категории программ - интерпретаторы и компиляторы, которые транслируют (переводят) программу, написанную на языке высокого уровня, в машинный код. Программа, написанная на интерпретируемом языке, записывается в память в виде последовательности команд языка высокого уровня.  

Однако бывают случаи, когда от программы не требуется быстродействие и она не предназначена для распространения, а сделана для себя. В этом случае удобно применить интерпретируемый язык программирования. Интерпретатор все равно переводит каждую строку по отдельности.  

Каждый из этих способов трансляции имеет свои достоинства и недостатки. Однако за удобство программирования на интерпретируемом языке приходится расплачиваться быстродействием составленных на этом языке программ. Такая программа работает в несколько десятков раз медленнее, чем программа, переведенная в машинные коды посредством компилятора. Последнее обстоятельство, как правило, оказывается более важным, поэтому в большинстве случаев для создания программ, особенно на профессиональном уровне, используются компилирующие языки.  

язык программирования также можно рассматривать как машинный код некоторого абстрактного компьютера, отличающегося от реальных процессоров. Мы будем говорить в таких случаях об абстрактных или виртуальных машинах.

Целью компиляции является реализация возможности выполнения реальным компьютером кода, написанного для абстрактной машины. Компиляция , однако, – лишь одна из двух базисных технологий, применяемых для достижения нашей цели.

Базисные схемы

Вместо компиляции программы можно ее интерпретировать. Рисунок ниже иллюстрирует разницу подходов, игнорируя роль входных данных.


Рис. 3.6.

И компилятор, и интерпретатор являются программами, на вход которых подаются программы, написанные на языке программирования. Компилятор транслирует переданную ему программу в целевую форму – машинный код, который уже может быть непосредственно выполнен на компьютере, создавая выходные результаты вычислений. Обработка той же исходной программы интерпретатором не создает целевой программы, но непосредственно выполняет ее, получая выходные результаты.

Интерпретатор должен быть способен определить эффект выполнения каждой конструкции языка программирования. Как пример того, как интерпретатор выполняет свою задачу, рассмотрим интерпретацию присваивания x: = x +1 . Интерпретатор должен хранить таблицу всех используемых переменных и связанных с ними значений. Он вычисляет новое значение x , добавляя 1 к старому значению, хранящемуся в таблице, а затем выполняет присваивание, заменяя старое значение x значением вычисленного выражения.

Компилятор будет генерировать машинный код, создающий тот же эффект, используя команды компьютера и адреса памяти (а не структуру более высокого уровня, такую как таблица).

В дополнительном упражнении для небольшого языка потребуется, применяя эти идеи, написать компилятор и интерпретатор.

Если рассматривать язык программирования как машинный код для абстрактной машины, можно сказать, что интерпретатор – это программа, моделирующая вычисление на этой машине. Машинная память в этом случае также абстрактна и представляет структуры данных в виде таблиц интерпретатора "переменные – значения".

На следующем рисунке процессы компиляции и интерпретации дополнены вводом данных:


Рис. 3.7.

Рисунок демонстрирует еще одну разницу между компилятором и интерпретатором. У интерпретатора два источника ввода – исходная программа и входные данные; а компилятору подается только программа. В последующем обсуждении этому различию придадим математическую форму.

Компилировать или интерпретировать? Эта проблема – предмет широко рассмотрения в компьютерных науках. Что лучше: непосредственно обрабатывать исходную информацию в том виде, как она есть, или предварительно привести ее к более удобной форме? Этот вопрос стоит не только при обработке программ, мы будем сталкиваться с ним и при изучении алгоритмов.

У компиляторов и интерпретаторов имеются свои достоинства. Возможны различные критерии. По производительности – времени выполнения программы – компиляторы побеждают.

  • Выход компилятора является машинным кодом, непосредственно выполняемым компьютером. Дополнительно при создании этого кода компилятор мог применять оптимизацию, улучшающую эффективность кода.
  • Интерпретация кода требует при выполнении каждого оператора его предварительной обработки. В результате интерпретация программы выполняется на порядок медленнее в сравнении с работой программы, созданной компилятором.

Все меняется, если в качестве критерия выбрать удобство и скорость разработки. Компилятор стоит между вами и реализацией вашей последней идеи: прежде чем увидеть результаты последнего изменения в программе, необходимо ждать результата компиляции (и связывания, о чем ниже пойдет речь). При интерпретации выполнение начинается незамедлительно.

В современных средах разработки этот недостаток компиляции не является столь критическим благодаря применяемой технологии "возрастающей компиляции" , когда при внесении изменений компилируются только те части программы, на которых это изменение сказывается. В конце этой лекции мы рассмотрим, как эта технология работает в EiffelStudio.

Еще один критерий, согласно которому предпочтение опять-таки отдается компиляции, состоит в надежности программы. Компиляторы не просто транслируют программу – в процессе компиляции они осуществляют различные проверки, например, контроль типов для статически типизированных языков . Тем самым многие ошибки устраняются еще на этапе компиляции, в то время как для режима интерпретации ошибки обнаруживаются в процессе выполнения на одном из сеансов работы.

В принципе, интерпретатор также способен выполнять некоторые из проверок перед выполнением программы. Фактически, чистые интерпретаторы не применяются, они представляют собой всегда некоторую смесь компиляции и интерпретации.

Комбинирование компиляции и интерпретации

Схемы чистой компиляции и чистой интерпретации являются предельными вариантами: большинство практических решений является смесью. Это верно и для процесса компиляции в EiffelStudio, который будет рассмотрен позже в этой лекции.

Заметим, что 100% схема интерпретации имеет мало смысла: каждый раз, когда интерпретатор выполнял очередной оператор, например, оператор цикла, он должен был бы возвращаться многократно к фактической последовательности символов и осуществлять ее разбор. Любое реалистическое решение не могло бы согласиться с такой неразумной тратой ресурсов. Так что фактически интерпретатор также начинает с преобразования входа в форму, приемлемую для интерпретации, например, строя абстрактное синтаксическое дерево. В ходе этого процесса, как отмечалось, возможен контроль проверки типов. Так что даже тогда, когда можно прочесть, что используется интерпретатор языка, частичная компиляция подразумевается.

Комбинирование интерпретации и компиляции идет значительно дальше рассмотренной основной идеи. Выход компилятора не должен быть непосредственным машинным кодом, он может быть субъектом дальнейшего процесса обработки.


Рис. 3.8.

Смешанная стратегия предполагает, что компилятор создает код на промежуточном языке , понимаемом некоторой виртуальной машиной – VM на рисунке. Такой подход объединяет преимущества компиляции и интерпретации. Благодаря тщательно спроектированной виртуальной машине возможно получить:

  • переносимость, так как VM-код не зависит от специфики физических процессоров;
  • повышение эффективности, поскольку создаваемый промежуточный код легко интерпретируется.

Виртуальные машины, байт-код и JIT (Just In Time) компиляторы

Реализация современных языков – Java, C#, других языков.Net – основана на смешанном решении. Промежуточный код для Java называется байт-кодом. В термине отражается тот факт, что виртуальная машина использует компактные команды, подобные командам фактического процессора, где каждая команда содержит код команды – типично задаваемый одним байтом, – после которого следует 0, 1 или 2 аргумента команды.

Альтернативой байт-коду могла бы выступать виртуальная машина, непосредственно работающая со структурами данных, например, с абстрактным синтаксическим деревом для представления структуры программы и с хэш-таблицами для хранения свойств переменных. Но байт-код обеспечивает лучшую эффективность периода выполнения, как по времени, так и по памяти.

Прием двухэтапной компиляции был использован еще в семидесятые годы при реализации компилятора с языка Паскаль. Он получил второе рождение с распространением Интернета, так как хорошо был приспособлен для локального выполнения Web-клиентами. Поставщики апплетов – небольших программ – могли компилировать их в байт-код и поставлять их в такой форме. Дополнительным преимуществом к компактности стала переносимость кода, поскольку в противном случае машинный код пришлось бы создавать для каждой возможной целевой платформы .

Для выполнения апплета пользователям необходим только интерпретатор байт-кода. Они даже не должны знать, что такой интерпретатор существует, если он встроен в их Web-браузер, Поскольку при таком подходе возникают потенциальные риски, связанные с безопасностью, – жульнические или некорректные апплеты могут повредить ваш компьютер, – по этой причине для апплетов необходим интепретатор, который будет строго контролировать операции, разрешенные для апплетов.

Поставка программ через апплеты достигла некоторого успеха, но не стала основным способом распределенного ПО, как ожидалось в момент появления Java. Частично это связано с проблемами безопасности, но главная причина – в потере эффективности, возникающей по причине интерпретации. Большинство успешных апплетов являются небольшими программами, предназначенными для выполнения на Web-странице, включающие визуальную компоненту, при наличии которой потери времени представляются несущественными.

Для улучшения эффективности времени выполнения байт-кода применяются JIT (Just In Time) компиляторы, называемые джитерами, – осуществляющие компиляцию по требованию. Основная идея состоит в том, что машинный код для некоторого модуля создается "на лету", в тот момент, когда он первый раз вызывается на выполнение (не следует путать любителя джаза –jitterbug, с ошибками такого компилятора – jitter bug ). Внесем соответствующие дополнения в предыдущий рисунок, который теперь выглядит так:


Рис. 3.9.

Обычно, как показано на рисунке, наряду с компиляцией "на лету" (джитингом) остается и возможность интерпретации байт-кода. Компиляция "на лету" обычно имеет место при первом использовании модуля (метода или всего класса), так что она будет нужна только для кода, фактически используемого в этом сеансе выполнения. В сравнении с традиционным компилятором, который компилирует всю программу, такой подход позволяет создавать более компактный код, сокращает время компиляции, но, что более важно, делает компиляцию частью процесса выполнения. Последнее является серьезным недостатком, поскольку к времени выполнения добавляются расходы на компиляцию, так что само время выполнения становится менее предсказуемым.

С первого взгляда кажется, что при таком подходе не стоит выполнять проверки типов и другой контроль, поскольку кому же хочется во время выполнения получать сообщения о нарушении согласованности типов ? Это возвращало бы нас к проблемам динамически типизированных языков . Конечно, нам хотелось бы, чтобы все необходимые проверки выполнялись на первом шаге компиляции при создании байт-кода, так, чтобы любой код, передаваемый джитеру, был безопасным. К сожалению, эти утешительные предположения нереалистичны в распределенной среде, где опять возникают проблемы безопасности. Если вы загружаете байт-код из сайта, то можете ли вы знать, прошел ли он проверку? В общем случае – нет. Но тогда нарушения типа могут стать не только причиной нарушения надежности и аварийного завершения программы, все может быть гораздо хуже: в результате атаки становится возможным нарушение безопасности.

С точки зрения специалистов по безопасности нарушения безопасности хуже аварийного завершения: при аварии все останавливается, при нарушениях безопасности программа может спокойно продолжить свою работу и даже дать правильные результаты, но при этом может быть утеряна конфиденциальная информация, стоящая дороже полученных результатов.

Как следствие, на практике компиляция на лету включает в любом случае проверку согласованности типов . Потери производительности при этом могут оставаться приемлемыми, поскольку система типов виртуальной машины с байт-кодом значительно проще, как правило, чем система типов исходной программы.

Стратегия компиляции в EiffelStudio также включает байт-код, но, как мы увидим, она использует различные способы комбинирования интерпретации и компиляции.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то