Компьютерное моделирование в физике. Компьютерное моделирование или физическое испытание, что лучше

Физическая наука неразрывно связана с математическим моделированием со времен Исаака Ньютона (XVII–XVIII вв.). И.Ньютон открыл фундаментальные законы механики, закон всемирного тяготения, описав их на языке математики. И.Ньютон (наряду с Г.Лейбницем) разработал дифференциальное и интегральное исчисления, ставшие основой математического аппарата физики. Все последующие физические открытия (в термодинамике, электродинамике, атомной физике и пр.) представлялись в форме законов и принципов, описываемых на математическом языке, т.е. в форме математических моделей.

Можно сказать, что решение любой физической задачи теоретическим путем есть математическое моделирование. Однако возможность теоретического решения задачи ограничивается степенью сложности ее математической модели. Математическая модель тем сложнее, чем сложнее описываемый с ее помощью физический процесс, и тем сложнее становится использование такой модели для расчетов.

В простейшей ситуации решение задачи можно получить “вручную” аналитически. В большинстве же практически важных ситуаций найти аналитическое решение не удается из-за математической сложности модели. В таком случае используются численные методы решения задачи, эффективная реализация которых возможна только на компьютере. Иначе говоря, физические исследования на основе сложных математических моделей производятся путем компьютерного математического моделирования. В связи с этим в ХХ веке наряду с традиционным делением физики на теоретическую и экспериментальную возникло новое направление - “вычислительная физика”.

Исследование на компьютере физических процессов называют вычислительным экспериментом. Тем самым вычислительная физика прокладывает мост между теоретической физикой, из которой она черпает математические модели, и экспериментальной физикой, реализуя виртуальный физический эксперимент на компьютере. Использование компьютерной графики при обработке результатов вычислений обеспечивает наглядность этих результатов, что является важнейшим условием для их восприятия и интерпретации исследователем.

Физика, как учебная дисциплина, предоставляет наиболее широкий спектр применения ЭВТ в качестве средства обучения. Это моделирование физических процессов (демонстрационное и лабораторное), обучающие системы, компьютерный контроль, тренажеры, генераторы индивидуальных заданий при решении задач. Также это могут быть справочно-информационные системы, системы управления экспериментом и, наконец, проведение различных расчетов (в частности, при обработке результатов лабораторного практикума).

Компьютер позволяет строить динамические модели, т. к. он реагирует на действия пользователя подобно реакции реального объекта. Компьютерные модели обеспечивают большую гибкость при проведении эксперимента во время решения экспериментальных задач, позволяют замедлить или ускорить ход времени, сжать или растянуть пространство, дополнить модель графиком, таблицей, мультипликацией, повторить или изменить ситуацию.

Компьютер, как средство управления техническим объектом, занимаю-щее особое место в совершенствовании техники и методики физического экс-перимента, может выполнять следующие функции:

Средство измерения;

Контроль над физическими процессами или поведением объекта;

Управление физическим экспериментом или техническим объектом;

Различная обработка результатов эксперимента.

Эффективность компьютерного обучения обусловлена рядом факторов: дидактическими возможностями компьютера, учебным потенциалом мульти-медийных технологий и такой организацией учебного процесса, при которой возможности новых информационных технологий обнаруживают себя наиболее полно.

Мультимедийные технологии могут быть использованы в рамках реализации таких моделей учебной деятельности, как самостоятельное и управляемое открытие знания. Существующие электронные средства разработки мультимедийных приложений могут быть использованы в учебном процессе для создания мультимедийных дидактических пособий. Применение в учебном процессе такого дидактического средства как мультимедийная учебная презентация позволяет увеличить степень усвоения студентами получаемой учебной информации.

В качестве подобного мультимедийного приложения могут быть использованы flash – технологии, использование которых в настоящее время актуально.

Flash является наиболее востребованной технологией, позволяющей со-здавать различные мультимедиа и интерактивные приложения для всевозможных сфер деятельности. Flash - это пакет для создания и формат для сохранения двумерной анимированной компьютерной графики.

В настоящее время понятие “система” в науке является до конца не определенным. Ученые приступили к исследованию сложных систем (СС).
В многочисленной литературе по системному анализу и системотехнике отмечаются следующие основные свойства сложных систем:

Свойство 1. Целостность и членимость.

Сложная система рассматривается как целостная совокупность элементов, характеризующаяся наличием большого количества взаимосвязанных и взаи-модействующих между собой элементов.
У исследователя существует субъективная возможность разбиения системы на подсистемы, цели функционирования которых подчинены общей цели функционирования всей системы (целенаправленность систем). Целенаправленность интерпретируется, как способность системы осуществлять в условиях неопределенности и воздействия случайных факторов поведение (выбор поведения), преследующее достижение определенной цели.

Свойство 2. Связи.

Наличие существенных устойчивых связей (отношений) между элементами или (и) их свойствами, превосходящими по мощности (силе) связи (отношения) этих элементов с элементами, не входящими в данную систему (внешней сре-дой).
Под “связями” понимается некоторый виртуальный канал, по которому осуществляется обмен между элементами и внешней средой веществом, энергией, информацией.

Свойство 3. Организация.

Свойство характеризуется наличием определенной организации – формированием существенных связей элементов, упорядоченным распределением связей и элементов во времени и пространстве. При формировании связей складывается определенная структура системы, а свойства элементов трансформируются в функции (действия, поведение).

При исследовании сложных систем обычно отмечают:

  • сложность функции, выполняемой системой и направленной на достижение заданной цели функционирования;
  • наличие управления, разветвленной информационной сети и интенсивных потоков информации;
  • наличие взаимодействия с внешней средой и функционирование в условиях неопределенности и воздействия случайных факторов различной природы.

Свойство 4. Интегративные качества.

Существование интегративных качеств (свойств), т.е. таких качеств, кото-рые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности. Наличие интегративных качеств показывает, что свойства систе-мы хотя и зависят от свойств элементов, но не определяются ими полностью.
Примеры СС в экономической сфере многочисленны: организационно – производственная система, предприятие; социально – экономическая система, например регион; и др.
Методологией исследования СС является системный анализ. Один из важнейших инструментов прикладного системного анализа – компьютерное моделирование .
Имитационное моделирование является наиболее эффективным и универ-сальным вариантом компьютерного моделирования в области исследования и управления сложными системами.

Модель представляет собой абстрактное описание системы (объекта, процесса, проблемы, понятия) в некоторой форме, отличной от формы их реального существования.

Моделирование представляет собой один из основных методов познания, является формой отражения действительности и заключается в выяснении или воспроизведении тех или иных свойств реальных объектов, предметов и явлений с помощью других объектов, процессов, явлений, либо с помощью абстрактного описания в виде изображения, плана, карты, совокупности уравнений, алгоритмов и программ.

В процессе моделирования всегда существует оригинал (объект) и модель , которая воспроизводит (моделирует, описывает, имитирует) некоторые черты объекта.

Моделирование основано на наличии у многообразия естественных и искусственных систем, отличающихся как целевым назначением, так и физическим воплощением, сходства или подобия некоторых свойств: геометрических, структурных, функциональных, поведенческих. Это сходство может быть полным (изоморфизм) и частичным (гомоморфизм).

Исследование современных СС предполагает различные классы моделей . Развитие информационных технологий можно интерпретировать как возможность реализации моделей различного вида в рамках информационных систем различного назначения, например, информационные системы, системы распознавания образов, системы искусственного интеллекта, системы поддержки принятия решений. В основе этих систем лежат модели различных типов: семантические, логические, математические и т.п.

Приведем общую классификацию основных видов моделирования :

  • концептуальное моделирование – представление системы с помощью специальных знаков, символов, операций над ними или с помощью естественных или искусственных языков;
  • физическое моделирование – моделируемый объект или процесс воспроизводится исходя из соотношения подобия, вытекающего из схожести физических процессов и явлений;
  • структурно – функциональное моделирование – моделями являются схемы (графы, блок-схемы), графики, диаграммы, таблицы, рисунки со специальными правилами их объединения и преобразования;
  • математическое (логико-математическое) моделирование – построение модели осуществляется средствами математики и логики;
  • имитационное (программное) моделирование – в этом случае логико-математическая модель исследуемой системы представляет собой алгоритм функционирования системы, программно-реализуемый на компьютере.

Указанные виды моделирования могут применяться самостоятельно или одновременно, в некоторой комбинации (например, в имитационном моделировании используются практически все перечисленные виды моделирования или отдельные приемы). Так, например, имитационное моделирование включает в себя концептуальное (на ранних этапах формирования имитационной модели) и логико-математическое (включая методы искусственного интеллекта) моделирование для описания отдельных подсистем модели, а также в процедурах обработки и анализа результатов вычислительного эксперимента и принятия решений. Технология проведения и планирования вычислительного эксперимента с соответствующими математическими методами привнесена в имитационное моделирование из физического (экспериментального натурного или лабораторного) моделирования. Наконец, структурно-функциональное моделирование используется как при создании стратифицированного описания многомодельных комплексов, так и для формирования различных диаграммных представлений при создании имитационных моделей.

Понятие компьютерного моделирования трактуется шире традиционного понятия “моделирование на ЭВМ” . Приведем его.

Компьютерное моделирование – это метод решения задач анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Компьютерное моделирование можно рассматривать как:

  • математическое моделирование;
  • имитационное моделирование;
  • стохастическое моделирование.

Под термином “компьютерная модель” понимают условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью уравнений, неравенств, логических соотношений, взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта. Компьютерные модели, описанные с помощью уравнений, неравенств, логических соотношений, взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, будем называть математическими. Компьютерные модели, описанные с помощью взаимосвязанных компьютерных таблиц, графов, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т.д. и отображающих структуру и взаимосвязи между элементами объекта, будем называть структурно-функциональными ;

Компьютерные модели (отдельную программу, совокупность программ, программный комплекс), позволяющие, с помощью последовательности вычислений и графического отображения результатов ее работы, воспроизводить (имитировать) процессы функционирования объекта (системы объектов) при условии воздействия на объект различных, как правило, случайных факторов, будем называть имитационными .

Суть компьютерного моделирования заключена в получении количественных и качественных результатов на имеющейся модели. Качественные результаты анализа обнаруживают неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер анализа существующей СС или прогноза будущих значений некоторых переменных. Возможность получения не только качественных, но и количественных результатов составляет существенное отличие имитационного моделирования от структурно-функционального . Имитационное моделирование имеет целый ряд специфических черт.

Методологией компьютерного моделирования является системный анализ (направление кибернетики, общая теория систем), в котором доминирующая роль отводится системным аналитикам. В отличие от математического моделирования на ЭВМ, где методологической основой являются: исследование операций, теория математических моделей, теория принятия решений, теория игр и др.

Центральной процедурой системного анализа является построение обобщенной модели, отражающей все факторы и взаимосвязи реальной системы . Предметом компьютерного моделирования может быть любая сложная система, любой объект или процесс. Категории целей при этом могут быть самыми различными. Компьютерная модель должна отражать все свойства, основные факторы и взаимосвязи реальной сложной системы, критерии, ограничения.

Компьютерное моделирование предлагает совокупность методологических подходов и технологических средств, используемых для подготовки и принятия решений в различных областях исследования.

Выбор метода моделирования для решения постановленной задачи или исследования системы является актуальной задачей, с которой системный аналитик должен уметь справляться.

С этой целью уточним место имитационных моделей и их специфику среди моделей других классов. Кроме того, уточним некоторые понятия и определения, с которыми имеет дело системный аналитик в процессе моделирования. С этой целью рассмотрим процедурно-технологическую схему построения и исследования моделей сложных систем . Эта схема (приведенная на стр.6) включает, характерные для любого метода моделирования, следующие этапы определения:

  1. Системы (предметная, проблемная область);
  2. Объекта моделирования;
  3. Целевого назначения моделей;
  4. Требований к моделям;
  5. Формы представления;
  6. Вида описания модели;
  7. Характера реализации модели;
  8. Метода исследования модели.

Первые три этапа характеризуют объект и цель исследования и практически определяют следующие этапы моделирования. При этом большое значение приобретает корректное описание объекта и формулировка цели моделирования из предметной области исследования.

Предметная (проблемная) область . Исследование различных систем: математических, экономических, производственных, социальных, систем массового обслуживания, вычислительных, информационных и многих других.

Модель должна строиться целенаправленно. Целенаправленная модель представляет собой замену действительности с той степенью абстракции, которая необходима для поставленной цели. То есть, модель, прежде всего, должна отражать те существенные свойства и те стороны моделируемого объекта, которые определены задачей. При этом важно правильно обозначить и сформулировать проблему, четко определить цельисследования, проводимого с помощью моделирования.

Требования к моделям . Моделирование связано с решением реальных задач и необходимо быть уверенным, что результаты моделирования с достаточной степенью точности отражают истинное положение вещей, т.е. модель адекватна реальной действительности.

Хорошая модель должна удовлетворять некоторым общепринятым требованиям. Такая модель должна быть:

  • адекватной;
  • надежной;
  • простой и понятной пользователю;
  • целенаправленной;
  • удобной в управлении и обращении;
  • функционально полной с точки зрения возможностей решения главных задач;
  • адаптивной, позволяющей легко переходить к другим модификациям или обновлять данные;
  • допускающей изменения (в процессе эксплуатации она может усложняться).

В зависимости от целевой направленности модели, для нее задаются специальные требования. Наиболее характерными являются: целостность, отражение информационных свойств, многоуровневость, множественность (многомодельность), расширяемость, универсальность, осуществимость (реальная возможность построения самой модели и ее исследования), реализуемость (например, на ЭВМ, возможность материализации модели в виде реальной системы в задачах проектирования), эффективность (затраты временных, трудовых, материальных и других видов ресурсов на построение моделей и проведение экспериментов находятся в допустимых пределах или оправданы). Значимость или приоритетность требований к модели непосредственно вытекают из назначения модели. Например, в исследовательских задачах, задачах управления, планирования и описания важным требованием является адекватность модели объективной реальности. В задачах проектирования и синтеза уникальных систем важным требованием является реализуемость модели, например в САПР или систему поддержки принятия решений (СППР).

Цель моделирования и задание требований к модели определяют форму представления модели.

Любая модель (прежде чем стать объективно существующим предметом) должна существовать в мысленной форме, быть конструктивно разработанной, переведена в знаковую форму и материализована. Таким образом, можно выделить три формы представления моделей:

  • мысленные (образы);
  • знаковые (структурные схемы, описания в виде устного и письменного изложения, логические, математические, логико-математические конструкции);
  • материальные (лабораторные и действующие макеты, опытные образцы).

Особое место в моделировании занимают знаковые , в частности логические, математические, логико-математические модели, а также модели, воссозданные на основе описания, составленного экспертами. Знаковые модели используются для моделирования разнообразных систем. Это направление связано с развитием вычислительных систем. Ограничимся ими в дальнейшем рассмотрении.

Следующий этап процедурной схемы – это выбор вида описания и
построения модели.
Для знаковых форм такими описаниями могут быть:

  • отношение и исчисление предикатов, семантические сети, фреймы, методы искусственного интеллекта и др. - для логических форм .
  • алгебраические, дифференциальные, интегральные, интегрально-дифференциальные уравнения и др. - для математических форм .

Характер реализации знаковых моделей бывает :

  • аналитический (например, система дифференциальных уравнений может быть решена математиком на листе бумаги);
  • машинный (аналоговый или цифровой);
  • физический (автоматный).

В каждом из них, в зависимости от сложности модели, цели моделирования, степени неопределенности характеристик модели, могут иметь место различные по характеру способы проведения исследований (экспериментов), т.е., методы исследования. Например, при аналитическом исследовании применяются различные математические методы. При физическом или натурном моделировании применяется экспериментальный метод исследования.

Анализ применяемых и перспективных методов машинного экспериментирования позволяет выделить расчетный, статистический, имитационный и самоорганизующийся методы исследований.

Расчетное (математическое) моделирование применяется при исследовании математических моделей и сводится к их машинной реализации при различных числовых исходных данных. Результаты этих реализаций (расчетов) выдаются в графической или табличной формах. Например, классической схемой является машинная реализация математической модели, представленной в виде системы дифференциальных уравнений, основанная на применении численных методов, с помощью которых математическая модель приводится к алгоритмическому виду, программно реализуется на ЭВМ, для получения результатов проводится расчет.

Имитационное моделирование отличается высокой степенью общности, создает предпосылки к созданию унифицированной модели, легко адаптируемой к широкому классу задач, выступает средством для интеграции моделей различных классов.

Компьютерная модель (англ. computer model ), или численная модель (англ. computational model ) - компьютерная программа, работающая на отдельном компьютере , суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая представление объекта, системы или понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию, включающей и набор данных, характеризующих свойства системы и динамику их изменения со временем.

О компьютерном моделировании

Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т. н. вычислительные эксперименты, в тех случаях когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет определить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения её параметров и начальных условий.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов - сначала создание качественной, а затем и количественной модели. Чем больше значимых свойств будет выявлено и перенесено на компьютерную модель - тем более приближенной она окажется к реальной модели, тем большими возможностями сможет обладать система, использующая данную модель. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритма(ов), воспроизводящего функционирование исследуемой системы путём последовательного выполнения большого количества элементарных операций.

Преимущества компьютерного моделирования

Компьютерное моделирование дает возможность:

  • расширить круг исследовательских объектов - становится возможным изучать не повторяющиеся явления, явления прошлого и будущего, объекты, которые не воспроизводятся в реальных условиях;
  • визуализировать объекты любой природы, в том числе и абстрактные;
  • исследовать явления и процессы в динамике их развертывания;
  • управлять временем (ускорять,замедлять и т.д);
  • совершать многоразовые испытания модели, каждый раз возвращая её в первичное состояние;
  • получать разные характеристики объекта в числовом или графическом виде;
  • находить оптимальную конструкцию объекта, не изготовляя его пробных экземпляров;
  • проводить эксперименты без риска негативных последствий для здоровья человека или окружающей среды.

Основные этапы компьютерного моделирования

Название этапа Исполнение действий
1. Постановка задачи и её анализ 1.1. Выяснить, с какой целью создается модель.

1.2. Уточнить, какие исходные результаты и в каком виде следует их получить.

1.3. Определить, какие исходные данные нужны для создания модели.

2. Построение информационной модели 2.1. Определить параметры модели и выявить взаимосвязь между ними.

2.2. Оценить, какие из параметров влиятельные для данной задачи, а какими можно пренебрегать.

2.3. Математически описать зависимость между параметрами модели.

3. Разработка метода и алгоритма реализации компьютерной модели 3.1. Выбрать или разработать метод получения исходных результатов.

3.2. Составить алгоритм получения результатов по избранным методам.

3.3. Проверить правильность алгоритма.

4. Разработка компьютерной модели 4.1. Выбрать средства программной реализации алгоритма на компьютере.

4.2. Разработать компьютерную модель.

4.3. Проверить правильность созданной компьютерной модели.

5. Проведение эксперимента 5.1. Разработать план исследования.

5.2. Провести эксперимент на базе созданной компьютерной модели.

5.3. Проанализировать полученные результаты.

5.4. Сделать выводы насчет свойств прототипа модели.

В процессы проведения эксперимента может выясниться, что нужно:

  • скорректировать план исследования;
  • выбрать другой метод решения задачи;
  • усовершенствовать алгоритм получения результатов;
  • уточнить информационную модель;
  • внести изменения в постановку задачи.

В таком случае происходит возвращение к соответствующему этапу и процесс начинается снова.

Практическое применение

Компьютерное моделирование применяют для широкого круга задач, таких как:

  • анализ распространения загрязняющих веществ в атмосфере ;
  • проектирование шумовых барьеров для борьбы с шумовым загрязнением ;
  • конструирование транспортных средств ;
  • полетные имитаторы для тренировки пилотов ;
  • эмуляция работы других электронных устройств;
  • исследование поведения зданий, конструкций и деталей под механической нагрузкой;
  • прогнозирование прочности конструкций и механизмов их разрушения;
  • проектирование производственных процессов, например химических;
  • стратегическое управление организацией;
  • исследование поведения гидравлических систем: нефтепроводов, водопровода;
  • моделирование роботов и автоматических манипуляторов;
  • моделирование сценарных вариантов развития городов;
  • моделирование транспортных систем;
  • конечно-элементное моделирование краш-тестов ;

Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов. Для моделирования зданий и деталей самолетов требуется высокая точность и степень достоверности, тогда как модели эволюции городов и социально-экономических систем используются для получения приближенных или качественных результатов.

Алгоритмы компьютерного моделирования

См. также

Напишите отзыв о статье "Компьютерное моделирование"

Ссылки

Отрывок, характеризующий Компьютерное моделирование

– Да что ж такое? – спросили оба Ростова, старший и младший.
Анна Михайловна глубоко вздохнула: – Долохов, Марьи Ивановны сын, – сказала она таинственным шопотом, – говорят, совсем компрометировал ее. Он его вывел, пригласил к себе в дом в Петербурге, и вот… Она сюда приехала, и этот сорви голова за ней, – сказала Анна Михайловна, желая выразить свое сочувствие Пьеру, но в невольных интонациях и полуулыбкою выказывая сочувствие сорви голове, как она назвала Долохова. – Говорят, сам Пьер совсем убит своим горем.
– Ну, всё таки скажите ему, чтоб он приезжал в клуб, – всё рассеется. Пир горой будет.
На другой день, 3 го марта, во 2 м часу по полудни, 250 человек членов Английского клуба и 50 человек гостей ожидали к обеду дорогого гостя и героя Австрийского похода, князя Багратиона. В первое время по получении известия об Аустерлицком сражении Москва пришла в недоумение. В то время русские так привыкли к победам, что, получив известие о поражении, одни просто не верили, другие искали объяснений такому странному событию в каких нибудь необыкновенных причинах. В Английском клубе, где собиралось всё, что было знатного, имеющего верные сведения и вес, в декабре месяце, когда стали приходить известия, ничего не говорили про войну и про последнее сражение, как будто все сговорились молчать о нем. Люди, дававшие направление разговорам, как то: граф Ростопчин, князь Юрий Владимирович Долгорукий, Валуев, гр. Марков, кн. Вяземский, не показывались в клубе, а собирались по домам, в своих интимных кружках, и москвичи, говорившие с чужих голосов (к которым принадлежал и Илья Андреич Ростов), оставались на короткое время без определенного суждения о деле войны и без руководителей. Москвичи чувствовали, что что то нехорошо и что обсуждать эти дурные вести трудно, и потому лучше молчать. Но через несколько времени, как присяжные выходят из совещательной комнаты, появились и тузы, дававшие мнение в клубе, и всё заговорило ясно и определенно. Были найдены причины тому неимоверному, неслыханному и невозможному событию, что русские были побиты, и все стало ясно, и во всех углах Москвы заговорили одно и то же. Причины эти были: измена австрийцев, дурное продовольствие войска, измена поляка Пшебышевского и француза Ланжерона, неспособность Кутузова, и (потихоньку говорили) молодость и неопытность государя, вверившегося дурным и ничтожным людям. Но войска, русские войска, говорили все, были необыкновенны и делали чудеса храбрости. Солдаты, офицеры, генералы – были герои. Но героем из героев был князь Багратион, прославившийся своим Шенграбенским делом и отступлением от Аустерлица, где он один провел свою колонну нерасстроенною и целый день отбивал вдвое сильнейшего неприятеля. Тому, что Багратион выбран был героем в Москве, содействовало и то, что он не имел связей в Москве, и был чужой. В лице его отдавалась должная честь боевому, простому, без связей и интриг, русскому солдату, еще связанному воспоминаниями Итальянского похода с именем Суворова. Кроме того в воздаянии ему таких почестей лучше всего показывалось нерасположение и неодобрение Кутузову.
– Ежели бы не было Багратиона, il faudrait l"inventer, [надо бы изобрести его.] – сказал шутник Шиншин, пародируя слова Вольтера. Про Кутузова никто не говорил, и некоторые шопотом бранили его, называя придворною вертушкой и старым сатиром. По всей Москве повторялись слова князя Долгорукова: «лепя, лепя и облепишься», утешавшегося в нашем поражении воспоминанием прежних побед, и повторялись слова Ростопчина про то, что французских солдат надо возбуждать к сражениям высокопарными фразами, что с Немцами надо логически рассуждать, убеждая их, что опаснее бежать, чем итти вперед; но что русских солдат надо только удерживать и просить: потише! Со всex сторон слышны были новые и новые рассказы об отдельных примерах мужества, оказанных нашими солдатами и офицерами при Аустерлице. Тот спас знамя, тот убил 5 ть французов, тот один заряжал 5 ть пушек. Говорили и про Берга, кто его не знал, что он, раненый в правую руку, взял шпагу в левую и пошел вперед. Про Болконского ничего не говорили, и только близко знавшие его жалели, что он рано умер, оставив беременную жену и чудака отца.

3 го марта во всех комнатах Английского клуба стоял стон разговаривающих голосов и, как пчелы на весеннем пролете, сновали взад и вперед, сидели, стояли, сходились и расходились, в мундирах, фраках и еще кое кто в пудре и кафтанах, члены и гости клуба. Пудренные, в чулках и башмаках ливрейные лакеи стояли у каждой двери и напряженно старались уловить каждое движение гостей и членов клуба, чтобы предложить свои услуги. Большинство присутствовавших были старые, почтенные люди с широкими, самоуверенными лицами, толстыми пальцами, твердыми движениями и голосами. Этого рода гости и члены сидели по известным, привычным местам и сходились в известных, привычных кружках. Малая часть присутствовавших состояла из случайных гостей – преимущественно молодежи, в числе которой были Денисов, Ростов и Долохов, который был опять семеновским офицером. На лицах молодежи, особенно военной, было выражение того чувства презрительной почтительности к старикам, которое как будто говорит старому поколению: уважать и почитать вас мы готовы, но помните, что всё таки за нами будущность.
Несвицкий был тут же, как старый член клуба. Пьер, по приказанию жены отпустивший волоса, снявший очки и одетый по модному, но с грустным и унылым видом, ходил по залам. Его, как и везде, окружала атмосфера людей, преклонявшихся перед его богатством, и он с привычкой царствования и рассеянной презрительностью обращался с ними.
По годам он бы должен был быть с молодыми, по богатству и связям он был членом кружков старых, почтенных гостей, и потому он переходил от одного кружка к другому.
Старики из самых значительных составляли центр кружков, к которым почтительно приближались даже незнакомые, чтобы послушать известных людей. Большие кружки составлялись около графа Ростопчина, Валуева и Нарышкина. Ростопчин рассказывал про то, как русские были смяты бежавшими австрийцами и должны были штыком прокладывать себе дорогу сквозь беглецов.
Валуев конфиденциально рассказывал, что Уваров был прислан из Петербурга, для того чтобы узнать мнение москвичей об Аустерлице.
В третьем кружке Нарышкин говорил о заседании австрийского военного совета, в котором Суворов закричал петухом в ответ на глупость австрийских генералов. Шиншин, стоявший тут же, хотел пошутить, сказав, что Кутузов, видно, и этому нетрудному искусству – кричать по петушиному – не мог выучиться у Суворова; но старички строго посмотрели на шутника, давая ему тем чувствовать, что здесь и в нынешний день так неприлично было говорить про Кутузова.
Граф Илья Андреич Ростов, озабоченно, торопливо похаживал в своих мягких сапогах из столовой в гостиную, поспешно и совершенно одинаково здороваясь с важными и неважными лицами, которых он всех знал, и изредка отыскивая глазами своего стройного молодца сына, радостно останавливал на нем свой взгляд и подмигивал ему. Молодой Ростов стоял у окна с Долоховым, с которым он недавно познакомился, и знакомством которого он дорожил. Старый граф подошел к ним и пожал руку Долохову.
– Ко мне милости прошу, вот ты с моим молодцом знаком… вместе там, вместе геройствовали… A! Василий Игнатьич… здорово старый, – обратился он к проходившему старичку, но не успел еще договорить приветствия, как всё зашевелилось, и прибежавший лакей, с испуганным лицом, доложил: пожаловали!

Кобельницкий Владислав

Компьютерное моделирование. Моделирование физический и математических процессов на компьютере.

Скачать:

Предварительный просмотр:

Исследовательская работа

«КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ»

ВыпоЛНИЛ:

КОБЕЛЬНИЦКИЙ ВЛАДИСЛАВ

УЧЕНИК 9 КЛАССА

МКОУ ООШ №17

РУКоводитель:

учитель математики и информатики

тВОРОЗОВА Е.С.

кАНСК, 2013

  1. вВЕДЕНИЕ……………………………………………………………………3
  2. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ…………………………………...5
  3. ПРАКТИЧЕСКАЯ ЧАСТЬ…………………………………………………..10
  4. ЗАКЛЮЧЕНИЕ……………………………………………………………...18
  5. СПИСОК ЛИТЕРАТУРЫ…………………………………………………...20

ВВЕДЕНИЕ

В большинстве сфер человеческой деятельности в настоящее время применяется компьютерная техника. Например, в парикмахерской можно с помощью компьютера подобрать заранее ту прическу, которая понравится клиенту. Для этого клиента фотографируют, фотографию в электронном виде вводят в программу, содержащую самые разнообразные прически, на экране отображается фото клиента, к которому можно «примерить» любую прическу. Также легко можно подобрать цвет волос, макияж. С помощью компьютерной модели можно заранее увидеть, подойдет ли клиенту та или иная прическа. Конечно, этот вариант лучше, нежели проводить эксперимент реально, в реальной жизни исправить нежелательную ситуацию гораздо сложнее.

Изучая тему по информатике, «Компьютерное моделирование», меня заинтересовал вопрос – «Любой ли процесс, или явление можно смоделировать с помощью ПК?». Это и послужило выбором моего исследования.

Тема моего исследования: «Компьютерное моделирование».

Гипотеза: любой процесс или явление можно смоделировать с помощью ПК.

Цель работы – изучить возможности компьютерного моделирования, использование его в различных предметных областях.

Для достижения данной цели в работе решаются следующие задачи:

– дать теоретические сведения о моделировании;

– описать этапы моделирования;

– привести примеры моделей процессов или явлений из различных предметных областей;

Сделать общий вывод о компьютерном моделировании в предметных областях.

Я решил подробнее рассмотреть компьютерное моделирование в программах MS Excel и «Живая математика». В работе рассмотрены преимущества программы MS Excel. С помощью данных программ, мной были построены компьютерные модели из различных предметных областей, таких как математика, физика, биология.

Построение и исследование моделей – это один из важнейших методов познания, умение использовать компьютер для построения моделей – одно из требований сегодняшнего дня, поэтому я считаю данную работу актуальной. Она является важной для меня, так как я хочу продолжить свое дальнейшее обучение в этом направлении, а также рассмотреть другие программы при разработке компьютерных моделей, это цель на дальнейшее продолжение этой работы.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

Анализируя литературу по теме исследования, я выяснил, что практически во всех естественных и социальных науках построение и использование моделей, является мощным инструментом исследований. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения оказывается построение модели, отображающей лишь какую-то часть реальности и потому многократно более простой, чем эта реальность.

Модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Модель - создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом.

Моделирование – процесс создания и использования модели.

Цели моделирования

  1. Познание действительности
  2. Проведение экспериментов
  3. Проектирование и управление
  4. Прогнозирование поведения объектов
  5. Тренировка и обучения специалистов
  6. Обработка информации

Классификация по форме представления

  1. Материальные - воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение (детские игрушки, наглядные учебные пособия, макеты, модели автомобилей и самолетов и прочее).
  1. a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);
  2. b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);
  3. c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).
  1. Информационные - совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также их взаимосвязь с внешним миром).
  1. 2.1. Вербальные - словесное описание на естественном языке).
  2. 2.2. Знаковые - информационная модель, выраженная специальными знаками (средствами любого формального языка).
  1. 2.2.1. Математические - математическое описание соотношений между количественными характеристиками объекта моделирования.
  2. 2.2.2. Графические - карты, чертежи, схемы, графики, диаграммы, графы систем.
  3. 2.2.3. Табличные - таблицы: объект-свойство, объект-объект, двоичные матрицы и так далее.
  1. Идеальные – материальная точка, абсолютно твердое тело, математический маятник, идеальный газ, бесконечность, геометрическая точка и прочее...
  1. 3.1. Неформализованные модели - системы представлений об объекте оригинале, сложившиеся в человеческом мозгу.
  2. 3.2. Частично формализованные .
  1. 3.2.1. Вербальные - описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента).
  2. 3.2.2. Графические иконические - черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты).
  3. 3.2.3. Графические условные - данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем.
  1. 3.3. Вполне формализованные (математические) модели.

Свойства моделей

  1. Конечность : модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  2. Упрощенность : модель отображает только существенные стороны объекта;
  3. Приблизительность : действительность отображается моделью грубо или приблизительно;
  4. Адекватность : насколько успешно модель описывает моделируемую систему;
  5. Информативность : модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модел;
  6. Потенциальность : предсказуемость модели и её свойств;
  7. Сложность : удобство её использования;
  8. Полнота : учтены все необходимые свойства;
  9. Адаптивность .


Так же необходимо отметить:

  1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.
  2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.
  3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.
  4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.
  5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.
  6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.

Процесс построения модели называется моделированием.

В силу многозначности понятия «модель» в науке и технике не существует единой классификации видов моделирования: классификацию можно проводить по характеру моделей, по характеру моделируемых объектов, по сферам приложения моделирования (в технике, физических науках, кибернетике и т. д.). Например, можно выделить следующие виды моделирования:

  1. Информационное моделирование
  2. Компьютерное моделирование
  3. Математическое моделирование
  4. Математико-картографическое моделирование
  5. Молекулярное моделирование
  6. Цифровое моделирование
  7. Логическое моделирование
  8. Педагогическое моделирование
  9. Психологическое моделирование
  10. Статистическое моделирование
  11. Структурное моделирование
  12. Физическое моделирование
  13. Экономико-математическое моделирование
  14. Имитационное моделирование
  15. Эволюционное моделирование
  16. Графическое и геометрическое моделирование
  17. Натурное моделирование

Компьютерное моделирование включает в себя процесс реализации информационной модели на компьютере и исследование с помощью этой модели объекта моделирования - проведение вычислительного эксперимента . С помощью компьютерного моделирования решаются многие научные и производственные вопросы.

Выделение существенных сторон реального объекта и отвлечение от его второстепенных свойств с точки зрения поставленной задачи, позволяет развить аналитические способности. Реализация модели объекта на компьютере требует знания прикладных программ, а также языков программирования.

В практической части я строил модели по следующей схеме:

  1. Постановка задачи (описание задачи, цели моделирования, формализация задачи);
  2. Разработка модели;
  3. Компьютерный эксперимент;
  4. Анализ результатов моделирования.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Моделирование различных процессов и явлений

Работа 1 «Определение удельной теплоемкости вещества».

Цель работы: экспериментальным путем определяеть удельную теплоемкость данного вещества.

Первый этап

Второй этап

  1. Введение значений измеряемых величин.
  2. Введение формул для вычисления значения удельной теплоемкости вещества.
  3. Расчет удельной теплоемкости.

Третий этап . Сравнить табличное и экспериментальное значение теплоемкости.

Определение удельной теплоемкости вещества

Обмен внутренней энергией между телами и окружающей средой без совершения механической работы называется теплообменом.

При теплообмене взаимодействие молекул тел, имеющих различную температуру, приводит к передаче энергии от тела с большей температурой к телу с меньшей температурой.

Если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается на столько, на сколько уменьшается внутренняя энергия остывающих тел.

Порядок выполнения работы:

Взвесьте внутренний алюминиевый сосуд калориметра. Налейте в него воды, примерно до половины сосуда и вновь взвесьте, чтобы определить массу воды в сосуде. Измерьте начальную температуру воды в сосуде.

Из общего для всего класса сосуда с кипящей водой, аккуратно, чтобы не обжечь руку, достаньте проволочным крючком металлический цилиндр и опустите его в калориметр.

Следите за повышением температуры воды в калориметре. Когда температура достигнет максимального значения и перестанет повышаться, запишите ее значение в таблицу.

Достаньте цилиндр из сосуда, осушив его фильтровальной бумагой, взвесьте его и запишите массу цилиндра в таблицу.

Из уравнения теплового баланса

c 1 m 1 (T-t 1 )+c 2 m 2 (T-t 1 )=cm(t 2 -T)

вычислите удельную теплоемкость вещества, из которого изготовлен цилиндр.

m 1 – масса алюминиевого сосуда;

c 1 – удельная теплоемкость алюминия;

m 2 - масса воды;

с 2 - удельная теплоемкость воды;

t 1 - начальная температура воды

m - масса цилиндра;

t 2 - начальная температура цилиндра;

Т- общая температура

Работа 2 «Изучение колебаний пружинного маятника»

Цель работы: определить экспериментальным путем жесткость пружины и определить частоту колебаний пружинного маятника. Выяснить зависимость частоты колебаний от массы подвешенного груза.

Первый этап . Составляется математическая модель.

Второй этап . Работа с составленной моделью.

  1. Введите формул для вычисления значения коэффициента жесткости пружины.
  2. Введение в ячейки формул для вычисления теоретического и экспериментального значения частоты колебаний пружинного маятника.
  3. Проведение опытов, подвешивая к пружине грузы различной массы. Результаты занесите в таблицу.

Третий этап . Сделать вывод о зависимости частоты колебаний от массы подвешенного груза. Сравнить теоретическое и экспериментальное значение частот.

Описание работы в лабораторном практикуме:

Груз, подвешенный на стальной пружине и выведенный из состояния равновесия, совершает под действием сил тяжести и упругости пружины гармонические колебания. Собственная частота колебаний такого пружинного маятника определяется выражением

где k – жесткость пружины; m – масса тела.

Задача лабораторной работы заключается в том, чтобы экспериментально проверить полученную теоретически закономерность. Для решения этой задачи сначала необходимо определить жесткость k пружины, применяемой в лабораторной установке, массу m груза и вычислить собственную частоту  0 колебаний маятника. Затем, подвесив груз массой m на пружину, экспериментально проверить полученный теоретически результат.

Выполнение работы.

1. Укрепите пружину в лапке штатива и подвесьте к ней груз массой 100 г. Рядом с грузом укрепите вертикально измерительную линейку и отметьте начальное положение груза.

2. Подвесьте к пружине еще два груза по 100 г. и измерьте ее удлинение вызванное действием силы F2Н. Занесите значение силы F и удлинения x в таблицу и вы получите значение жесткости k пружины, вычисленную по формуле

3. Зная величину жесткости пружины, вычислите собственную частоту  0 колебаний пружинного маятника массой 100, 200, 300 и 400 г.

4. Для каждого случая экспериментально определите частоту колебаний  маятника. Для этого измерьте интервал времени t, за который маятник совершит 10-20 полных колебаний, и вы получите значение частоты, вычисленное по формуле

где n – число колебаний.

5. Сравните расчетные значения собственной частоты  0 колебаний пружинного маятника с частотой , полученной экспериментально.

Работа 3 «Закон сохранения механической энергии»

Цель работы: экспериментальным путем проверить закон сохранения механической энергии.

Первый этап . Составление математической модели.

Второй этап . Работа с составленной моделью.

  1. Введение данных в электронную таблицу.
  2. Введите формул для вычисления значения потенциальной и кинетической энергии.
  3. Проведение опытов. Результаты занесите в таблицу.

Третий этап . Сравните кинетическую энергию шарика и изменение его потенциальной энергии, сделайте вывод.

Описание работы в лабораторном практикуме

ПРОВЕРКА ЗАКОНА СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ.

В работе необходимо экспериментально установить, что полная механическая энергия замкнутой системы остается неизменной, если между телами действуют только силы тяготения и упругости.

Установка для опыта показана на рисунке 1. При отклонении стержня А от вертикального положения шарик на его конце поднимется на некоторую высоту h относительно начального уровня. При этом система взаимодействующих тел Земля –шарик приобретает дополнительный запас потенциальной энергии ΔEp=mgh .

Если стержень освободить, то он возвратится в вертикальное положение до специального упора. Считая силы трения и изменения потенциальной энергии упругой деформации стержня очень малыми, можно принять, что во время движения стержня на шарик действуют только гравитационные силы и силы упругости. На основании закона сохранения механической энергии можно ожидать, что кинетическая энергия шарика в момент прохождения исходного положения будет равна изменению его потенциальной энергии:

Для определения кинетической энергии шарика необходимо измерить его скорость. Для этого укрепляют прибор в лапке штатива на высоте H над поверхностью стола, отводят стержень с шариком в сторону и затем отпускают. При ударе стержня об упор шарик соскакивает со стержня и продолжает вследствие инерции двигаться со скоростью v в горизонтальном направлении. Измерив дальность полета шарика l при его движении по параболе, можно определить горизонтальную скорость v:

где t -время свободного падения шарика с высоты H .

Определив массу шарика m с помощью весов, можно найти его кинетическую энергию и сравнить ее с изменением потенциальной энергии ΔEp .

В практической части данной работы мной были построены модели физических процессов, а также математические модели, приведены описание лабораторных работ.

В результаты работы, я построил следующие модели:

Физические модели движения тел (Ms Excel, предмет физика)

Равномерного прямолинейного движения, равноускоренного движения (Ms Excel, предмет физика);

Движения тела, брошенного под углом к горизонту (Ms Excel, предмет физика);

Движения тел с учетом силы трения (Ms Excel, предмет физика);

Движения тел с учетом многих сил действующих на тело (Ms Excel, предмет физика);

Определение удельной теплоемкости вещества (Ms Excel, предмет физика);

Колебания пружинного маятника (Ms Excel, предмет физика);

Математическая модель вычисления арифметической и алгебраической прогрессии; (Ms Excel, предмет алгебра);

Компьютерной модели модификационной изменчивости (Ms Excel, предмет биология);

Построение и исследование графиков функций в программе «Живая математика».

После построение моделей, можно сделать вывод: чтобы правильно построить модель, необходимо поставить цель, я придерживался схемы, представленной в теоретической части.

Заключение

Мной были выявлены преимущества использования программы Excel:

а) функциональные возможности программы Excel заведомо перекрывают все потребности по автоматизации обработки данных эксперимента, построению и исследованию моделей; б) обладает понятным интерфейсом; в) изучение Excel предусматривается программами общего образования по информатике, следовательно, возможно эффективное использование Excel; г) данная программа отличается доступностью в изучении и простотой в управлении, что принципиально важно как для меня, как ученика; д) результаты деятельности на рабочем листе Excel (тексты, таблицы, графики, формулы) «открыты» пользователю.

Cреди всех известных программных средств Excel обладает едва ли не самым богатым инструментарием для работы с графиками. Программа позволяет с использованием приемов автозаполнения представлять данные в табличной форме, оперативно их преобразовывать с использованием огромной библиотеки функций, строить графики редактировать их практически по всем элементам, увеличивать изображение какого-либо фрагмента графика, выбирать функциональные масштабы по осям, экстраполировать графики и т.д.

Подводя итог работы, хотелось бы сделать вывод: цель, поставленная в начале этого исследования, была достигнута. Моё исследования показало, что действительно можно смоделировать любой процесс или явление. Гипотеза поставленная мною, верна. В этом я убедился, когда построил достаточное количество таких моделей. Чтобы построить любую модель, нужно придерживаться определенных правил, которые описаны мною в практической части данной работы.

Данное исследование будет продолжено, будут изучены другие программы, позволяющие моделировать процессы.

СПИСОК ЛИТЕРАТУРЫ

  1. Дегтярев Б.И., Дегтярева И.Б., Пожидаев С.В. , Решение задач по физике на программируемых калькуляторах, М., Просвещение, 1991 г.
  2. Демонстрационный эксперимент по физике в старших классах средней школы. Под ред. Покровского А.А., М.Просвещение, 1972 г.
  3. Долголаптев В. Работа в Excel 7.0. для Windows 95.М., Бином, 1995 г
  4. Ефименко Г.Е. Решение задач по экологии с помощью электронных таблиц. Информатика, №5 – 2000г.
  5. Златопольский Д.М., Решение уравнений с помощью электронных таблиц. Информатика,№41 – 2000г.
  6. Иванов В. Microsoft Office System 2003 .Русская версия. Издательский дом «Питер», 2005 г.
  7. Извозчиков В.А., Слуцкий А.М., Решение задач по физике на компьютере, М., Просвещение, 1999г.
  8. Нечаев В.М. Электронные таблицы и базы данных. Информатика, №36- 1999г.
  9. Программы для общеобразовательных учреждений. Физика 7-11классы, М., Дрофа, 2004 г.
  10. Сайков Б.П. Excel: построение диаграмм. Информатика и образование №9 – 2001 г.
  11. Сборник задач по физике. Под ред. С.М.Козела, М., Наука, 1983 г.
  12. Семакин И.Г. , Шеина Т.Ю, Преподавание базового курса информатики в средней школе., М., изд-во Бином, 2004 г.
  13. Урок физики в современной школе. Под ред. В.Г.Разумовского, М.Просвещение, 1993 г.

Язык - это знаковая система, используемая для целей коммуникации и познания.

Языки можно разделить на естественные и искусственные.

Естественные (обычные, разговорные) языки складываются стихийно и в течение долгого времени. Искусственные языки создаются людьми для специальных целей или для определенных групп людей (язык математики, морской язык, языки программирования и т. д.). Характерной их особенностью является однозначная определенность их словаря, правил образования выражений и конструкций (строго формализованы). В естественных языках они частично формализованы. Каждый язык характеризуется: набором используемых знаков;

Правилом образования из этих знаков языковых конструкций;

Набором синтаксических, семантических и прагматических правил использования языковых конструкций.

Алфавит - это упорядоченный набор знаков, используемых в языке.

В информатике нас прежде всего интересуют модели, которые можно создавать и исследовать с помощью компьютера. С помощью компьютера можно создавать и исследовать множество объектов: тексты, графики, таблицы, диаграммы и пр. Компьютерные технологии накладывают все больший отпечаток на процесс моделирования, поэтому компьютерное моделирование можно рассматривать как особый вид информационного моделирования.

В последние годы благодаря развитию графического интерфейса и графических пакетов широкое развитие получило компьютерное, структурно-функциональное моделирование. Суть имитационного компьютерного моделирования заключена в получении количественных и качественных результатов функционирования моделируемой системы по имеющейся модели. Качественные выводы, получаемые по результатам анализа модели, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и пр. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснение прошлых значений параметров, характеризующих систему.

Предметом компьютерного моделирования могут быть: экономическая деятельность фирмы или банка, промышленное предприятие, информационно-вычислительная сеть, технологический процесс, процесс инфляции и т. д.

Цели компьютерного моделирования могут быть различными, но чаще всего это получение данных, которые могут быть использованы для подготовки и принятия решений экономического, социального, организационного или технического характера. Положено начало использованию компьютера даже при концептуальном моделировании, где он используется, например, при построении систем искусственного интеллекта. Таким образом, мы видим, что понятие «компьютерное моделирование» значительно шире традиционного понятия «моделирование на ЭВМ» и нуждается в уточнении, учитывающем сегодняшние реалии.


Начнем с термина «компьютерная модель». В настоящее время под компьютерной моделью чаще всего понимают:

§ условный образ объекта или некоторой системы объектов (или процессов), описанный с помощью взаимосвязанных компьютерных таблиц, блок-схем, диаграмм, графиков, рисунков, анимационных фрагментов, гипертекстов и т. д. и отображающий структуру и взаимосвязи между элементами объекта. Компьютерные модели такого вида мы будем называть структурно-функциональными;

§ отдельную программу, совокупность программ, программный комплекс, позволяющий с помощью последовательности вычислений и графического отображения их результатов воспроизводить (имитировать) процессы функционирования объекта, системы объектов при условии воздействия на объект различных (как правило, случайных) факторов. Такие модели мы будем далее называть имитационными моделями.

Компьютерное моделирование - метод решения задачи анализа или синтеза сложной системы на основе использования ее компьютерной модели.

Суть компьютерного моделирования заключена в получении количественных и качественных результатов по имеющейся модели. Качественные выводы, получаемые по результатам анализа, позволяют обнаружить неизвестные ранее свойства сложной системы: ее структуру, динамику развития, устойчивость, целостность и др. Количественные выводы в основном носят характер прогноза некоторых будущих или объяснения прошлых значений переменных, характеризующих систему.

Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ.

Процесс исследования поведения какого-либо объекта или системы объектов на компьютере можно разбить на следующие этапы:

Построение содержательной модели;

Построение математической модели;

Построение информационной модели и алгоритма;

Кодирование алгоритма на языке программирования;

Компьютерный эксперимент.

Контрольные вопросы

1. Что такое модель?

2. Для чего используются модели?

3. Что такое моделирование?

4. Как классифицируются модели?

5. Какие этапы проходит процесс создания модели?

6. Какие виды моделирования различают?

7. Какие модели характеризуют информационное моделирование?

8. Что такое формализация?

9. Какими чертами должен обладать знак?

10.В чем заключается цель компьютерного моделирования?

11.Что понимается под компьютерной моделью?

12.Каковы основные функции и этапы компьютерного моделирования?

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то