Лабораторный блок питания своими руками. Линейный лабораторный блок питания своими руками

У каждого радиолюбителя, будь он чайник или даже профессионал, на краю стола должен чинно и важно лежать блок питания . У меня на столе в данный момент лежат два блока питания. Один выдает максимум 15 Вольт и 1 Ампер (черный стрелочный), а другой 30 Вольт, 5 Ампер (справа):

Ну еще есть и самопальный блок питания:


Думаю, вы часто их видели в моих опытах, которые я показывал в различных статьях.

Заводские блоки питания я покупал давненько, так что они мне обошлись недорого. Но, в настоящее время, когда пишется эта статья, доллар уже пробивает отметку в 70 рублей. Кризис, мать его, имеет всех и вся.

Ладно, что-то разошелся… Так о чем это я? Ах да! Думаю, не у всех карманы лопают от денег… Тогда почему бы нам не собрать простую и надежную схему блока питания своими ручонками, которая будет ничуть не хуже покупного блока? Собственно, так и сделал наш читатель. Нарыл схемку и собрал самостоятельно блок питания:


Получилось очень даже ничего! Итак, далее от его имени…

Первым делом давайте разберемся, в чем хорош данный блок питания:

— выходное напряжение можно регулировать в диапазоне от 0 и до 30 Вольт

— можно выставлять какой-то предел по силе тока до 3 Ампер, после которого блок уходит в защиту (очень удобная функция, кто использовал, тот знает).

— очень низкий уровень пульсаций (постоянный ток на выходе блока питания мало чем отличается от постоянного тока батареек и аккумуляторов)

— защита от перегрузки и неправильного подключения

— на блоке питания путем короткого замыкания (КЗ) «крокодилов» устанавливается максимально допустимый ток. Т.е. ограничение по току, которое вы выставляете переменным резистором по амперметру. Следовательно перегрузки не страшны. Сработает индикатор (светодиод) обозначающий превышение установленного уровня тока.

Итак, теперь обо всем по порядку. Схема давно уже гуляет в интернете (кликните по изображению, откроется в новом окне на полный экран):


Цифры в кружочках — это контакты, к которым надо припаивать провода, которые пойдут на радиоэлементы.

Обозначение кружочков на схеме:
- 1 и 2 к трансформатору.
- 3 (+) и 4 (-) выход постоянного тока.
- 5, 10 и 12 на P1.
- 6, 11 и 13 на P2.
- 7 (К), 8 (Б), 9 (Э) к транзистору Q4.

На входы 1 и 2 подается переменное напряжение 24 Вольта от сетевого трансформатора. Трансформатор должен быть приличных габаритов, чтобы в нагрузку он смог выдать до 3 Ампер в легкую. Можно его купить, а можно и намотать).

Диоды D1…D4 соединены в диодный мост . Можно взять диоды 1N5401…1N5408 или какие-нибудь другие, которые выдерживают прямой ток до 3 Ампер и выше. Можно также использовать готовый диодный мост, который бы тоже выдерживал прямой ток до 3 Ампер и выше. Я же использовал диоды таблетки КД213:

Микросхемы U1,U2,U3 представляют из себя операционные усилители. Вот их цоколевка (расположение выводов). Вид сверху:

На восьмом выводе написано «NC», что говорит о том, что этот вывод никуда цеплять не надо. Ни к минусу, ни к плюсу питания. В схеме выводы 1 и 5 также никуда не цепляются.

Транзистор Q1 марки ВС547 или BC548. Ниже его распиновка:

Транзистор Q2 возьмите лучше советский, марки КТ961А


Не забудьте его поставить на радиатор.

Транзистор Q3 марки BC557 или BC327

Транзистор Q4 обязательно КТ827!


Вот его распиновка:

Схему я перечерчивать не стал, поэтому есть элементы, которые могут ввести в замешательство — это переменные резисторы. Так как схема блока питания болгарская, то у них переменные резисторы обозначают так:

У нас вот так:


Я даже указал, как узнать его выводы с помощью вращения столбика (крутилки).

Ну и, собственно, список элементов:

R1 = 2,2 кОм 1W
R2 = 82 Ом 1/4W
R3 = 220 Ом 1/4W
R4 = 4,7 кОм 1/4W
R5, R6, R13, R20, R21 = 10 кОм 1/4W
R7 = 0,47 Ом 5W
R8, R11 = 27 кОм 1/4W
R9, R19 = 2,2 кОм 1/4W
R10 = 270 кОм 1/4W
R12, R18 = 56кОм 1/4W
R14 = 1,5 кОм 1/4W
R15, R16 = 1 кОм 1/4W
R17 = 33 Ом 1/4W
R22 = 3,9 кОм 1/4W
RV1 = 100K многооборотный подстроечный резистор
P1, P2 = 10KOhm линейный потенциометр
C1 = 3300 uF/50V электролитический
C2, C3 = 47uF/50V электролитический
C4 = 100нФ
C5 = 200нФ
C6 = 100пФ керамический
C7 = 10uF/50V электролитический
C8 = 330пФ керамический
C9 = 100пФ керамический
D1, D2, D3, D4 = 1N5401…1N5408
D5, D6 = 1N4148
D7, D8 = стабилитроны на 5,6V
D9, D10 = 1N4148
D11 = 1N4001 диод 1A
Q1 = BC548 или BC547
Q2 = КТ961А
Q3 = BC557 или BC327
Q4 = КТ 827А
U1, U2, U3 = TL081, операционный усилитель
D12 = светодиод

Теперь я расскажу, как я его собирал. Трансформатор уже взял готовый от усилителя. Напряжение на его выходах составило порядка 22 Вольта. Потом стал подготавливать корпус для моего БП (блок питания)


протравил


отмыл тонер


просверлил отверстия:


Запаял кроватки для ОУ (операционных усилителей) и все другие радиоэлементы, кроме двух мощных транзисторов (они будут лежать на радиаторе) и переменных резисторов:


А вот так плата выглядит уже с полным монтажом:


Подготавливаем место под платку в нашем корпусе:


Приделываем к корпусу радиатор:


Не забываем про кулер, который будет охлаждать наши транзисторы:


Ну и после слесарных работ у меня получился очень хорошенький блок питания. Ну как вам?


Описание работы, печатку и список радиоэлементов я взял в конце статьи.

Ну а если кому лень заморачиваться, то всегда можно приобрести за копейки подобный кит-набор этой схемы на Алиэкпрессе по этой ссылке


Для настройки, ремонта автоэлектронных и радиотехнических устройств или зарядки аккумуляторных батарей необходимо иметь хороший источник питания.

Использование современной схемотехники и элементной базы позволяют сделать в домашних условиях источник питания, по основным техническим характеристикам не уступающий лучшим промышленным образцам.

Основные требования, которым должен удовлетворять такой источник питания:

  • регулировка напряжения в диапазоне 0 - 25 В;
  • способность обеспечить ток в нагрузке до 7 А при минимальных пульсациях;
  • регулировка срабатывания токовой защиты. Кроме того, срабатывание защиты по току должно быть достаточно быстрым, чтобы исключить повреждение самого источника в случае короткого замыкания на выходе.

Возможность плавно регулировать в источнике питания ограничения тока позволяет при настройке внешних устройств исключить их повреждение. Всем этим требованиям удовлетворяет предлагаемая схема универсального источника питания. Кроме того, данный блок питания позволяет использовать его в качестве источника стабильного тока.

Основные технические характеристики источника питания:

  • плавная регулировка напряжения в диапазоне от 0 до 25 В;
  • напряжение пульсаций, не более 1 мВ;
  • плавная регулировка тока ограничения (защиты) от 0 до 7 А;
  • коэффициент нестабильности по напряжению не хуже 0,001 %/В;
  • коэффициент нестабильности по току не хуже 0,01 %/В;
  • КПД источника не хуже 0,6.

Принципиальная схема

Электрическая схема источника питания, состоит из схемы управления, трансформатора (Т1), выпрямителя (VD4 ч- VD7), силовых регулирующих транзисторов VT3, VT4 и блока коммутации обмоток трансформатора.

Схема управления собрана на двух универсальных операционных усилителях (ОУ), расположенных в одном корпусе, и питается от отдельного трансформатора Т2. Это обеспечивает регулировку выходного напряжения от нуля, а также более стабильную работу всего устройства.

Для облегчения теплового режима работы силовых регулирующих транзисторов применен трансформатор с секционной вторичной обмоткой. Отводы автоматически переключаются в зависимости от уровня выходного напряжения при помощи реле К1, К2. Что позволяет, несмотря на большой ток в нагрузке, применить теплоотвод для VT3 и VT4 сравнительно небольших размеров, а также повысить КПД стабилизатора.

Блок коммутации предназначен для того, чтобы при помощи всего двух реле обеспечить переключение четырех отводов трансформатора, выполняет их включение в следующей последовательности: при превышении выходного напряжения уровня 6,2 В - включается К2; при превышения уровня 15,3 В включается К1(в этом случае с обмоток трансформатора поступает максимальное напряжение).

Указанные пороги задаются используемыми стабилитронами (VD10, VD12). Отключение реле при снижении напряжения выполняется в обратной последовательности, но с гистерезисом примерно 0,3 В, т. е. когда напряжение снизится на это значение ниже чем при включении, что исключает дребезг при переключении обмоток.

Схема управления состоит из стабилизатора напряжения и стабилизатора тока. При необходимости устройство может работать в любом из этих режимов. Режим зависит от сопротивления регуляторов "I" (R21,R22). Стабилизатор напряжения собран на элементах DA3, VT5, VT6.

Рис. 1. Принципиальная схема лабораторного источника питания с регулировкой тока ограничения.

Работает схема стабилизатора следующим образом. Нужное выходное напряжение устанавливается резисторами "грубо" (R9) и "точно" (R10). В режиме стабилизации напряжения сигнал обратной связи по напряжению (-Uoc) с выхода (Х2) через делитель из резисторов R9, RIO, R11 поступает на неинвертирующий вход 2 операционного усилителя DA3.

На этот же вход через резисторы R3, R5, R7 подается опорное напряжение +9 вольт. В момент включения схемы на выходе 12 DA3.1 будет увеличиваться положительное напряжение (оно через транзистор VT5 приходит на управление VT4) до тех пор, пока напряжение на выходных клеммах X1 и Х2 не достигнет установленного резисторами R9, R10 уровня.

За счет отрицательной обратной связи по напряжению, поступающей с выхода Х2 на вход 2 усилителя DA3.1, выполняется стабилизация выходного напряжения источника питания. При этом выходное напряжение будет определяться соотношением:

где Uoп = + 9 В.

Соответственно изменяя сопротивление резисторов R9 "грубо" и R10 "точно", можно менять выходное напряжение (Uвых) от 0 до 25 В. Когда к выходу источника питания подключена нагрузка, в его выходной цепи начинает протекать ток, создающий положительное падение напряжения на резисторе R23 (относительно общего провода схемы).

Это напряжение поступает через резистор R21, R22 в точку соединения R8, R12. Со стабилитрона VD9 через R6, R8 подается опорное отрицательное напряжение - 9 вольт.

Операционный усилитель DA3.2 усиливает разность между ними. Пока разность отрицательная (т. е. выходной ток меньше установленной резисторами R23, R24 величины), на выходе 10 DA3.2 действует + 15 В. Транзистор VT6 будет закрыт и эта часть схемы не оказывает влияния на работу стабилизатора напряжения.

При увеличении тока нагрузки до величины, при которой на входе 7 DA3.2 появится положительное напряжение, на выходе 10 DA3.2 будет отрицательное напряжение и транзистор VT6 приоткроется. В цепи R16, R17, HL1 будет протекать ток, который уменьшит открывающее напряжение на базе регулирующего силового транзистора VT4.

Свечение красного светодиода (HL1) сигнализирует о переходе схемы в режим ограничения тока. В этом случае выходное напряжение источника питания снизится до такой величины, при которой выходной ток будет иметь значение, достаточное для того, чтобы напряжение обратной связи по току (Uoc), снимаемое с резистора R10, и опорное в точке соединения R8, R12, R22 взаимно компенсировались, т. е. появился нулевой потенциал.

В результате выходной ток источника окажется ограниченным на уровне, задаваемым положением движка резисторов R21, R22. При этом ток в выходной цепи будет определяться соотношением:

где Uoп = - 9 В.

Диоды (VD11) на входах операционных усилителей обеспечивают защиту микросхемы от повреждения в случае включения её без обратной связи или при повреждении силового транзистора. В рабочем режиме напряжение на входах ОУ близко к нулю и диоды не оказывают влияния на работу устройства.

Конденсатор С8 ограничивает полосу усиливаемых частот ОУ, что предотвращает самовозбуждение и повышает устойчивость работы схемы.

Настройка

При безошибочном монтаже в схеме узла управления потребуется настроить только максимум диапазона регулировки выходного напряжения 0: 25 В резисторомR7 и максимальный ток защиты 7 А - резистором R8.

Блок коммутации в настройке не нуждается. Необходимо только проверить пороги переключения реле К1, К2 и соответствующее увеличение напряжения на конденсаторе С3.

При работе схемы в режиме стабилизации напряжения светится зеленый светодиод (HL2), а при переходе в режим стабилизации тока - красный (HL1).

Детали

Подстроечные резисторы R7 и R8 - типа СПЗ-19а; переменные резисторы R9, R10, R21, R22 - типа СПЗ-4а или ППБ-1 А; постоянные резисторы R23 - типа С5-16МВ на 5 Вт, остальные из серии МЛТ или С2-23 соответствующей мощности.

Конденсаторы С6, С7, С8, СЮ типа КІО-17, электролитические С1 - С5, С9 типа К50-35 (К50-32). Микросхема DA1 может быть заменена импортным аналогом 78L15; DA2 - на 79L15; DA3 на рА747 или двумя микросхемами 140УД7.

Светодиоды HL1, HL2 подойдут любые с разным цветом свечения. Силовые транзисторы устанавливаются на радиатор площадью около 1000 см^2.

Два силовых транзистора устанавливается параллельно для обеспечения надёжной работы устройства в случае короткого замыкания на выходных клеммах.

В наихудшем случае силовые транзисторы кратковременно должны выдерживать перегрузку по мощности Р = Ubx*I = 25x7= 175 Вт. А один транзистор КТ827А может рассеивать мощность не более 125 Вт. Диоды VD4 - VD7 надо установить на небольшой радиатор.

Реле К1, К2 применены типоразмера R-15 (польского производства) с обмоткой на рабочее напряжение 24 В (сопротивление обмотки 430 Ом) - они за счет бескорпусного исполнения имеют малые габариты и достаточно мощные переключающие контакты. Можно использовать и отечественные реле типа РЭН29 (0001), РЭН32 (0201).

Переключающие напряжение с трансформатора Т1 реле К1 и К2 инерционны и не обеспечивают мгновенное снижение напряжения, приходящего со вторичной обмотки Т1, но они уменьшат тепловую рассеиваемую мощность на силовых транзисторах при длительной работе источника.

Микроамперметр РА1 малогабаритный типа М42303 или аналогичный с внутренним шунтом на ток до 10 А. Для удобства эксплуатации источника питания схему можно дополнить вольтметром, показывающим выходное напряжение.

В качестве сетевого трансформатора Т1 используется промышленный трансформатор типа ТППЗ19-127/220-50. Т2 - типа ТПП259-127/220-50. Трансформатор можно изготовить и самостоятельно на основе промышленного трансформатора мощностью 200 Вт, намотав все обмотки (Т1 и Т2) на одном трансформаторе.

Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Видео

Для питания различных схем нужны разные блоки питания с разными напряжениями и токами, для таких целей в мастерской необходим регулируемый блок питания, то есть лабораторный блок питания. Цены на такие устройства довольно внушительны и поэтому придется собирать лабораторный блок питания своими руками. Из того что у меня есть в закромах получится неплохой прибор с выходом до 18В и током до 2.5А, для индикации подойдет только что пришедший с Китая цифровой вольтметр, но обо всем по порядку.

Во первых максимальные выходные параметры были выбраны в связи с имеющимся свободным трансформатором от стерео колонок 2*17В 2А. обмотки подключены параллельно. После диодного моста с конденсаторами напряжение подрастет примерно до 24В. Надо учитывать, что напряжение должно быть с запасом. Падение на транзисторах несколько вольт плюс под нагрузкой еще просядет на несколько вольт, чистыми останется 19В поэтому 18В это стабильный максимум, что можно выжать. Нагрузка в 2,5А выбрана так, что бы сильно не нагружать обмотки трансформатора, в таком режиме трансформатор будет себя лучше чувствовать, потому что нагружен будет на 70-80%. Чем питать разобрался, теперь что что питать

Теперь пора выбрать схему для лабораторного блока питания. Схема была выбрана, собрана и опробована, это простой и доступный лабораторный блок питания (ПИДБП) V14.Схема была взята с форума Паяльника и немного переделана под свои выходные напряжения и токи

На DA1.3 собран индикатор перегрузки по току. Когда идет ограничение по току, этот индикатор указывает об этом
Для измерения тока нагрузки на DA1.4 собран усилитель напряжения пересчитанный на усиление в 5 раз. Когда нагрузка максимальна на резисторе R20 падение 0,5В, это напряжение усиливается и на выходе ОУ напряжение, равное по значению току потребления.

Ну и на первых двух компараторах собрано сердце схемы. Это стабилизатор тока управляющий стабилизатором напряжения. Я собирал нечто похожее, только в схеме управление током и напряжением было независимо. Подробно описывать как работает последовательное включение стабилизаторов не буду, можете почитать о параллельном в статье , принцип работы схож.
В схеме были пересчитаны R12R14 для выходного напряжения в 18В, а R11 для регулировки напряжения был заменен на 5к. R20 пересчитан на ток 2,5А, при максимальном токе на R20 должно быть падение 0,5В. R20 рассчитывается по простой формуле из закона Ома R20=0.5(В)\Iмакс(А)

Что бы схемку сделать немного практичней добавил схемку защиты от короткого замыкания и переполюсовки. Эта схема хорошо себя зарекомендовала и леплю её куда попало))
Короче определился, что где буду использовать. Собрал все компоненты в кучу, развел печатную плату и все распаял

Как видно выходные транзисторы использовал в параллельном включении. Общая рассеиваемая мощность 120Вт, максимальный ток 20А напряжение пробоя 60В. Оба транзисторы выведены проводами на общий радиатор за пределы корпуса. Кстати корпус использовал от старой пластиковой музыкальной колонки


Печатная плата готова, корпус есть. транзисторы на радиаторе. Пришло время окончательно определиться какие задачи будут выполняться лабораторным блоком питания и развести переднюю панель. Панель буду рисовать в SPL6.

На панеле размещу вольтметр, регулятор напряжения и тока.
Переключатель измерение вольт и ампер.
Два индикатора перегрузка и защита от КЗ
Переключатель между выходом с диодного моста и выходом ЛБП
Переключатель между ЛБП и зарядным. Минусовой выход либо с ЛБП либо с защиты от переполюсовки и кз
Теперь зная что где будет, можно сложить общую схему лабораторного блока питания и раскидывать косы проводов от платы к передней панеле. Вот что вышло



Думаю пора собирать все в корпус

Вот фото платы собранной окончательно


А вот так все выглядит в корпусе.

После сборки всего в корпус можно попробовать включить лабораторный питальник в розетку. На выходе 18,5В

Первое включение лабораторного блока питания под нагрузкой 50% в качестве нагрузки двигатель от шуруповерта 12В. Кстати по индикатору перегрузка видно, что блок питания в режиме ограничения тока. На индикаторе ток потребления 1,28А

Вот такой лабораторный блок питания у меня получился

В качестве индикатора использовал вольтметр из Китая, предварительно его переделав. Вольтметр указывал тоже напряжения от которого питался, я решил разделить эти каналы, что бы была возможность измерять от 0В до 20В. Я убрал резистор соединяющий контакты питания и измерения напряжения, он помечен красным на фото. Запитал индикатор от опорного напряжения схемы 12В


Такой вольтметр можно заказать на AliExpress. вот ссылка

Если нужны результаты испытаний этого блока, пожалуйста напишите в комментариях.

С ув. Эдуард

Поддержите новые проекты монеткой, пролистайте страницу чуть ниже, будьте любезны.

СОБИРАЕМ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ 0-30V / 0-3A.

Многим радиолюбителям знакома эта схема лабораторного источника питания, она обсуждаема на многих радиолюбительских форумах и пользуется спросом не только в России, но и за рубежом. Но не смотря на ее популярность и положительные отзывы мы не смогли найти готовую печатную плату в LAY формате, может плохо искали а может не достаточно приложили усилий к поиску, поэтому решили устранить этот пробел. Для начала напомним, что данный блок питания имеет регулировку выходного напряжения диапазон которого 0...30 Вольт, вторым регулятором можно задать порог ограничения выходного тока, диапазон регулировки 2mA...3A, это обеспечивает не только защиту самого блока питания от КЗ на выходе и перегрузки, но и того устройства которое вы налаживаете. Данный источник обладает малыми пульсациями выходного напряжения, они не превышают 0,01%. Принципиальная схема лабораторного БП приведена ниже:

Решив не изобретать печатную плату с нуля, мы воспользовались изображением платы, которую уже не раз повторяли многие радиолюбители, вид исходников такой:

После преобразования данных картинок в LAY формат вид платs стал следующий:

Фото-вид LAY6 формата и вид расположения элементов:

Список элементов для повторения схемы лабораторного блока питания:

Резисторы (у которых мощность не указана – все на 0,25 Ватта):

R1 – 2k2 1W – 1 шт.
R2 – 82R – 1 шт.
R3 – 220R – 1 шт.
R4 – 4k7 - 1 шт.
R5, R6, R13, R20, R21 – 10k – 5 шт.
R7 – 0R47 5W – 1 шт. (уменьшение номинала до 0R25 увеличит диапазон регулировки до 7...8 Ампер)
R8, R11 – 27k – 2 шт.
R9, R19 – 2k2 – 2 шт.
R10 – 270k – 1 шт.
R12, R18 – 56k – 2 шт.
R14 – 1k5 – 1 шт.
R15, R16 – 1k – 1 шт.
R17 – 33R – 1 шт.
R22 – 3k9 – 1 шт.

Переменные/подстроечные резисторы:

RV1 – 100k – подстроечный резистор – 1 шт.
P1, P2 – 10k (с линейной характеристикой) – 2 шт.

Конденсаторы:

C1 – 3300...1000mF/50V (электролит) – 1 шт.
C2, C3 – 47mF/50V (электролит) – 2 шт.
C4 – 100n (полиэстер) – 1 шт.
C5 – 200n (полиэстер) – 1 шт.
C6 – 100pF (керамика) – 1 шт.
C7 – 10mF/50V (электролит) – 1 шт. (Лучше заменить на 1000mF/50V)
C8 – 330pF (керамика) – 1 шт.
C9 – 100pF (керамика) – 1 шт.

Диоды/стабилитроны:

D1, D2, D3, D4 – 1N5402 (1N5403, 1N5404) – 4 шт. (Или подкорректировать плату LAY6 под установку диодной сборки)
D5, D6, D9, D10 – 1N4148 – 4 шт.
D7, D8 – Zener 5V6 (стабилитрон на напряжение 5,6 Вольта) – 2 шт.
D11 – 1N4001 – 1 шт.
D12 – LED – светодиод – 1 шт.

Микросхемы:

U1, U2, U3 – TL081 – 3 шт.

Транзисторы:

Q1 – NPN BC548 (BC547) – 1 шт.
Q2 – NPN 2N2219 (BD139, отечественный КТ961А) – 1 шт. (При замене на BD139 не перепутайте цоколевку, при установке его на плату ноги перекрещиваются)
Q3 – PNP BC557 (BC327) – 1 шт.
Q4 – NPN 2N3055 – 1 шт. (А лучше применить отечественный КТ827, причем установить его на внушительный радиатор)

Напряжение вторичной обмотки трансформатора 25 Вольт, ток вторички и мощность транса выбирайте в зависимости от того, каие параметры хотите иметь на выходе. Для расчета трансформатора можно воспользоваться программой из статьи:

В поисках информации по данной схеме мы все-таки нашли один вариант печатной платы в LAY формате на одном из форумов, ее разработал DRED. Отличительной особенностью этого варианта является то, что она изначально заточена на применение транзистора BD139, поэтому перекручивать ноги у этого элемента при установке не нужно. Вид платы LAY6 формата следующий:

Фото-вид платы DRED-варианта:

Плата односторонняя, размер 75 х 105 мм.

Но на этом наша статья не заканчивается. На одном из буржуйских сайтов мы нашли еще один вариант печатной платы данного блока питания. Дорожки немного тоньше, расположение элементов чуток компактнее и потенциометры регулировки тока стабилизации и напряжения располагаются непосредственно на печатке. Используя исходные изображения мы сваяли лейку, прада внесли некоторые незначительные изменения. LAY6 формат платы БП выглядит так:

Фото-вид и расположение элементов:

Плата односторонняя, размер 78 х 96 мм, схема та же, номиналы элементов те же. Ну и напоследок пара снимков собранных лабораторных блоков питания по данной схеме:

Плата в сборе по второму варианту печатной платы:

Не экономьте на размере радиатора, выходник греется, дополнительный обдув лишним не будет.
Блок питания 100% повторяем, и надеемся что полученной информации будет достаточно для его изготовления. Все материалы в архиве, размер – 1,85 Mb.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то